杜 靜,錢(qián)玉婷,靳紅梅,徐躍定,黃紅英,常志州
水葫蘆規(guī)?;撍鳂I(yè)前粉碎預(yù)處理方案中試比選
杜 靜,錢(qián)玉婷,靳紅梅,徐躍定,黃紅英,常志州※
(江蘇省農(nóng)業(yè)科學(xué)院循環(huán)農(nóng)業(yè)研究中心;江蘇省農(nóng)業(yè)廢棄物資源化工程技術(shù)研究中心,南京 210014)
該文以建成的水葫蘆中試示范工程為試驗(yàn)平臺(tái),通過(guò)對(duì)脫水前不同的工程預(yù)處理方案進(jìn)行比較研究,并分析各處理環(huán)節(jié)的成本構(gòu)成,以期為水葫蘆規(guī)?;幚硖幹霉こ太@得低本高效的整體解決方案提供理論依據(jù)。結(jié)果表明,從不同粉碎處理方式的能耗角度考慮,采用打撈船粗粉后二次粉碎的預(yù)處理方式有利于降低水葫蘆脫水環(huán)節(jié)的能耗,粉碎和脫水處理1 t水葫蘆需2.5 kW·h;通過(guò)對(duì)不同的打撈處置方案分析發(fā)現(xiàn),采用打撈船粗粉處理上岸方式,可大大降低其轉(zhuǎn)駁成本,減少岸上粉碎環(huán)節(jié),從而提高粉碎和脫水處理能力,降低作業(yè)環(huán)節(jié)成本,并且打撈船粗粉方式的減容率達(dá)70.61%,使轉(zhuǎn)駁運(yùn)輸能力提高3.4倍;水葫蘆經(jīng)厭氧發(fā)酵后的固液分離效果明顯優(yōu)于水葫蘆直接固液分離,其脫水殘?jiān)蕿?2.89%,脫水1 t經(jīng)厭氧發(fā)酵處理后的水葫蘆僅需0.06 h和0.7 kW·h。該研究結(jié)果為最終形成“打撈船粗粉碎-轉(zhuǎn)駁-二次粉碎-脫水”的水葫蘆處理處置工程方案奠定了堅(jiān)實(shí)基礎(chǔ)。
脫水;生物質(zhì);成本;水葫蘆;預(yù)處理
杜 靜,錢(qián)玉婷,靳紅梅,徐躍定,黃紅英,常志州. 水葫蘆規(guī)模化脫水作業(yè)前粉碎預(yù)處理方案中試比選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):266-271. doi:10.11975/j.issn.1002-6819.2017.15.034 http://www.tcsae.org
Du Jing, QianYuting, Jin Hongmei, Xu Yueding, Huang Hongying, Chang Zhizhou. Comparison and selection of smash pretreatment scheme before dehydration in large scale for water hyacinth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 266-271. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.034 http://www.tcsae.org
水葫蘆(學(xué)名鳳眼蓮),隸屬雨久花科鳳眼蓮屬,是一種外來(lái)生物,原產(chǎn)于南美洲委內(nèi)瑞拉等國(guó)家,它是一種生態(tài)入侵能力極強(qiáng)的水生維管植物,是亞熱帶和溫帶河、湖水面廣泛生長(zhǎng)的一種水草[1],2003年被國(guó)家環(huán)??偩至腥?6種有害入侵物種名單,并被列為世界十大有害草種之一[2]。然而,水葫蘆又是一種繁殖能力強(qiáng),對(duì)氮磷等營(yíng)養(yǎng)元素和部分有機(jī)污染物有較強(qiáng)富集、吸收和促進(jìn)降解能力的水生植物,對(duì)不同類(lèi)型污染水體均顯示出良好的凈化效果[3-6],在污染水體治理研究及工程實(shí)踐中已逐步被認(rèn)可[7-10]。近幾年的研究結(jié)果表明,有計(jì)劃地對(duì)水葫蘆實(shí)施規(guī)模化控制性種養(yǎng)、機(jī)械化采收,并科學(xué)合理地進(jìn)行后續(xù)處置,可以有效改善富營(yíng)養(yǎng)化水體水質(zhì)和規(guī)避二次污染的威脅[11-13]。
