石陶然, 田 凱, 包環(huán)宇, 侯劭煒, 劉雪平, 吳福勇*
1.西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院, 陜西 楊凌 712100 2.農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室, 陜西 楊凌 712100 3.河南城建學(xué)院市政與環(huán)境工程學(xué)院, 河南 平頂山 467036
多環(huán)芳烴在冬小麥體內(nèi)的吸收與轉(zhuǎn)運及富集研究進展
石陶然1,2, 田 凱1,2, 包環(huán)宇1,2, 侯劭煒1,2, 劉雪平3, 吳福勇1,2*
1.西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院, 陜西 楊凌 712100 2.農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室, 陜西 楊凌 712100 3.河南城建學(xué)院市政與環(huán)境工程學(xué)院, 河南 平頂山 467036
多年來以煤炭為主的能源消費結(jié)構(gòu)和經(jīng)濟社會持續(xù)發(fā)展,導(dǎo)致我國PAHs(多環(huán)芳烴)排放量居高不下,直接造成土壤和大氣PAHs嚴(yán)重污染. 為了探明PAHs在冬小麥體內(nèi)的積累過程和調(diào)控機制,在系統(tǒng)分析PAHs在冬小麥體內(nèi)的吸收、轉(zhuǎn)運和富集的基礎(chǔ)上,重點闡述了冬小麥PAHs根系吸收和葉面吸收影響因素方面的最新研究進展. 研究發(fā)現(xiàn):①小麥根系對PAHs的吸收包括主動吸收和被動吸收兩種方式,其中主動吸收是一個載體協(xié)助、消耗能量、PAHs與H+共運的過程;被動吸收除了在高等植物中普遍存在的簡單擴散外,水-甘油通道也參與了該過程. ②PAHs通過氣態(tài)、顆粒態(tài)沉降到小麥葉面角質(zhì)層或直接通過氣孔進入葉片. ③影響PAHs根系和葉面吸收的主要因素包括PAHs理化性質(zhì)、植物生理狀況、環(huán)境因素等. ④小麥根系吸收的PAHs可以向地上部轉(zhuǎn)運,并且與辛醇-水分配系數(shù)(KOW)、蒸騰速率、土壤中氮的形態(tài)和濃度有關(guān). 主要問題:①對于小麥葉片吸收的PAHs向基運輸機理有待進一步研究. ②農(nóng)田生態(tài)系統(tǒng)中冬小麥往往遭受土壤及大氣雙重污染,根系吸收及葉面吸收分別對其體內(nèi)積累PAHs的貢獻尚不清楚. 因此,需關(guān)注韌皮部、木質(zhì)部在PAHs轉(zhuǎn)運中所起的作用;利用同位素示蹤、雙光子激發(fā)顯微鏡等先進技術(shù)觀察和跟蹤PAHs如何進入小麥以及在小麥葉中的轉(zhuǎn)移和分布,闡明PAHs葉面吸收的微觀機理;注重大田試驗研究,為揭示冬小麥對PAHs的吸收、積累及調(diào)控機理,同時也為有機污染地區(qū)生產(chǎn)安全農(nóng)產(chǎn)品提供重要依據(jù).
