李新國(guó),王偉,翟哲,南來(lái)福,王競(jìng)逸
(天津大學(xué)機(jī)械工程學(xué)院,天津 300350)
有機(jī)朗肯循環(huán)中的工質(zhì)熱源轉(zhuǎn)折溫度及其特征
李新國(guó),王偉,翟哲,南來(lái)福,王競(jìng)逸
(天津大學(xué)機(jī)械工程學(xué)院,天津 300350)
有機(jī)朗肯循環(huán)中存在有極值功循環(huán)與無(wú)極值功循環(huán),即存在一種凈功的轉(zhuǎn)折線與所對(duì)應(yīng)的工質(zhì)熱源轉(zhuǎn)折溫度,它對(duì)工質(zhì)的選擇與循環(huán)性能評(píng)價(jià)具有指標(biāo)性的作用?;谔菪窝h(huán)及其理論模型,本文建立工質(zhì)飽和線形狀(飽和液線斜率、飽和氣線斜率及其斜率比與臨界溫度)及物性為自變量的數(shù)學(xué)關(guān)系,并提出和定義線性飽和線工質(zhì)模型,建立循環(huán)性能與工質(zhì)物性之間的數(shù)學(xué)關(guān)系。分別推導(dǎo)出有機(jī)朗肯循環(huán)中工質(zhì)熱源轉(zhuǎn)折溫度的經(jīng)驗(yàn)公式,以及梯形循環(huán)下線性飽和線工質(zhì)的熱源轉(zhuǎn)折溫度理論公式及其修正。研究熱源轉(zhuǎn)折溫度及其對(duì)應(yīng)的優(yōu)化工況的特征與一般性規(guī)律,得到21種工質(zhì)熱源轉(zhuǎn)折溫度的有機(jī)朗肯循環(huán)數(shù)值計(jì)算與經(jīng)驗(yàn)公式之間的偏差小于1.97%。線性飽和線工質(zhì)模型下,工質(zhì)的熱源轉(zhuǎn)折溫度為臨界溫度和蒸發(fā)器窄點(diǎn)溫差之和;熱源轉(zhuǎn)折溫度所對(duì)應(yīng)的最高優(yōu)化工況(最高優(yōu)化蒸發(fā)溫度與最大凈功極值)隨斜率比單調(diào)增加,至干工質(zhì)時(shí),最高優(yōu)化工況接近工質(zhì)的臨界點(diǎn)。
有機(jī)朗肯循環(huán);梯形循環(huán);線性飽和線工質(zhì);工質(zhì)熱源轉(zhuǎn)折溫度;最高優(yōu)化工況
有機(jī)朗肯循環(huán)(organic Rankine cycle,ORC)采用低沸點(diǎn)有機(jī)工質(zhì)發(fā)電,可以回收利用300℃以下的中低溫?zé)崮埽缣?yáng)能、地?zé)崮?、工業(yè)余熱等。目前ORC的研究一般是針對(duì)具體工質(zhì)的數(shù)值計(jì)算或?qū)嶒?yàn)研究。徐榮吉等[1]以R245fa為工質(zhì),提出基于對(duì)數(shù)傳熱溫差的內(nèi)回?zé)崞餍阅苡?jì)算方法,并分析過(guò)熱溫度、過(guò)冷溫度對(duì)內(nèi)回?zé)酧RC性能的影響,表明內(nèi)回?zé)釡p少了循環(huán)的蒸發(fā)負(fù)荷和冷凝負(fù)荷,提高了循環(huán)效率。韓中合等[2]針對(duì)煙氣余熱構(gòu)建無(wú)回?zé)岷陀袃?nèi)回?zé)岬腛RC系統(tǒng),通過(guò)熱源參數(shù)變化引起工質(zhì)吸熱量的變化,分析工質(zhì)在兩種系統(tǒng)中的初溫、凈功量、熱耗率及?損的變化規(guī)律,得出較優(yōu)工質(zhì)和各工質(zhì)對(duì)內(nèi)回?zé)崞鞯钠ヅ湫浴罹w飛等[3]在給定熱源條件下,探討進(jìn)口過(guò)熱度對(duì)膨脹機(jī)性能和系統(tǒng)性能的影響,表明隨膨脹機(jī)進(jìn)口過(guò)熱度遞減,膨脹機(jī)機(jī)械效率遞增,等熵效率遞減,膨脹機(jī)軸功和實(shí)際運(yùn)行效率呈先增后減的變化趨勢(shì)。