對(duì)于水葫蘆的處理處置,主要包括水葫蘆采收后的轉(zhuǎn)運(yùn)、粉碎、脫水及后續(xù)資源化利用(如能源化、飼料化和材料化等)等環(huán)節(jié)[14-18],其中,由于水葫蘆植株含水量高達(dá)90%以上,脫水處置是其后續(xù)資源化、無(wú)害化利用的關(guān)鍵,脫水程度低成為其后續(xù)處理的瓶頸[7]。目前國(guó)內(nèi)外已有較多文章和專(zhuān)利針對(duì)水葫蘆二次利用的脫水干燥作了相關(guān)介紹。Solly等[19]將初始含水率為95.8%的水葫蘆在25 ℃、濕度68%條件下自然晾干15 d后,可使其含水量?jī)H降低至72%。與傳統(tǒng)的風(fēng)干、自然晾曬相比,機(jī)械脫水不僅占地小、效率高、處理及時(shí),而且產(chǎn)生的水葫蘆汁便于收集,不會(huì)產(chǎn)生二次污染。Innocent等[20]采用直接烘干的形式,進(jìn)行了水葫蘆烘干脫水特性研究,結(jié)果表明隨著烘干溫度的升高,其烘干率也相應(yīng)提高。雖然采用自然晾干與機(jī)械直接烘干等方式,可以有效降低水葫蘆水分,且水葫蘆中氮、磷等養(yǎng)分損失有限,但因其脫水時(shí)間長(zhǎng)或成本高均難在實(shí)踐中大規(guī)模應(yīng)用。查國(guó)君等[21]在水葫蘆固液分離后產(chǎn)沼氣研究中提及水葫蘆脫水殘?jiān)暮蕿?3.18%,但脫水的設(shè)備及技術(shù)未作說(shuō)明。Akendo等[22]研究設(shè)計(jì)了適合的烘干設(shè)備,雖然可以將水葫蘆含水率降至91%,但是成本比較高。王巖等[7]首次將輥輪式壓榨機(jī)應(yīng)用于水葫蘆脫水,經(jīng)3次擠壓后,水葫蘆渣的含水率為65%~68%。
筆者在前期工作中針對(duì)水葫蘆脫水方式[23]、螺旋式固液分離養(yǎng)分損失規(guī)律[24]以及不同粉碎度[25]等影響因素已開(kāi)展了相關(guān)研究,同時(shí)對(duì)優(yōu)化后的粉碎水葫蘆進(jìn)行了30 t/批次的中試脫水試驗(yàn)。然而,上述研究?jī)H對(duì)脫水環(huán)節(jié)進(jìn)行了效果、處理效率及成本分析,難以為規(guī)?;幚硖幹霉こ烫峁┹^為完善的整體解決方案。因此,本文以建成的水葫蘆中試示范工程(日處理能力200 t)為試驗(yàn)平臺(tái),通過(guò)對(duì)脫水前不同的工程預(yù)處理方案進(jìn)行比較研究,并分析不同解決方案下各處理環(huán)節(jié)的成本構(gòu)成,以期為水葫蘆規(guī)?;幚硖幹霉こ烫峁┑捅靖咝У恼w解決方案。
新鮮水葫蘆采自江蘇省常州市武進(jìn)水葫蘆示范基地,其基本性狀見(jiàn)表1,該文中涉及整水葫蘆(指未粉碎水葫蘆,即整棵打撈)、粉碎水葫蘆(指經(jīng)過(guò)不同粉碎方式處理后的水葫蘆物料)。
表1 新鮮水葫蘆基本性狀(養(yǎng)分以干基計(jì))Table 1 Basic properties of fresh water hyacinth (dry base for nutrients)
1.2.1 水葫蘆機(jī)械打撈船
采用張家港市海豐水面環(huán)保機(jī)械有限公司生產(chǎn)的HF226B-PT型水葫蘆機(jī)械打撈船。船上配備有粉碎設(shè)備(即江蘇省農(nóng)業(yè)科學(xué)院自行研發(fā)的漂浮植物高效減容裝置[26],其粉碎原理為采用臥式,固定刀片與活動(dòng)刀片交叉分布。
1.2.2 翻堆機(jī)
采用河南滎陽(yáng)豐裕機(jī)械設(shè)備廠生產(chǎn)的FPJ15型自行式翻堆機(jī),翻堆寬度為2 000 mm,翻堆高度600~800 mm,處理能力為400~500 m3/h。其工作原理為,通過(guò)設(shè)備下掛裝配的旋轉(zhuǎn)刀,對(duì)水葫蘆或肥料原料實(shí)施翻拌、切割破碎、混合和移堆作業(yè)。
1.2.3 水葫蘆二次粉碎機(jī)