多環(huán)芳烴; 小麥; 根系吸收; 葉面吸收; 轉(zhuǎn)運機理
PAHs(多環(huán)芳烴)是一類具有“三致”(致癌、致畸、致突變)效應(yīng)的持久性有機污染物,由于其在自然環(huán)境中無處不在、對人體危害大而備受關(guān)注. 我國是全球PAHs排放量最多的國家,2004年高達114 000 t,占全球PAHs排放總量的29%[1],直接造成大氣、土壤等自然環(huán)境中PAHs含量升高. 華北平原空氣中ρ(PAHs)高達346 ng/m3[2],分別為倫敦和芝加哥的8.9和4.9倍[3- 4]. 自然界90%以上的PAHs存在于表層土壤[5]. PAHs已經(jīng)成為我國農(nóng)田土壤中最為常見的污染物,無論是在東三省、京津地區(qū),還是在長三角、珠三角地區(qū),均發(fā)現(xiàn)農(nóng)田遭受PAHs污染且呈持續(xù)惡化趨勢[6- 7]. 我國小麥種植面積約占農(nóng)作物種植總面積的1/4,華中、華北和西北地區(qū)既是小麥主產(chǎn)區(qū)也是煤炭生產(chǎn)和消費大區(qū),相當(dāng)面積的小麥種植區(qū)位于眾多的燃煤發(fā)電廠、煉焦廠、城市供熱廠等燃煤企業(yè)周邊區(qū)域. 調(diào)查結(jié)果[8- 12]顯示,濟南(7.6~495.2 μg/kg)、太原(161.5 μg/kg)和天津(177 μg/kg)小麥籽粒內(nèi)PAHs含量均遠(yuǎn)高于美國加利福尼亞和西班牙加泰羅尼亞小麥籽粒內(nèi)PAHs含量(10.3~27.9 μg/kg). 通常情況下,膳食攝入是人體暴露PAHs的主要途徑[8- 9]. 小麥?zhǔn)俏覈狈胶椭性貐^(qū)大多數(shù)居民的主食,成人日均消耗250 g左右,其中河南省成年居民日均消耗量達376~547 g[13]. 太原居民膳食暴露PAHs致癌風(fēng)險較高,通過小麥攝入的PAHs占膳食攝入總量的48.3%~53.5%[12]. 因此,進行野外采樣和模型模擬探討PAHs在環(huán)境-植物系統(tǒng)中的富集規(guī)律,以及利用顯微鏡、光譜、熱重分析和元素分析等技術(shù)探明PAHs在植物體內(nèi)的行為,對于研究PAHs從土壤、大氣等自然環(huán)境到小麥的吸收、轉(zhuǎn)運、積累過程的機理和影響因素,預(yù)測農(nóng)產(chǎn)品有機污染、降低農(nóng)作物污染風(fēng)險、確保農(nóng)產(chǎn)品安全生產(chǎn)至關(guān)重要.
PAHs既可以通過土壤-根系也可以通過空氣-葉面進入小麥體內(nèi)[14],即根系從土壤中吸收PAHs進入木質(zhì)部,隨蒸騰流向莖葉傳輸?shù)母滴?;PAHs通過葉面角質(zhì)層或氣孔進入小麥體內(nèi)的葉面吸收[15]. 有研究[16]認(rèn)為,與葉面吸收相比,根系對疏水性有機物(HOCs)的吸收是主要的;也有研究[17]認(rèn)為,由于PAHs易與土壤有機質(zhì)結(jié)合,并且根系吸收后很難轉(zhuǎn)運至地上部分,因此植物暴露器官中的PAHs主要來自葉面吸收. 進一步探討根系、葉片對HOCs的吸收以及在植物體內(nèi)的積累、轉(zhuǎn)移,對于治理PAHs污染土壤、確保食品安全、模擬潛在吸收量及進行風(fēng)險評估等至關(guān)重要[18].