王明濤等[4]建立能量平衡方程和?方程,研究蒸發(fā)壓力對(duì)不同烷烴類工質(zhì)的熱效率、單位質(zhì)量煙氣凈功、?效率等參數(shù)的影響規(guī)律,表明在保證膨脹機(jī)體積流量比不大于50情況下,環(huán)戊烷具有最高的熱效率和?效率。張軍輝等[5]以最大做功能力和?效率為目標(biāo)函數(shù),對(duì)10種工質(zhì)進(jìn)行分析,表明每種工質(zhì)均存在一優(yōu)化蒸發(fā)溫度使循環(huán)凈輸出功最大,而且工質(zhì)臨界溫度越高,對(duì)應(yīng)的優(yōu)化蒸發(fā)溫度也越高。賀超等[6]采用不同優(yōu)化目標(biāo),對(duì)亞臨界ORC進(jìn)行蒸發(fā)溫度和冷凝溫度的優(yōu)化分析。在排煙溫度423.15K條件下,對(duì)干工質(zhì),不同優(yōu)化目標(biāo)下蒸發(fā)溫度和冷凝溫度優(yōu)化值差異較大;濕工質(zhì)R134a與R152a臨界溫度低于熱源初始溫度20K±2K時(shí),系統(tǒng)存在優(yōu)化蒸發(fā)溫度。LI等[7]在熱源溫度120~200℃下,對(duì)5種有機(jī)工質(zhì)從安全、環(huán)保、經(jīng)濟(jì)效益方面進(jìn)行分析,表明R123非常不安全,但它的熱經(jīng)濟(jì)效率最高,尤其熱源溫度較高時(shí)。YU等[8]研究表明,當(dāng)ORC系統(tǒng)在近臨界溫度區(qū)域內(nèi)運(yùn)行,即熱源進(jìn)口溫度與工質(zhì)臨界溫度之差在適當(dāng)范圍內(nèi)時(shí),系統(tǒng)可獲得最大的輸出功。
也有學(xué)者從理論角度對(duì)有機(jī)朗肯循環(huán)進(jìn)行分析。最早由嚴(yán)家祿[9]對(duì)兩種熱源形式的ORC,分別推導(dǎo)了工質(zhì)優(yōu)化蒸發(fā)溫度和冷卻水溫升的數(shù)學(xué)關(guān)系式和相應(yīng)的修正系數(shù),結(jié)果表明這些計(jì)算式精確性比較高。WANG等[10-11]建立了循環(huán)凈功的理論模型,推導(dǎo)理論計(jì)算公式,計(jì)算結(jié)果與ORC的數(shù)值計(jì)算結(jié)果也非常一致。HE等[12-13]建立了循環(huán)凈功與優(yōu)化蒸發(fā)溫度的解析表達(dá)式,表明優(yōu)化蒸發(fā)溫度的理論值與ORC數(shù)值計(jì)算之間的偏差僅為–0.86%~2.3%,平均偏差小于1%。CHEN等[14]綜述了ORC和超臨界朗肯循環(huán)以及工質(zhì)篩選標(biāo)準(zhǔn),討論了工質(zhì)汽化潛熱、密度、液態(tài)比熱容對(duì)循環(huán)的影響和關(guān)于過(guò)熱的經(jīng)濟(jì)性,推導(dǎo)出工質(zhì)在膨脹機(jī)等熵膨脹過(guò)程中比焓變的關(guān)系式。另外,MAIZZA等[15]提出汽化潛熱越大、密度越高、液態(tài)比熱容越小的工質(zhì)越適合于ORC,而YAMAMOTO等[16]認(rèn)為低汽化潛熱的工質(zhì)更好,因?yàn)榕蛎洐C(jī)進(jìn)口處工質(zhì)為飽和狀態(tài)時(shí)才達(dá)到優(yōu)化工況。LIU等[17]提出工質(zhì)的飽和氣線斜率公式,但未分析飽和氣線斜率對(duì)循環(huán)性能的影響。