采用自行研制的水生植物專(zhuān)用粉碎機(jī)(即臥式甩刀粉碎機(jī)[27],見(jiàn)圖1,型號(hào)SHJ-400型,處理能力20~30 t/h,電動(dòng)機(jī)功率P=7.5 kW,頻率f為50 Hz,其粉碎原理為采用臥式,通過(guò)旋轉(zhuǎn)刀座上的6個(gè)旋轉(zhuǎn)刀片組與箱體上的5個(gè)固定刀片組依次相間形成咬合)。
圖1 水生植物專(zhuān)用粉碎機(jī)示意圖Fig.1 Schematic drawing on special grinder with aquatic plant
1)水葫蘆打撈及水上運(yùn)輸方式:試驗(yàn)采用機(jī)械打撈船進(jìn)行水葫蘆打撈,采用2種打撈處置及運(yùn)輸方式,包括整水葫蘆打撈后裝入運(yùn)輸船艙和經(jīng)打撈船粗粉碎處理后裝入1 m3尼龍袋并通過(guò)運(yùn)輸船運(yùn)送到岸(通常1艘運(yùn)輸船單趟運(yùn)送12袋)。
2)水葫蘆轉(zhuǎn)駁方式:根據(jù)水上打撈及運(yùn)輸方式不同有所不同,其中整水葫蘆通過(guò)岸基安裝的塔式吊機(jī)(抓斗為八爪型)轉(zhuǎn)駁,而打撈船粗粉碎物料則采用岸基航吊轉(zhuǎn)駁。
3)水葫蘆粉碎方式:試驗(yàn)設(shè)置3個(gè)處理組(打撈船粗粉碎,整水葫蘆上岸后經(jīng)翻拋機(jī)翻拋2次后再經(jīng)專(zhuān)用粉碎機(jī)二次粉碎處理,打撈船粗粉碎后再經(jīng)專(zhuān)用粉碎機(jī)二次粉碎處理)。
每次試驗(yàn)水葫蘆處理量為30 t。試驗(yàn)設(shè)備及工藝路線示意圖如圖2所示,處理工藝采用即時(shí)粉碎即時(shí)脫水方式,即新鮮水葫蘆經(jīng)粉碎預(yù)處理后被投入調(diào)節(jié)池,然后加水混合(僅初次加水,后續(xù)則采取汁液回用)后經(jīng)立式潛污泵[28]抽吸入螺旋式固液分離機(jī)(功率P=11 kW,螺旋擠壓通道有效直徑D=400 mm,處理量為6~10 t/h,出渣含水率80%~85%)進(jìn)行脫水處理,擠壓汁液一部分回用至調(diào)節(jié)池(回用量以調(diào)節(jié)粉碎水葫蘆與水比例為1:0.6),多余部分則進(jìn)入擠壓汁貯存池,作為后續(xù)資源化利用環(huán)節(jié)的原料。
圖2 水葫蘆脫水設(shè)備及工藝路線示意圖Fig.2 Schematic drawing of device and craft route on dehydration with water hyacinth
水葫蘆粉碎粗細(xì)測(cè)定:以5和8 cm為分界,將粉碎后水葫蘆按照長(zhǎng)度分類(lèi)稱(chēng)取質(zhì)量,然后采用各部分質(zhì)量占總質(zhì)量的百分比分布來(lái)表示粗細(xì)程度,試驗(yàn)重復(fù)5次,取平均值;電耗:?jiǎn)蜗嚯娮邮诫娔鼙鞤DSY879-D;殘?jiān)|(zhì)量:用保衡電子秤TCS-100稱(chēng)質(zhì)量;懸浮物濃度(SS)和擠壓汁養(yǎng)分分析參照《水和廢水監(jiān)測(cè)分析方法》[29];殘?jiān)B(yǎng)分測(cè)定參照《土壤農(nóng)化分析》[30]。
采用Excel 2003進(jìn)行數(shù)據(jù)分析。
不同粉碎方式對(duì)水葫蘆粉碎和脫水效果的影響如表2所示。從表2來(lái)看,經(jīng)不同粉碎方式處理后水葫蘆物料的粗細(xì)程度有所不同,按照物料粗細(xì)程度:打撈船粗粉料>翻拋2次后二次粉碎料>打撈船粗粉后二次粉碎料,其中打撈船粗粉后二次粉碎料中最細(xì)物料中小于5 cm的占93.67%(由于吸料泵口最大的有效吸料長(zhǎng)度為5 cm),并且隨著物料變細(xì),其擠壓脫水時(shí)為保證順暢抽吸所需加水的比例也相應(yīng)降低;從水葫蘆脫水殘?jiān)暮蕘?lái)看,各處理差異顯著(P<0.05),以打撈船粗粉后二次粉碎方式的殘?jiān)蕿樽畹?,達(dá)82.63%;從脫水耗能情況來(lái)看,物料變細(xì)后,脫水耗能隨之減少,其中打撈船粗粉后二次粉碎料的脫水耗能為57 kW·h,僅為打撈船粗粉料方式的一半,即使加上粉碎時(shí)的能耗仍低于未經(jīng)二次粉碎的處理??梢?jiàn),從能耗角度考慮,采用打撈船粗粉后二次粉碎的預(yù)處理方式有利于降低水葫蘆脫水環(huán)節(jié)的能耗,粉碎和脫水處理1 t水葫蘆需2.5 kW·h。