1.1PAHs的根系吸收
小麥根系對PAHs的吸收包括主動和被動吸收兩種方式. 主動吸收量約占吸收總量的40%,并且受PAHs/H+協(xié)同載體的影響[19]. PAHs與H+形成共運對進入細(xì)胞內(nèi)部后會導(dǎo)致細(xì)胞質(zhì)pH降低[19],而細(xì)胞質(zhì)pH通常呈中性或偏堿性,這就存在一個pH變化和穩(wěn)定的過程. 進一步研究細(xì)胞內(nèi)pH自我調(diào)控機制對農(nóng)產(chǎn)品安全保障和PAHs污染土壤修復(fù)具有重要意義. 由于大多數(shù)有機污染物均系人工合成,植物體內(nèi)沒有相應(yīng)的運輸載體,因此大多數(shù)有機污染物進入植物體主要是通過被動運輸. 被動運輸除了簡單擴散,還與水-甘油跨膜輸送蛋白通道有關(guān)[20]. 小麥根系對菲的吸收過程可分為快速吸收和慢速吸收兩個階段. 當(dāng)小麥根部浸到含有PAHs的營養(yǎng)液中,快速吸收立即進行,這一階段主要受吸收作用、擴散作用和質(zhì)量流量的影響. 隨后是一個慢相循環(huán)階段,以載體為媒介且受新陳代謝的影響[19]. 與快速吸收階段的吸收速率相比,慢速吸收階段的吸收速率要低1個數(shù)量級[21],但是對于其他種類PAHs是否具有與菲相同的吸收特征尚不明確. 用雙光子激發(fā)顯微鏡(TPEM)直接觀察PAHs被小麥根系的吸收、存儲和代謝,發(fā)現(xiàn)蒽和菲最初結(jié)合在根系表皮,隨后穿過表皮細(xì)胞到達皮層. PAHs呈放射狀進入表皮,然而一旦接觸皮層細(xì)胞就變?yōu)榫徛臋M向運輸[22]. 這可能與PAHs進入表皮、皮層細(xì)胞的原生質(zhì),并且滯留在原生質(zhì)中,然后通過胞間連絲進入內(nèi)皮層、中柱和韌皮部有關(guān).
1.2PAHs的葉面吸收
圖1 疏水性有機污染物從大氣到葉角質(zhì)層的吸收過程[24]Fig.1 The uptake process of hydrophobic organic compounds from air onto leaf cuticles
空氣中的PAHs以氣態(tài)或顆粒態(tài)沉降至植物葉面,一部分結(jié)合在葉面角質(zhì)層的脂質(zhì)中,擴散穿過脂質(zhì)層,最終被韌皮部運輸至其他部位;另一部分向葉片內(nèi)部遷移,擴散至細(xì)胞間隙,然后再分配到鄰近組織的液相或脂相中[23]. 此外,葉片表面還分布著許多氣孔,這些氣孔為有機污染物進入植物體提供了另一個途徑[15]. 污染物從空氣到葉片吸收包括3個步驟[24](見圖1):①污染物穿過大氣和葉之間的湍流帶;②污染物穿越邊界層;③污染物與葉片表面反應(yīng). 植物葉片角質(zhì)層對PAHs具有一定的屏障作用,PAHs在角質(zhì)層上會發(fā)生團聚現(xiàn)象,表明角質(zhì)層對PAHs的吸附并非是均勻的[25]. 但經(jīng)過一段時間后PAHs可以滲透至角質(zhì)層,跨過細(xì)胞膜進入葉肉細(xì)胞,累積在液泡組織內(nèi)[26]. Wild等[27]在觀察玉米葉片內(nèi)熒蒽在96 h的運動軌跡時發(fā)現(xiàn),葉片中的熒蒽穿過上表皮蠟質(zhì)和角質(zhì)層后到達表皮細(xì)胞的細(xì)胞質(zhì),在這一階段,熒蒽存在于葉片的5個部位,即上表皮蠟質(zhì)-薄擴散層(約5 μm)、從上表層蠟質(zhì)穿過角質(zhì)層到達表皮細(xì)胞的細(xì)胞壁-厚擴散帶(約28 μm)、上表皮細(xì)胞壁外表面、上表皮細(xì)胞壁內(nèi)表面及上表皮細(xì)胞的細(xì)胞質(zhì). PAHs在葉片中的存儲位置影響其在植物體內(nèi)的遷移轉(zhuǎn)化和最終歸趨. 如果滯留于表皮蠟質(zhì)和角質(zhì)層中,可能發(fā)生光降解、再揮發(fā)或從角質(zhì)層脫落[28];如果進入到表皮細(xì)胞壁或者細(xì)胞質(zhì)中,則易發(fā)生代謝作用[29]. 此外,Wild等[29]發(fā)現(xiàn)菲以氣態(tài)沉降進入玉米葉片氣孔,出現(xiàn)在氣孔的保衛(wèi)細(xì)胞,但是在氣孔內(nèi)表面和氣孔下腔并沒有檢測到菲,因此推斷菲沒有通過氣孔而是被葉蠟所吸收. Barber等[30]認(rèn)為,當(dāng)角質(zhì)層較難穿透且氣孔密度較大時,氣孔吸收途徑相對重要;而當(dāng)角質(zhì)層極易穿透時,氣孔的作用幾乎為零. 目前,對于活體小麥葉片吸收PAHs的可視化實時追蹤研究相對較少. 小麥葉片對PAHs的吸收是角質(zhì)層途徑為主還是氣孔途徑為主,至今尚不清楚.