綜上所述,常規(guī)有機(jī)朗肯循環(huán)一般是針對(duì)實(shí)際工質(zhì)的數(shù)值計(jì)算、實(shí)驗(yàn)研究或應(yīng)用,由于實(shí)際工質(zhì)的種類有限,且工質(zhì)物性是定量、非變量,使得有機(jī)朗肯循環(huán)的研究結(jié)果或結(jié)論往往是具體、局限的,不具有普遍性。基于前期研究提出的模擬有機(jī)朗肯循環(huán)的梯形循環(huán)及其理論模型[18],本文建立工質(zhì)飽和線形狀(飽和液線斜率、飽和氣線斜率與臨界溫度)及物性為自變量的數(shù)學(xué)關(guān)系,即將實(shí)際工質(zhì)的物性變量化,應(yīng)用梯形循環(huán)及其理論模型,進(jìn)行梯形循環(huán)(或有機(jī)朗肯循環(huán))的理論研究,從理論角度研究有機(jī)朗肯循環(huán)的普遍性熱力學(xué)規(guī)律。重點(diǎn)針對(duì)有機(jī)朗肯循環(huán)中有極值功向無(wú)極值功轉(zhuǎn)化的凈功轉(zhuǎn)折線,所對(duì)應(yīng)的熱源轉(zhuǎn)折溫度及其最高優(yōu)化工況等特征進(jìn)行研究。
前期研究提出并建立了梯形循環(huán)(trapezoidal cycle,TPC)及其理論模型[18]。梯形循環(huán)是將基本的內(nèi)可逆ORC簡(jiǎn)化為T-s圖中的梯形循環(huán),如圖1所示。其中將ORC中的兩個(gè)過(guò)程作如下簡(jiǎn)化:①用過(guò)程3–4代替ORC中的過(guò)程3–3′–4,這樣造成了液相區(qū)比功“Δw1”的減少(圖中3–3′–4–3圍成的面積);②采用過(guò)程2′–2–2′代替ORC中干膨脹后的過(guò)熱冷卻過(guò)程2′–2′,這樣,對(duì)于干工質(zhì)或“干膨脹”,增加了比功“Δwsup.h”(圖1中2′–2–2′–2′圍成的面積),但對(duì)濕工質(zhì)與等熵工質(zhì)或“濕膨脹”,則無(wú)此功增量。計(jì)算表明[18]:TPC與ORC之間的偏差為:功率偏差為0.3%~–3.3%,熱效率偏差為0.59%~–2.94%,相對(duì)偏差的絕對(duì)值均小于5%,表明梯形循環(huán)完全可以模擬有機(jī)朗肯循環(huán)。
圖1 有機(jī)朗肯循環(huán)與梯形循環(huán)
基于梯形循環(huán)及其理論模型,建立工質(zhì)飽和線的數(shù)學(xué)模型。如圖2(a)、(b)、(c),線段4–5為工質(zhì)飽和液線上蒸發(fā)溫度處的切線,斜率為kl,線段1–5為工質(zhì)飽和氣線上蒸發(fā)溫度處的切線,斜率為kg;并定義kl與kg之比為斜率比rk,rk=kl/kg。5點(diǎn)溫度定義為斜率切線的交點(diǎn)溫度Tcr',其值可反映工質(zhì)臨界溫度的高低。6點(diǎn)溫度定義為頂點(diǎn)溫度Tm。Tcr'與Tm之間的差值為ΔTm。
(1)對(duì)濕工質(zhì),如圖2(a),由三角形相似得式(1) 。
式中,Δsr為蒸發(fā)溫度Te下兩相區(qū)的熵變。
(2)對(duì)干工質(zhì),如圖2(b),由三角形相似得式(3)。
(3)對(duì)于等熵工質(zhì),Tcr'=Te+klΔsr,即公式(2)或公式(4)中kg→∞。
因此,干、濕及等熵工質(zhì)的切線交點(diǎn)溫度Tcr'表達(dá)式一致,公式(2)或公式(4)為通式。
圖2 頂點(diǎn)溫度與飽和線斜率及斜率切線交點(diǎn)溫度的關(guān)系
由此可推導(dǎo)出工質(zhì)的頂點(diǎn)溫度Tm表達(dá)式如式(5)。
研究表明:工質(zhì)循環(huán)的優(yōu)化工況(即凈輸出功極大值)只存在于蒸發(fā)器傳熱窄點(diǎn)位于工質(zhì)泡點(diǎn)處的情況[18]。基于梯形模型,傳熱窄點(diǎn)位于工質(zhì)泡點(diǎn)時(shí)的凈輸出功W表達(dá)式為式(6)。