表2 不同粉碎方式對(duì)水葫蘆粉碎和脫水效果的影響(以處理量30 t計(jì))Table 2 Effects of different grinding methods on water hyacinthpulverization and dehydration (processing capacity with 30 t)
為了考察不同粉碎方式對(duì)水葫蘆脫水過(guò)程中脫水殘?jiān)蛿D壓汁中養(yǎng)分分布的影響,試驗(yàn)采集了經(jīng)不同粉碎方式脫水前后的殘?jiān)皵D壓汁,檢測(cè)分析樣品中的N、P、K養(yǎng)分情況,如表3所示。從表3中可以看出,不論水葫蘆粉碎程度如何,經(jīng)固液分離后,擠壓渣中養(yǎng)分以N素和P素為主,而擠壓汁中則以K素為主,并且隨著水葫蘆粉碎程度的增加,擠壓渣中N、P、K養(yǎng)分均逐漸向擠壓汁中轉(zhuǎn)移,可能由于粉碎度提高導(dǎo)致水葫蘆細(xì)胞破碎程度增加,這與筆者前期研究結(jié)果相一致[26]。
表3 不同粉碎方式下水葫蘆固液分離養(yǎng)分分布比較Table 3 Comparison of nutrient distribution in solid liquid separation of different types of water hyacinth
2.2.1 運(yùn)行成本分析
依據(jù)水葫蘆到岸時(shí)物料狀態(tài)差異,比較整水葫蘆和打撈船粗粉后物料的預(yù)處理效率及成本。從表4可以看出,以日處理量200 t為計(jì),預(yù)處理1 t整水葫蘆需36.2元,是打撈船粗粉上岸方式的1.8倍,其中轉(zhuǎn)駁∶粉碎∶固液分離=1∶1∶0.76,而打撈船粗粉處理時(shí)轉(zhuǎn)駁∶粉碎∶固液分離=1∶3.6∶4.5,其轉(zhuǎn)駁成本僅為整水葫蘆上岸方式的1/5,表明采用打撈船粗粉處理上岸方式,可大大降低其轉(zhuǎn)駁成本,減少岸上粉碎環(huán)節(jié),從而提高粉碎和脫水處理能力,降低作業(yè)環(huán)節(jié)成本。
表4 水葫蘆脫水處理各環(huán)節(jié)運(yùn)行成本明細(xì)Table 4 Details of operation cost of water hyacinth dehydration treatment
2.2.2 減容效果分析
為了考查不同粉碎方式下水葫蘆粉碎和固液分離的減容效果,以均長(zhǎng)約50 cm的水葫蘆為試驗(yàn)材料,研究整水葫蘆經(jīng)翻拋2次后入二次粉碎機(jī)、整水葫蘆入二次粉碎機(jī)和打撈船粗粉料3種處理方式下粉碎和脫水環(huán)節(jié)對(duì)水葫蘆的減容效果,每批次試驗(yàn)水葫蘆量為25 t,如圖3所示。
圖3 不同粉碎方式下水葫蘆固液分離減容效果比較Fig.3 Comparison of reducing volume effects of solid liquid separation in different crushing methods
從圖3分析來(lái)看,不同粉碎方式對(duì)水葫蘆粉碎和脫水的減容效果差異明顯,從粉碎減容效果來(lái)看,采用翻拋機(jī)翻拋粉碎1次、2次以及進(jìn)一步經(jīng)二次粉碎機(jī)粉碎的減容率分別為40.32%、53.32%和76.81%,而整水葫蘆直接經(jīng)二次粉碎機(jī)粉碎后,其減容率為74.69%,與翻拋2次后二次粉碎作業(yè)的效果相當(dāng)(76.81%),并且略高于打撈船粗粉碎的減容效果(70.61%);而從固液分離減容效果來(lái)看,利用打撈船粗粉料直接固液分離方式,其脫水處理的減容率最高(達(dá)90.49%)。此外,與打撈及運(yùn)輸整水葫蘆處理方式相比,采用打撈船粗粉碎作業(yè)處理方式,利用相同噸位的運(yùn)輸轉(zhuǎn)駁船,可多運(yùn)輸3.4倍的水葫蘆原料。綜上可看出,采用打撈船粗粉碎作業(yè)方案,可實(shí)現(xiàn)較好減容效果的同時(shí),加快水葫蘆物料轉(zhuǎn)運(yùn)效率。