1.3籽粒對PAHs吸收
由于PAHs本身的疏水特性,Briggs等[31]認(rèn)為小麥籽粒內(nèi)的PAHs主要來源于大氣而不是土壤. 然而,DU等[32]通過野外Lymimeter試驗追蹤14C標(biāo)記的菲在小麥體內(nèi)的積累發(fā)現(xiàn),根系吸收的PAHs可以通過向頂運輸進入莖、葉、籽粒和穎殼. 有研究[33]發(fā)現(xiàn),小麥籽粒內(nèi)積累的主要為2~4環(huán)PAHs,并且萘含量最高. 裸露的小麥籽粒對PAHs吸收速率大于有外殼的籽粒,可能是外殼阻礙了PAHs向籽粒的擴散. 大田中的小麥籽粒從形成到收獲大致需要一個月,對于氣態(tài)PAHs的吸收處于動力學(xué)限制階段且達不到平衡濃度[34]. 小麥籽粒PAHs濃度與接觸大氣的PAHs濃度有關(guān),其關(guān)系受吸收時間和大田條件的影響[34],但是目前關(guān)于二者之間的關(guān)系缺乏定量研究,需要創(chuàng)建合適的動力學(xué)吸收模型,從而確定有效的途徑降低籽粒引起的PAHs膳食暴露風(fēng)險. 農(nóng)田中的小麥經(jīng)常遭受土壤及大氣雙重污染,因此葉面吸收及根系吸收PAHs分別對籽粒積累PAHs的貢獻是當(dāng)前亟待解決的科學(xué)問題.
2.1根系吸收PAHs的影響因素
2.1.1PAHs理化性質(zhì)
PAHs能否進入植物根系,依賴于其KOW(辛醇-水分配系數(shù))、水溶解度(S)、亨利系數(shù)(H)、分子量(MW)等理化性質(zhì). 對于不同種類PAHs,根系對其吸收、轉(zhuǎn)運速率不同[35]. Chiou等[36]提出了限制分配模型用于定量預(yù)測植物對有機物的積累:
Cpt=αpt[Cs/(fsomKsom)][fpw+fchKch+flipKOW]
(1)
式中:Cpt為植物體內(nèi)污染物的濃度,mg/kg;αpt為準(zhǔn)平衡因子;Cs為污染物在土壤中的濃度,mg/kg;fpw為植物中無機組分的含量,%;fch為植物中碳水化合物的含量,%;flip為植物中脂類的含量,%;fsom為土壤有機質(zhì)的質(zhì)量分?jǐn)?shù),%;Kch為污染物在碳水化合物和水間的分配系數(shù);Ksom為污染物在土壤有機質(zhì)和水間的分配系數(shù).
由式(1)可知,KOW是植物根系吸收有機污染物的主要限制因子. 有研究認(rèn)為小麥根系對PAHs的吸收量隨KOW的增加而增加[31],也有研究認(rèn)為小麥根系PAHs富集系數(shù)與KOW沒有線性關(guān)系[14],原因是大多數(shù)lgKOW>4的PAHs分配到根的表皮或土壤顆粒而不會被根系或木質(zhì)部吸收. 因此,KOW對小麥根系吸收PAHs的影響尚需深入系統(tǒng)研究. PAHs隨著分子量的增加其揮發(fā)性降低[37]. 植物根系對不同Mw的PAHs吸收轉(zhuǎn)運能力不同. 小麥根系對4環(huán)PAHs吸收最多,其次是2環(huán)、3環(huán)、5~6環(huán)PAHs[14]. Wild等[22]觀察同分異構(gòu)體菲和蒽在小麥根系的遷移過程時發(fā)現(xiàn),菲的吸收和遷移速率比蒽快. 這可能與二者不同的水溶性有關(guān):在25 ℃下菲和蒽在水中的溶解度分別為1.65、0.075 mg/L[38].