如圖3所示,熱源轉(zhuǎn)折溫度Th,shift所對(duì)應(yīng)的凈功為有極值功向無(wú)極值功的轉(zhuǎn)折;當(dāng)熱源溫度低于該Th,shift時(shí),工質(zhì)循環(huán)存在優(yōu)化工況,即存在凈功極大值與對(duì)應(yīng)的優(yōu)化蒸發(fā)溫度;當(dāng)熱源溫度高于該Th,shift時(shí),工質(zhì)循環(huán)凈功不再具有極大值,而是隨蒸發(fā)溫度單調(diào)上升。表明亞臨界有機(jī)朗肯循環(huán)中存在著有極值功循環(huán)與無(wú)極值功循環(huán),或功率由有極值向無(wú)極值的發(fā)展,如圖4所示。明顯地,熱源轉(zhuǎn)折溫度下的優(yōu)化工況為優(yōu)化工況的最高工況,即熱源轉(zhuǎn)折溫度Th,shift所對(duì)應(yīng)的優(yōu)化蒸發(fā)溫度Te,opt_M與凈輸出功極值Wmax_M是優(yōu)化工況的最高值。
研究表明,除凈功的轉(zhuǎn)折線與對(duì)應(yīng)的工質(zhì)熱源轉(zhuǎn)折溫度,還存在另外兩條凈功特征線與對(duì)應(yīng)的工質(zhì)熱源特征溫度[19],如圖3所示:①熱源轉(zhuǎn)變點(diǎn)溫度Th,turn,蒸發(fā)溫度趨近于工質(zhì)臨界溫度時(shí),凈功由一直下降出現(xiàn)向上增加趨勢(shì),對(duì)應(yīng)的熱源溫度定義為熱源轉(zhuǎn)變點(diǎn)溫度Th,turn;②熱源上限溫度Th,up,蒸發(fā)溫度趨近于工質(zhì)臨界溫度時(shí),凈功由一直上升出現(xiàn)下降趨勢(shì),對(duì)應(yīng)的熱源溫度定義為熱源上限溫度Th,up。
表1給出了21種工質(zhì)在蒸發(fā)器傳熱窄點(diǎn)溫差5℃和冷凝溫度35℃下,有機(jī)朗肯循環(huán)中工質(zhì)熱源轉(zhuǎn)折溫度,其中文獻(xiàn)[19]的計(jì)算精確度為0.1℃,本文為0.01℃。表2給出了R227ea的熱源轉(zhuǎn)折溫度隨窄點(diǎn)溫差(0~20℃)的變化。結(jié)果表明:①工質(zhì)熱源轉(zhuǎn)折溫度隨蒸發(fā)器傳熱窄點(diǎn)溫差成近似的線性關(guān)系;②熱源轉(zhuǎn)折溫度所對(duì)應(yīng)的最高優(yōu)化工況:最高優(yōu)化蒸發(fā)溫度Te,opt_M與最大凈輸功極值Wmax_M不隨蒸發(fā)器窄點(diǎn)溫差而變化。
圖3 工質(zhì)R227ea循環(huán)凈功特征線與對(duì)應(yīng)的熱源水特征溫度
圖4 一定熱源水溫度,不同臨界溫度工質(zhì)的循環(huán)凈功比較
表1 工質(zhì)的熱源轉(zhuǎn)折溫度(ΔTp=5℃,Tc=35℃)
表2 R227ea在不同窄點(diǎn)溫差下的熱源轉(zhuǎn)折溫度及其最高優(yōu)化工況值
通過(guò)對(duì)大量工質(zhì)熱源轉(zhuǎn)折溫度的計(jì)算與擬合,可推導(dǎo)出有機(jī)朗肯循環(huán)中工質(zhì)熱源轉(zhuǎn)折溫度的經(jīng)驗(yàn)公式,如式(9)。
表1給出了熱源轉(zhuǎn)折溫度經(jīng)驗(yàn)公式與有機(jī)朗肯循環(huán)數(shù)值計(jì)算之間的偏差,二者的偏差較小,其中最大偏差為R600的1.97%。表明該經(jīng)驗(yàn)公式可用于有機(jī)朗肯循環(huán)工質(zhì)熱源轉(zhuǎn)折溫度的模擬計(jì)算。
為簡(jiǎn)化分析,將工質(zhì)的飽和液線與飽和氣線簡(jiǎn)化為直線,構(gòu)成線性飽和線工質(zhì),如圖5。這樣,線性飽和線工質(zhì)的飽和液線斜率kl與飽和氣線斜率kg不隨溫度而變化,為常量。
圖5 線性飽和線工質(zhì)模型
此時(shí),線性飽和線工質(zhì)的臨界溫度Tcr即為交點(diǎn)溫度Tcr'。所以,公式(2)可寫為式(10)。