為了考查水葫蘆厭氧發(fā)酵前后固液分離效果的差異,以水葫蘆打撈船粗粉碎后二次粉碎作業(yè)的物料為供試原料,研究水葫蘆直接固液分離與厭氧發(fā)酵后固液分離的脫水效果及養(yǎng)分分布規(guī)律。如表5所示,首先從各處理固液分離過(guò)程中的干物質(zhì)分布規(guī)律來(lái)分析,水葫蘆經(jīng)過(guò)發(fā)酵后再進(jìn)行固液分離,約88.20%的干物質(zhì)進(jìn)入擠壓汁,遠(yuǎn)大于水葫蘆直接固液分離的處理,僅36.99%,表明經(jīng)過(guò)厭氧發(fā)酵處理后,水葫蘆纖維組織已基本被破壞,更多的已經(jīng)溶解于發(fā)酵液中,導(dǎo)致固液分離時(shí)干物質(zhì)能夠逃離篩網(wǎng)的阻擋,最終隨擠壓汁流走,而水葫蘆直接固液分離處理中,由于水葫蘆物料粉碎后僅有少量組織細(xì)胞被破壞,更多的大顆粒物質(zhì)只能隨殘?jiān)懦?;其次,從固液分離過(guò)程中的養(yǎng)分分布來(lái)分析,經(jīng)過(guò)厭氧發(fā)酵處理后,各養(yǎng)分進(jìn)入擠壓汁的比例高達(dá)90%以上,其中以鉀素為最高,達(dá)99.20%,氮素次之,磷素最低,為91.08%,而水葫蘆直接固液分離處理的為鉀素(86.78%)>磷素(76.56%)>氮素(65.00%),分析其原因可能是水葫蘆體內(nèi)的氮素和磷素大多以有機(jī)態(tài)存在,而鉀素幾乎都以無(wú)機(jī)離子態(tài)存在,并且經(jīng)過(guò)厭氧發(fā)酵后,氮素更多的轉(zhuǎn)化為溶解態(tài),而磷素部分被用于供給微生物繁殖的核酸合成,并吸附于水葫蘆大顆粒組織上,導(dǎo)致固液分離時(shí)有部分無(wú)法穿過(guò)篩網(wǎng)而進(jìn)入殘?jiān)?。另外,從SCOD/COD的比值來(lái)看,經(jīng)過(guò)發(fā)酵處理后擠壓汁中的SCOD/COD(0.70)大于直接固液分離處理(0.51),表明發(fā)酵后擠壓汁中有更多的溶解態(tài)有機(jī)物。
表5 不同的水葫蘆處理方式下固液分離效果比較Table 5 Comparison of solid-liquid separation effect under different water hyacinth treatments
從處理效率分析,固液分離1 t經(jīng)厭氧發(fā)酵處理后的水葫蘆需要0.06 h、0.7 kW·h,分別為直接固液分離處理的16.67%、22.95%,而擠壓脫水后的殘?jiān)蕿?2.89%,低于直接固液分離處理(83.65%),獲得殘?jiān)績(jī)H為18.9 kg,相當(dāng)于直接固液分離處理的8.26%。
綜上所述,水葫蘆經(jīng)厭氧發(fā)酵后的固液分離效果明顯優(yōu)于水葫蘆直接固液分離,其脫水殘?jiān)蕿?2.89%,脫水1 t經(jīng)厭氧發(fā)酵處理后的水葫蘆僅需0.06 h和0.7 kW·h。
1)從不同粉碎處理方式的能耗角度考慮,采用打撈船粗粉后二次粉碎的預(yù)處理方式有利于降低水葫蘆脫水環(huán)節(jié)的能耗,粉碎和脫水處理1 t水葫蘆耗能2.5 kW·h;
2)通過(guò)不同的打撈處置方案分析發(fā)現(xiàn),采用打撈船粗粉處理上岸方式,可大大降低其轉(zhuǎn)駁成本,減少岸上粉碎環(huán)節(jié),從而提高粉碎和脫水處理能力,降低作業(yè)環(huán)節(jié)成本,并且打撈船粗粉方式的減容率達(dá)70.61%,使轉(zhuǎn)駁運(yùn)輸能力提高3.4倍;
3)水葫蘆經(jīng)厭氧發(fā)酵后的固液分離效果明顯優(yōu)于水葫蘆直接固液分離,其脫水殘?jiān)蕿?2.89%,脫水1 t經(jīng)厭氧發(fā)酵處理后的水葫蘆僅需0.06 h和0.7 kW·h。
[1] 李博,廖成章,高雷,等. 入侵植物鳳眼蓮管理中的若干生態(tài)學(xué)問(wèn)題[J]. 復(fù)旦學(xué)報(bào):自然科學(xué)版,2004,43(2):267-274.