然而,對于一些PAHs理化性質(zhì)精確的測量非常困難. 定量結(jié)構(gòu)-活性關(guān)系(quantitatives structure activity relationship QSAR)指化合物的分子結(jié)構(gòu)與其活性之間的關(guān)系,目前已從個別的、定性的描述方式發(fā)展到一般的、定量的數(shù)學(xué)模型表達[39]. 利用定量結(jié)構(gòu)-活性關(guān)系可以對PAHs理化性質(zhì)、環(huán)境歸趨和生物毒性進行預(yù)測,彌補數(shù)據(jù)的缺失,降低昂貴的測試費用. 目前對PAHs的定量結(jié)構(gòu)-活性關(guān)系研究主要集中在光解活性[40]、生物可降解性[41]和生物毒性[42]等方面,對其吸附-解吸等環(huán)境行為的研究相對缺乏. 預(yù)測的理化性質(zhì)參數(shù)代入多介質(zhì)逸度模型,可得到理想環(huán)境狀態(tài)下PAHs在多環(huán)境介質(zhì)中的分配歸趨,為了解PAHs在環(huán)境中的遷移轉(zhuǎn)化提供了簡便的途徑.
2.1.2植物生理狀況
植物種類及其生理學(xué)特性(包括脂肪或水分含量及蒸騰速率等)都會影響植物對有機污染物的吸收[43]. 研究[44]表明,小麥根系對PAHs的吸收與根部脂肪含量、根表面積有關(guān). 吸附劑的極性也會顯著影響其對有機物的吸附能力,小麥根細(xì)胞的極性與PAHs吸收速率呈負(fù)相關(guān)[45]. 植物體主要由水、脂肪、碳水化合物、蛋白質(zhì)、纖維素等物質(zhì)構(gòu)成,這些成分對有機污染物的親和力不同[46]. 研究[47]表明,KOW<10的有機污染物,根系水吸收占主導(dǎo)作用(85%以上);KOW=10的有機污染物,根系水和脂肪作用各占50%;KOW>1 000 的有機物,植物對有機污染物的吸收幾乎都來自根系脂肪對有機物的分配. 植物不同生育期由于生命代謝活動強度不同,吸收污染物的能力也不同. 在不同生長期小麥各組織器官低環(huán)、中高環(huán)PAHs分布有顯著差異[48]. 此外,不同的根系類型、根表面積、根系分泌物、菌根細(xì)菌等在種類和數(shù)量上的差異導(dǎo)致根際對PAHs的吸收、降解能力不同[49].
2.1.3土壤理化性質(zhì)
YANG等[50]發(fā)現(xiàn),土壤DOM(可溶性有機質(zhì))不僅能明顯地促進小麥對菲的吸收和富集,而且還能促進根系吸收的菲向地上部轉(zhuǎn)運. 這可能是由于DOM改變了PAHs的理化性質(zhì),如水溶解度和KOW,從而提高了PAHs的生物有效性,進而促進了植物對菲的吸收[50]. 但是小麥根系吸收PAHs與土壤有機碳(SOC)含量呈負(fù)相關(guān)(P<0.01)[14]. 低的pH促進根吸收PAHs,研究[20]表明根系對菲的主動吸收是以H+共運方式進行的. K+也會促進小麥根系對菲的吸收,K+激活了質(zhì)膜H+-ATPase[44]. 植物對PAHs的吸收與土壤中PAHs的濃度和植物組分有關(guān)[51],研究表明[14]小麥根中PAHs濃度與土壤中PAHs的濃度呈正相關(guān). 另外,陽離子表面活性劑能顯著增強土壤對有機污染物的吸附[52],而且能夠抑制作物吸收土壤中的PAHs[53]. 土壤粒徑組成影響其對有機污染物的吸附和利用能力. 粗砂和黏粒對芘的吸附能力較大,細(xì)砂和粉砂相對較小[54]. 此外,土壤中氮的濃度和形態(tài)也會影響小麥根系對PAHs的吸收[55].