蒸發(fā)溫度處的潛熱r=Te×Δsr,代入工質(zhì)流量得到式(11)。
當(dāng)蒸發(fā)溫度Te達(dá)到頂點(diǎn),即臨界溫度Tcr處,則為工質(zhì)的熱源轉(zhuǎn)折溫度(Th,shift_id),如式(14)。
式(14)表明:工質(zhì)的熱源轉(zhuǎn)折溫度與工質(zhì)的臨界溫度及蒸發(fā)器窄點(diǎn)溫差分別成線性關(guān)系,與前述的ORC分析結(jié)論相一致。
因此,由式(15)計(jì)算出的優(yōu)化工況則為最高優(yōu)化工況,即最高優(yōu)化蒸發(fā)溫度與最大凈功極值。
但是由于mw并不是Te的一元函數(shù),還是rk和cp的函數(shù),所以式(14)會(huì)有偏差。取線性飽和線工質(zhì)的臨界溫度Tcr范圍90~200℃,斜率比rk為–2~0.35,對(duì)公式(14)的偏差進(jìn)行計(jì)算如下。
當(dāng)rk=0(即等熵工質(zhì))時(shí),偏差范圍為0~00.15℃,可以不用修正,仍采用式(14)。
當(dāng)rk>0(即干工質(zhì))時(shí),偏差范圍為0.15~– 0.05℃,可以不用修正,仍采用式(14)。
當(dāng)rk<0(即濕工質(zhì))時(shí),修正為式(16)。
表3給出了臨界溫度Tcr150℃下,線性飽和線工質(zhì)熱源轉(zhuǎn)折溫度Th,shift_id的梯形循環(huán)數(shù)值計(jì)算與理論公式(14)或修正式(16)的計(jì)算結(jié)果。大量計(jì)算表明:在斜率比rk為–2~0.35范圍內(nèi),線性飽和線工質(zhì)熱源轉(zhuǎn)折溫度的梯形循環(huán)數(shù)值計(jì)算與上述理論公式(14)或修正式(16)之間的最大偏差分別為:Tcr=100℃時(shí)為0.25%,Tcr=150℃時(shí)為0.24%,Tcr=200℃時(shí)為0.68%。
表3 線性飽和線工質(zhì)熱源轉(zhuǎn)折溫度下的優(yōu)化工況與斜率比的關(guān)系(Tcr=150℃;ΔTp=5℃)
由前述分析,工質(zhì)熱源轉(zhuǎn)折溫度Th,shifit_id下的優(yōu)化工況為最高優(yōu)化工況,即最高優(yōu)化蒸發(fā)溫度Te,opt_M與最大凈功極值Wmax_M。
式(15)工質(zhì)熱源轉(zhuǎn)折溫度下凈功計(jì)算式中無(wú)窄點(diǎn)溫差 ΔTp,表明熱源轉(zhuǎn)折溫度下的凈功與窄點(diǎn)溫差無(wú)關(guān),由此可推論:熱源轉(zhuǎn)折溫度下的最高優(yōu)化工況參數(shù)(Te,opt_M、Wmax_M)也與窄點(diǎn)溫差無(wú)關(guān),與前述ORC的分析結(jié)論相一致。
下面具體計(jì)算與分析熱源轉(zhuǎn)折溫度下的優(yōu)化工況隨斜率比的變化。假設(shè)計(jì)算條件為:熱源水進(jìn)口溫度為工質(zhì)熱源轉(zhuǎn)折溫度Th,shifit_id,熱源水流量mh為1kg/s,冷凝溫度Tc為35℃,蒸發(fā)器窄點(diǎn)溫差ΔTp為5℃;線性飽和線工質(zhì)的臨界溫度Tcr設(shè)為150℃,斜率比rk為–2~0.35,計(jì)算結(jié)果見表3。表明最高優(yōu)化工況隨斜率比rk單調(diào)增加,至干工質(zhì)時(shí),最高優(yōu)化工況達(dá)到工質(zhì)的臨界點(diǎn)。由于蒸發(fā)溫度為Tcr時(shí),熱源進(jìn)出口已無(wú)溫差,可取比Tcr稍低的溫度,如Tcr–0.5進(jìn)行計(jì)算。