Li Bo, Liao Chenzhang, Gao Lei, et al. Strategic management of water hyacinth (Eichhornia crassipes), an invasive alien plant[J]. Journal of Fudanuniversity: Natural Science, 2004, 43(2): 267-274. (in Chinese with English abstract)
[2] 孫超,陳振樓,畢春娟,等. 黃浦江上游水源保護(hù)區(qū)不同河段水葫蘆最佳治理對(duì)策[J]. 雜草科學(xué),2008(3):14-17.
Sun Chao, Chen Zhenlou, Bi Chunjuan, et al. Optimal control of water hyacinth in different reaches of Huangpu River water source protection area[J]. Weed Science, 2008(3): 14-17. (in Chinese with English abstract)
[3] Reddy K R, Campbell K L, Graetz D A, et al. Use of biological filters for treating agricultural drainage effluents[J]. J Environ Qual, 1982, 11(4): 591-595.
[4] Pinto C L R, Caconia A, Souza M M. Utilization of water hyacinth for removal and recovery of silver from industrial wastewater[J]. Water Science and Technology, 1987, 19(10): 89-101.
[5] Malik A. Environmental challenge vis a vis opportunity: the case of water hyacinth[J]. Environmental International, 2007, 33(1): 122-138.
[6] 展巨宏,李強(qiáng),鄧莎,等. 紫根水葫蘆對(duì)富營(yíng)養(yǎng)化水體中氮磷的凈化效果研究[J]. 地球與環(huán)境,2014,42(3):389-396.
Zhan Juhong, Li Qiang, Deng Sha, et al. Purification effect of eutrophic water body by purple-root water hyacinth[J]. Earth and Environment, 2014, 42(3): 389-396. (in Chinese with English abstract)
[7] 王巖,張志勇,張迎穎,等.一種新型水葫蘆脫水方式的探索[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(10):286-288.
Wang Yan, Zhang Zhiyong, Zhang Yingying, et al. Study on a new dehydration method of water hyacinth[J]. Jiangsu Agricultural Sciences, 2013, 41(10): 286-288. (in Chinese with English abstract)
[8] 袁蓉,劉建武,成旦紅,等. 鳳眼蓮對(duì)多環(huán)芳烴(萘)有機(jī)廢水的凈化[J]. 上海大學(xué)學(xué)報(bào):自然科學(xué)版,2004,10(3):272-276.
Yuan Rong, Liu Jianwu, Cheng Danhong, et al. Removal of naphthalene by Eichhornia Crassipe Solms and study on the mechanism[J]. Journal of Shanghai University: Natural Science, 2004, 10(3): 272-2760. (in Chinese with English abstract)
[9] 夏會(huì)龍,吳良?xì)g,陶勤南. 鳳眼蓮植物修復(fù)水溶液中甲基對(duì)硫磷的效果與機(jī)理研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2002,22(3):329-332.
Xia Huilong, Wu Lianghuan, Tao Qinlan. Phytoremediation of methyl parathion by water hyacinth (Eichhorniacrassipessolms)[J]. ACTA Scientiae Circumstantiae, 2002, 22(3): 329-332. (in Chinese with English abstract).
[10] 王云英,周洪文,彭慧,等. 水葫蘆污水治理及資源化利用研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2012,40(7):313-317.
Wang Yunying, Zhou Hongwen, Peng Hui, et al. Research progress on wastewater treatment and resource utilization of water hyacinth[J]. Jiangsu Agricultural Sciences, 2012, 40(7): 313-317. (in Chinese with English abstract)
[11] Wang Z, Zhang Z, Zhang J, et al. Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: The effects on the water quality, macrozoobenthos and zooplankton[J]. Chemosphere, 2012, 89(10): 1255-1261.
[12] 嚴(yán)少華,王巖,王智,等. 水葫蘆治污試驗(yàn)性工程對(duì)滇池草海水體修復(fù)的效果[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2012,28(5):1025-1030.