2.2葉面吸收PAHs的影響因素
2.2.1PAHs理化性質(zhì)
植物葉片對PAHs的吸收和轉(zhuǎn)移與PAHs本身的理化性質(zhì)有關(guān),如環(huán)數(shù)、分子量、水溶解度、辛醇-水分配系數(shù)、辛醇-氣分配系數(shù)、形態(tài)(氣態(tài)/顆粒態(tài))、亨利系數(shù)等. 氣態(tài)的PAHs容易在葉片角質(zhì)層擴散而被吸收,而大部分顆粒態(tài)PAHs只是嵌入到角質(zhì)層,很容易被脫附[56]. 蒽和苯并[k]熒蒽混合噴施對生菜地上部分產(chǎn)生的積累效應(yīng)和單獨噴施有明顯差異[57]. 車前草葉內(nèi)部PAHs含量隨PAHs分子量的增加而減少[58];然而也有研究[59]認(rèn)為,植物葉中PAHs以5、6環(huán)為主,根中以2~4環(huán)為主. 揮發(fā)性、半揮發(fā)性有機污染物在植物葉片和空氣之間的分配與其辛醇-氣分配系數(shù)密切相關(guān)[43].
2.2.2植物生理狀況
不同種類植物葉片性質(zhì)存在差異,如形態(tài)、葉面積、角質(zhì)層、葉片數(shù)量、氣孔大小及密度、葉毛長度與密度、疏水性等[60]. 植物葉片攔截顆粒態(tài)PAHs與其葉向、葉面積、葉毛有關(guān)[24]. 研究表明,植物暴露器官中的PAHs主要來自葉的吸收[17],影響葉片角質(zhì)層吸收PAHs的主要因素是暴露于大氣中的葉面積[61]. 此外,葉毛可以提高葉片清除和黏附大氣顆粒物的能力,因為它們具有更大的表面積并且會在葉表面的邊緣形成相對靜態(tài)空氣[56]. 然而也有研究[62]表明,表面光滑的葉片比表面粗糙的葉片更易于吸附顆粒物. 因為葉子越粗糙,防水性能就越好,所以對葉子表面顆粒物的黏附作用減弱[56]. 因此,葉毛對葉片吸收大氣顆粒物的影響還沒有統(tǒng)一的結(jié)果. 葉脂含量也是影響植物吸收和滯留大氣持久性有機污染物(POPs)的一個重要的因素[52]. 在這些因素中,哪些是影響PAHs穿過角質(zhì)層被小麥吸收的主要因素有待進一步研究.
2.2.3環(huán)境因素
植物從空氣中吸收PAHs受溫度、空氣中污染物的濃度、暴露時間等影響. PAHs通過氣孔在葉片和大氣之間交換與大氣溫度有關(guān)[63],因為溫度影響氣孔的開啟和閉合. 在溫度較低的秋冬季節(jié),PAHs由大氣向植物遷移,而在溫度較高的夏季,部分PAHs又通過揮發(fā)作用回到大氣中[64]. 葉面對PAHs的吸收量還取決于葉面周圍大氣中PAHs的濃度[65]. 由于暴露時間的不同,老葉積累的PAHs量往往大于新葉[66].
3.1向頂運輸
植物根系吸收的有機污染物一部分固定在根的脂質(zhì)中,一部分則穿過根系不透水硬組織帶進入內(nèi)表皮層到達管胞和導(dǎo)管組織,并通過木質(zhì)部隨蒸騰流向地上部分遷移,最終在莖葉中分布[43]. 小麥根系吸收的PAHs可以通過向頂運輸進入莖葉[14]. 有研究[67]認(rèn)為,蔬菜地上部大分子量PAHs主要來源于根系的轉(zhuǎn)運. 小麥地上部不同環(huán)數(shù)的PAHs的分布特征與大氣中的PAHs的分布有顯著的差異,表明地上部PAHs來自于根系的轉(zhuǎn)運[14].