有機(jī)朗肯循環(huán)中存在有極值功循環(huán)與無(wú)極值功循環(huán),即存在一種凈功的轉(zhuǎn)折線與所對(duì)應(yīng)的工質(zhì)熱源轉(zhuǎn)折溫度,它對(duì)工質(zhì)的選擇與循環(huán)性能評(píng)價(jià)具有指標(biāo)性的作用?;谔菪窝h(huán)及其理論模型,本文建立工質(zhì)飽和線形狀(飽和液線斜率、飽和氣線斜率及其斜率比與臨界溫度)及物性為自變量的數(shù)學(xué)關(guān)系,并提出和定義了線性飽和線工質(zhì)模型,建立循環(huán)性能與工質(zhì)物性之間的數(shù)學(xué)關(guān)系。分別推導(dǎo)出有機(jī)朗肯循環(huán)中工質(zhì)熱源轉(zhuǎn)折溫度的經(jīng)驗(yàn)公式,以及梯形循環(huán)中線性飽和線工質(zhì)的熱源轉(zhuǎn)折溫度理論公式及其修正。研究熱源轉(zhuǎn)折溫度及其對(duì)應(yīng)的優(yōu)化工況的特征與一般性規(guī)律。得到如下結(jié)論。
(1)計(jì)算表明,21種工質(zhì)熱源轉(zhuǎn)折溫度的有機(jī)朗肯循環(huán)數(shù)值計(jì)算與經(jīng)驗(yàn)公式之間的偏差小于1.97%。
(2)有機(jī)朗肯循環(huán)中,工質(zhì)熱源轉(zhuǎn)折溫度與蒸發(fā)器窄點(diǎn)溫差成線性關(guān)系,熱源轉(zhuǎn)折溫度所對(duì)應(yīng)的最高優(yōu)化工況(最高優(yōu)化蒸發(fā)溫度與最大凈功極值)不隨蒸發(fā)器窄點(diǎn)溫差而變化。
(3)線性飽和線工質(zhì)模型下,推導(dǎo)出工質(zhì)熱源轉(zhuǎn)折溫度Th,shift_id的理論公式,為臨界溫度與蒸發(fā)器窄點(diǎn)溫差之和,其中濕工質(zhì)要進(jìn)行一定的修正。Th,shift_id下的最高優(yōu)化工況(最高優(yōu)化蒸發(fā)溫度Te,opt_M與最大凈功極值Wmax_M)隨斜率比單調(diào)增加,至干工質(zhì)時(shí),最高優(yōu)化工況接近工質(zhì)的臨界點(diǎn)。
符號(hào)說(shuō)明
c—— 比熱容,J/(kg·K)
Ja—— 雅克比數(shù),J/J
k—— 斜率,K2·kg/J
m—— 質(zhì)量流量,kg/s
q—— 比吸熱量,J/kg
r—— 斜率比,kl/kg,量綱為1
s—— 比熵,J/(kg·K)
T—— 溫度,K或℃
W—— 凈輸出功,J
w—— 比功,J/kg
η—— 熱效率,%
上、下角標(biāo)
c —— 冷凝
cr —— 臨界
e —— 蒸發(fā)
h —— 熱源
i —— 進(jìn)口
m —— 頂點(diǎn)
max —— 極大值
opt —— 優(yōu)化
ORC —— 有機(jī)朗肯循環(huán)
p —— 壓力
shift —— 轉(zhuǎn)折
TPC—— 梯形循環(huán)
w—— 工質(zhì)
[1] 徐榮吉,張曉暉,閆美玉,等.過(guò)熱/過(guò)冷對(duì)內(nèi)回?zé)嵊袡C(jī)朗肯循環(huán)影響的熱力學(xué)分析[J].化工進(jìn)展,2016,35(12):3783-3792.XU Rongji,ZHANG Xiaohui,YAN Meiyu,et al.Thermal dynamics analysis on the organic Rankine cycle (ORC)with internal heat regenerator at superheated and subcooling conditions[J].Chemical Industry and Engineering Progress,2016,35(12):3783-3792.