Yan Shaohua, Wang Yan, Wang Zhi, et al. Remediation effects of experimental project using water hyacinth for pollutioncontrol in the Lake Caohai, Dianchi[J]. Jiangsu Journal of Agricultural Science, 2012, 28(5): 1025-1030. (in Chinese with English abstract)
[13] 何俊,張憲中,殷文健. 太湖及其入湖蕩控制性種養(yǎng)水葫蘆示范工程及效果分析[J]. 安徽農(nóng)業(yè)科學(xué),2016,44(35):133-136.
He Jun, Zhang Xianzhong, Yin Wenjian. Effect of planting demonstration project for Taihu lake and its control with water hyacinth[J]. Journal of Anhui Agricultural Sciences, 2016, 44(35): 133-136. (in Chinese with English abstract)
[14] Almoustapha O, Kenfack S, Millogorasolodimby J. Biogas production using water hyacinths to meet collective energy needs in a sahelian country[J]. Field Actions Science Reports, 2009, 2(1): 72-77.
[15] Ganesh P S, Ramasamy1 E V, Gajalakshmi S, et al. Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermin compost[J]. Biochemical Engineering Journal, 2005, 27: 17-23.
[16] Gajalakshmi S, Ramasamy E V, Abbasi S A. High-rate composting-vermicomposting of water hyacinth (Eichhorniacrassipes, Mart. Solms)[J]. Bioresource Technology, 2002, 83: 235-239.
[17] Singhal V, Rai J P. Biogas production from water hyacinthand channel grass used for phytoremediation of industrial effluents[J]. Bioresour Technol, 2003, 86: 221-225.
[18] Kivaisi A K, Mtila M. Production of biogas from water hyacinth (Eichhornia crassipes) (Mart Solms) in a two-stage bioreactor[J]. World Journal of Microbiology & Biotechnology, 1998, 14: 125-131.
[19] Solly R K, Thyagarajan G. Integrated Rural Development With Water Hyacinth[C]// Proceedings of The International Conference On Water hyacinth, 1984: 70-78.
[20] Innocent C O Akendo, Lawrence O Gumbe, Ayub N Gitau.“Dewatering and Drying Characteristics of Water Hyacinth(Eichhornia Crassipes) petiole. Part II. Drying characteristics”[J]. Agricultural Engineering International: the CIGRE journal Manuscript, 2008, 3:7-33.
[21] 查國(guó)君,張無(wú)敵,尹芳,等. 滇池水葫蘆固液分離后的沼氣發(fā)酵研究[J]. 中國(guó)野生植物資源,2008,27(2):36-38.
Zha Guojun, Zhang Wudi, Yin Fang, et al. Seperating solid and liquid of dianchi’s Eichhomiacrassipes for biogas generation[J]. Chinese Wild Plant Resources, 2008, 27(2): 36-38. (in Chinese with English abstract)
[22] Innocent C O Akendo, Lawrence O Gumbe, Ayub N Gitau.“Dewatering and drying characteristics of water hyacinth (EichhorniaCrassipes) petiole. Part I. Dewatering characteristics”[J]. Agricultural Engineering International: the CIGRE Journal Manuscript, 2008, 2:7-32
[23] 杜靜,常志州,葉小梅,等. 水葫蘆粉碎程度對(duì)脫水效果影響的中試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):207-212.
Du Jing, Chang Zhizhou, Ye Xiaomei, et al. Pilot-scale study on dehydration effect of water hyacinth with different pulverizationdegree[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 207-212. (in Chinese with English abstract)
[24] 杜靜,常志州,葉小梅,等. 壓榨脫水中水葫蘆氮磷鉀養(yǎng)分損失研究[J]. 福建農(nóng)業(yè)學(xué)報(bào),2010,25(1):104-107.
Du Jing, Chang Zhizhou, Ye Xiaomei, et al. Losses in nitrogen, phosphorus and potassium of water hyacinth dehydrated by mechanical press[J]. Fujian Journal of Agricultural Sciences, 2010, 25(1): 104-107. (in Chinese with English abstract)
[25] 杜靜,常志州,黃紅英. 水葫蘆脫水工藝參數(shù)優(yōu)化研究[J].江蘇農(nóng)業(yè)科學(xué),2010(2):267-269.
Du Jing, Chang Zhizhou, Huang Hongying. Study on optimization of technological parameters of dehydrated with water hyacinth[J]. Jiangsu Agricultural Sciences, 2010(2): 267-269. (in Chinese with English abstract)
[26] 張志勇,劉海琴,劉國(guó)鋒,等. 漂浮植物高效減容裝置201020100683.5[P]. 2010-11-17.