小麥對PAHs的向頂運輸與PAHs的理化性質(zhì)有關(guān),芴傾向于在小麥根部積累,而菲被轉(zhuǎn)運到地上部分[68]. 有研究[14]表明小麥根吸收PAHs向地上部轉(zhuǎn)運與lgKOW呈負(fù)相關(guān). lgKOW≤1的有機物易溶于水,可以在木質(zhì)部和韌皮部流動;1 3.2向底運輸 由于PAHs較高的疏水性和較低的溶解性,植物根系表皮吸收后難以運輸?shù)礁膬?nèi)部或木質(zhì)部[71],因此推斷植物體內(nèi)的PAHs可以通過地上部吸收后運輸至根部. 在土壤菲濃度很低的情況下,三葉草和黑麥草根部檢測到高濃度的菲,很大程度上證明地上部吸收的菲被轉(zhuǎn)移至根部[72]. 然而也有研究[51]表明,植物(如大豆、空心菜等)地上部從大氣中積累的菲和芘沒有被運輸?shù)礁? 用同位素示蹤法研究豌豆體內(nèi)熒蒽的轉(zhuǎn)運發(fā)現(xiàn):熒蒽通過韌皮部存在向基、向頂運輸,尤其是在植物新生部位如莖尖及根尖積累[73]. 目前,小麥葉面吸收PAHs是否會向根部運輸還沒有明確的結(jié)論,有待進一步的研究. a) 目前,關(guān)于小麥對PAHs吸收和轉(zhuǎn)運的模型在風(fēng)險評價、植物修復(fù)等方面應(yīng)用得很多,然而,缺乏PAHs在小麥體內(nèi)轉(zhuǎn)運過程的直接證據(jù). 研究韌皮部、木質(zhì)部運輸動力學(xué)對確定可食部分-小麥籽粒積累的PAHs主要來自根系吸收還是葉片吸收,從而采取有效的農(nóng)藝措施阻控PAHs進入食物鏈?zhǔn)潜匾? b) 小麥處于自然狀態(tài)下PAHs是如何進入其葉片,如何在葉片中轉(zhuǎn)移和或與葉肉組織結(jié)合尚不清楚. 采用先進技術(shù)探討小麥葉面吸收、轉(zhuǎn)運PAHs的微觀機理,如利用同位素示蹤法、雙光子激發(fā)顯微鏡等技術(shù)跟蹤和觀察PAHs在小麥葉片的吸收和轉(zhuǎn)移,有望為宏觀調(diào)控植物吸收PAHs獲得安全農(nóng)產(chǎn)品提供科學(xué)依據(jù). c) 大多數(shù)研究致力于室內(nèi)盆栽試驗,因為受自然環(huán)境等不可控因素的影響小于田間試驗而利于機理的研究,但是植物吸收PAHs的大田試驗的經(jīng)驗對于完全理解植物-環(huán)境體系的宏觀關(guān)系也是必要的. 探討影響PAHs在小麥體內(nèi)的吸收、轉(zhuǎn)運和富集過程的因素,除了污染物性質(zhì)、植物特征和土壤性質(zhì)(尤其是土壤有機質(zhì))外,小麥生長環(huán)境的污染史也需要考慮在內(nèi). [1] ZHANG Yanxu,TAO Shu,SHEN Huizhong,etal.Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lungcancer risk of Chinese population[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(50):21063- 21067. [2] LIU Shuzhen,TAO Shu,LIU Wenxin,etal.Atmospheric polycyclic aromatic hydrocarbons in north China:a wintertime study[J].Environmental Science & Technology,2007,41:8256- 8261. [3] DIMASHKI M,LIM L H,HARRISON R M,etal.Temporal trend,temperature dependence,and relative reactivity of atmospheric polycyclic aromatic hydrocarbons[J].Environmental Science & Technology,2001,35(11):2264- 2267. [4] SUN Ping,BLANCHARD P,BRICE K A,etal.Trends in polycyclic aromatic hydrocarbon concentrations in the Great Lakes atmosphere[J].Environmental Science & Technology,2006,40(20):6221- 6227. [5] WILD S R,JONES K C.Polycyclic aromatic hydrocarbons in the United Kingdom environment:a preliminary source in inventory and budget[J].Environmental Pollution,1995,88(1):91- 108. [6] 姜永海,韋尚正,席北斗,等.PAHs在我國土壤中的污染現(xiàn)狀及其研究進展[J].生態(tài)環(huán)境學(xué)報,2009,18:1176- 1181. JIANG Yonghai,WEI Shangzheng,XI Beidou,etal.Polycyclic aromatic hydrocarbons (PAHs) pollution in soils in China:recent advances and future prospects[J].Ecology and Environment,2009,18:1176- 1181. [7] WANG Wentao,SIMONICH S L M,XUE Miao,etal.Concentrations,sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing,Tianjin and surrounding areas,North China[J].Environmental Pollution,2010,158(5):1245- 1251. [8] 李新榮.