[2] 韓中合,潘歌,范偉,等.內(nèi)回?zé)崞鲗?duì)低溫有機(jī)朗肯循環(huán)熱力性能的影響及工質(zhì)選擇[J].化工進(jìn)展,2016,35(1):40-47.HAN Zhonghe,PAN Ge,F(xiàn)AN Wei,et al.Effect of internal heat exchanger on thermodynamic performance of low temperature organic Rankine cycle and working fluid selection[J].Chemical Industry and Engineering Progress,2016,35(1):40-47.
[3] 楊緒飛,戚風(fēng)亮,劉秀龍,等.有機(jī)朗肯循環(huán)膨脹機(jī)入口過(guò)熱度實(shí)驗(yàn)[J].化工進(jìn)展,2016,35(7):2007-2014.YANG Xufei,QI Fengliang,LIU Xiulong,et al.Experiment on expander inlet superheat of organic Rankine cycle[J].Chemical Industry and Engineering Progress,2016,35(7):2007-2014.
[4] 王明濤,方箏,劉啟一.渦輪增壓柴油機(jī)余熱利用的有機(jī)郎肯循環(huán)烴類高溫工質(zhì)熱力學(xué)分析[J].化工進(jìn)展,2016,35(9):2721-2727.WANG Mingtao,F(xiàn)ANG Zheng,LIU Qiyi.Thermodynamic analysis of an organic Rankine cycle for waste heat recovery of a turbo-charged diesel engine based on working fluids of alkanes[J].Chemical Industry and Engineering Progress,2016,35(9):2721-2727.
[5] 張軍輝,劉娟芳,陳清華.有機(jī)朗肯循環(huán)系統(tǒng)最佳蒸發(fā)溫度和?分析[J].化工學(xué)報(bào),2013,64(3):820-826.ZHANG Junhui,LIU Fangjuan,CHEN Qinghua.Optimal evaporating temperature and exergy analysis for original Rankine cycle[J].CIESC Journal,2013,64(3):820-826.
[6] 賀超,劉朝,高虹,等.工業(yè)余熱有機(jī)朗肯循環(huán)參數(shù)優(yōu)化和分析[J].工程熱物理學(xué)報(bào),2012,33(12):2042-2046.HE Chao,LIU Chao,GAO Hong,et al.Parameters optimization and performance analysis of organic Rankine cycle for industrial waste heat recovery[J].Journal of Engineering Thermophysics,2012,33(12):2042-2046.
[7] LI H,MA X L,WEI X L,et al.Selection of working fluids for low-temperature waste heat recovery using organic Rankine cycle[J].Advanced Materials Research,2012,512-515:1217-1222.
[8] YU H S,F(xiàn)ENG X,WANG Y F.A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat[J].Energy,2015,90:36-46.