[27] 杜靜,楊新寧,常志州,等. 一種專(zhuān)用于水生植物的粉碎機(jī)201120099076.6[P]. 2011-11-16.
[28] 杜靜,楊新寧,常志州,等. 抽取高濃度污料的立式潛污泵201120099096.3[P]. 2011-11-16.
[29] 國(guó)家環(huán)保局《水和廢水監(jiān)測(cè)分析方法》編委會(huì). 水和廢水監(jiān)測(cè)分析方法[M]. 第3版. 北京:中國(guó)環(huán)境科學(xué)出社,1989.
[30] 鮑士旦.土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000:264-271.
Comparison and selection of smash pretreatment scheme before dehydration in large scale for water hyacinth
Du Jing, QianYuting, Jin Hongmei, Xu Yueding, Huang Hongying, Chang Zhizhou※
(Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences; Jiangsu Agricultural Waste Treatment and Recycle Engineering Research Center, Nanjing 210014, China)
Water hyacinth (Eichhorniacrassipes) is a noxious weed that has attracted worldwide attention due to its fast spread and congested growth, which lead to serious problems in water way transportation, irrigation, and power generation. On the other hand, it can be a valuable resource with several unique properties. Water hyacinth contains more than 95% water but due to its fibrous tissue and a high energy and protein content, it can be used for a variety of useful applications. In order to achieve theoretical basis for large-scale treatment and disposal project that have overall solution of low cost and high efficiency with water hyacinth, a comparative study of different engineering pretreatment before dehydration and analysis of the processing cost were studied as the test platform of pilot demonstration project of water hyacinth. In this paper, the process of instant smash instant dehydration was used, and two kinds of water hyacinth salvage and water transportation (the water hyacinth loaded directly into the cabin, and the water hyacinth after coarse crushing for salvage ship loaded into 1 m3nylon bags and transported to the shore by ship), two modes of shore transfer (tower crane airlines and shore based crane) and three methods of crushing (coarse crushing of salvage ship, smash again by turning the machine two times, and smash again after coarse grinding on salvage ship)were designed and experimented in this study. The results showed that the pretreatment method of two times after the salvage of coarse powder was helpful to reduce the energy consumption of processing dehydration of water hyacinth. The treatment of per tons for water hyacinth needed about 2.5 kW·h. Through analysis of energy consumption of different crushing methods, the results showed that the method of two times after the salvage of coarse powder reduced the transportation cost, along with the need for shore crushing. It improved the grinding and dehydration treatment ability, reduced operation cost and the volume by 70.61%, and increased the transport capacity by 3.4 times for the method of salvage ship coarse powder. After the separation of water hyacinth, the content of N and P were the main nutrients in the extrusion residue, while the K value was the main factor in the extrusion juice. With the increase of the degree of grinding for water hyacinth, the N, P, K nutrient in the extrusion residue was gradually transferred to the juice. The solid-liquid separation effect of water hyacinth after anaerobic fermentation was better than that of water hyacinth direct solid-liquid separation in terms of residue water content reduction and nutrient recovery, and the moisture content of the dewatering residue was reduce to 62.89%, and it was only about 0.06 hours and about 0.7 kW·h after dehydration of per tons with water hyacinth. The results of this study have laid a solid foundation for the final design of the water hyacinth treatment and disposal, which is the treatment scheme of“rough grinding of salvage-transfer-twice crushing-dehydration”.
dehydration; biomass; cost; water hyacinth; emergency treatment
10.11975/j.issn.1002-6819.2017.15.034
X705
A
1002-6819(2017)-15-0266-06
2017-02-06
2017-07-07
江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2015356);國(guó)家科技支撐計(jì)劃(2015BAL04B05);國(guó)家水體污染控制與治理科技重大專(zhuān)項(xiàng)(2012ZX07101-004)作者簡(jiǎn)介:杜 靜,男(漢族),四川眉山人,助理研究員,主要從事農(nóng)業(yè)固體廢棄物資源化研究。南京 江蘇省農(nóng)業(yè)科學(xué)院循環(huán)農(nóng)業(yè)研究中心,210014。Email:dj1982111@126.com
※通信作者:常志州,男(漢族),江蘇句容人,研究員,主要從事農(nóng)業(yè)固體廢棄物資源化研究。南京 江蘇省農(nóng)業(yè)科學(xué)院循環(huán)農(nóng)業(yè)研究中心,210014。Email:czhizhou@hotmail.com