[9] 嚴(yán)家祿.低溫?zé)崮馨l(fā)電方案中選擇工質(zhì)和確定參數(shù)的熱力學(xué)原則和計(jì)算[J].工程熱物理學(xué)報(bào),1982,3(1):1-7.YAN Jialu.Thermodynamic principles and formulas for choosing working fluids and parameters in desgning power plant of low temperature heat[J].Journal of Engineering Thermophysics,1982,3(1):1-7.
[10] WANG D X,LING X,PENG H,et al.Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation[J].Energy,2013,50(1):343-352.
[11] WANG D X,LING X,PENG H.Cost–effectiveness performance analysis of organic Rankine cycle for low grade heat utilization coupling with operation condition[J].Applied Thermal Engineering,2013,58(1-2):571-584.
[12] HE C,LIU C,GAO H,et al.The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle[J].Energy,2012,38(1):136-143.
[13] HE C,LIU C,ZHOU M T,et al.A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources[J].Energy,2014,68(15):283-291.
[14] CHEN H,GOSWAMI D Y,STEFANAKOS E K.A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J].Renewable & Sustainable Energy Reviews,2010,14(9):3059-3067.
[15] MAIZZA V,MAIZZA A.Working fluids in non-steady flows for waste energy recovery systems[J].Applied Thermal Engineering,1996,16:579-90.
[16] YAMAMOTO T,F(xiàn)URUHATA T,ARAI N,et al.Design and testing of the organic Rankine cycle[J].Energy,2001,26(3):239-251.
[17] LIU B T,CHIEN K H,WANG C C.Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy,2004,29(8):1207-1217.
[18] LI X G.A trapezoidal cycle with theoretical model based on organic Rankine cycle[J].International Journal of Energy Research,2016,40(12):1624-1637.
[19] LI X G,ZHAO W J,LIN D D,et al.Working fluid selection based on critical temperature and water temperature in organic Rankine cycle[J].Science China Technological Sciences,2015,58(1):138-146.
Shift-temperature of heating fluid and its characteristics for working fluid in organic Rankine cycle
LI Xinguo,WANG Wei,ZHAI Zhe,NAN Laifu,WANG Jingyi
(School of Mechanical Engineering,Tianjin University,Tianjin 300350,China)
The existence of the maximum power cycle and no maximum power cycle in organic Rankine cycle(ORC)means that there is a kind of shift-curve of net power output and its corresponding shift-temperature of heating fluid for the working fluids; which played an index function in the selection of the working fluids and the evaluation of the cycle performance. Based on trapezoidal cycle and its theoretical model,the relation and formulas of the saturated line shape(saturated liquid line slope,saturated gas line slope and its ratio and critical temperature)and thermal properties of the working fluids as variables were established. The model of working fluid with linear saturated line was proposed and defined. The mathematical model and relation between the cycle performance and properties of the working fluids were built. The empirical equations of the shift-temperature of heating fluid for the working fluid in ORC and the theoretical equations of the shift-temperature of heating fluid in working fluid with linear saturated line were derived,respectively. The characteristics and general principles of the shift-temperature of heating fluid and its corresponding optimum condition were investigated. Results showed that the deviation of shift-temperature of heating fluid with 21 working fluids between empirical equations and numerical simulations in ORC was less than 1.97%.The shift-temperature of heating fluid in model of working fluid with linear saturated line is the additionof the critical temperature of working fluid and the pinch point temperature difference of evaporator.The maximum optimal conditions(maximum optimal evaporation temperature and maximum net power output)corresponding to the shift-temperature of heating fluid increases with the ratio of the saturated line slope, which will be close to the critical point of the working fluid when it becomes the dry working fluid.
organic Rankine cycle;trapezoidal cycle;working fluid with linear saturated line;shift-temperature of heating fluid for working fluid;maximum optimum condition
TK123
:A
:1000-6613(2017)09-3223-08
10.16085/j.issn.1000-6613.2017-0056
2017-01-10;修改稿日期:2017-05-08。
國(guó)家自然科學(xué)基金項(xiàng)目(51276122)。
及聯(lián)系人:李新國(guó)(1965—),男,博士,教授,主要從事工程熱力學(xué)研究。E-mail:xgli@tju.edu.cn。