天津地區(qū)多環(huán)芳烴排放、擴散和人群暴露的空間分異[D].北京:北京大學(xué),2007:104- 116. [9] 薛海泉,崔兆杰,杜世勇,等.加速溶劑萃取/氣相色譜-質(zhì)譜法測定小麥中多環(huán)芳烴[J].中國環(huán)境監(jiān)測,2011,27:42- 46. XUE Haiquan,CUI Zhaojie,DU Shiyong,etal.Determination of PAHs in wheat by accelerated solvent extraction and gas chromatography-mass spectrometry[J].Environmental Monitoring of China,2011,27:42- 46. [10] KOBAYASHI R,CAHILL T M,KAMOTO R O,etal.Controlled exposure chamber study of uptake and clearance of airborne polynuclear aromatic hydrocarbons by wheat grain[J].Environmental Science & Technology,2007,41:7934- 7940. [11] ZHANG Yanyan,JOSEPH J P,TAO Shu,etal.Bioaccessibility of PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink:effect of food ingestion[J].Environmental Science & Technology,2015,49:14641- 14648. [12] XIA Zhonghuan,DUAN Xiaoli,QIU Wenxun,etal.Health risk assessment on dietary exposure to polynuclear aromatic hydrocarbons (PAHs) in Taiyuan,China[J].Science of the Total Environment,2010,408:5331- 5337. [13] 朱寶玉,張書芳,詹宣.河南省成年居民膳食結(jié)構(gòu)變化分析[J].衛(wèi)生研究,2004,33:615- 617. [14] TAO Yuqiang,ZHANG Shuzhen,ZHU Yongguan,etal.Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (TriticumaestivumL.) grown in field-contaminated soil[J].Environmental Science & Technology,2009,43:3556- 3560. [15] DESALME D,BINET P,CHIAPUSIO G.Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydro carbon deposition in vascular plants[J].Environmental Science & Technology,2013,47:3967- 3981. [16] LI Hui,SHENG Guangyao,CHIOU C T,etal.Relation of organic contaminant equilibrium sorption and kinetic uptake in plants[J].Environmental Science & Technology,2005,39:4864- 4870. [17] TRAPP S.Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds[J].Pest Management Science,2000,56:767- 778. [18] INGRID L,SAHRAOUI A L H,LARUELLE F,etal.Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation:microcosm experiment on aged-contaminated soil[J].Environmental Pollution,2016,213:549- 560. [19] ZHAN Xinhua,MA Hengliang,ZHOU Lixiang,etal.Accumulation of phenanthrene by roots of intact wheat (TriticumacstivnmL.) seedlings:passive or active uptake?[J].BMC Plant Biology,2010,10(1):1- 8. [20] ZHAN Xinhua,ZHANG Xiaobin,YIN Xiaoming,etal.H+phenanthrene symporter and aquaglyceroporin are implicated in phenanthrene uptake by wheat (TriticumaestivumL.) roots[J].Journal of Environmental Quality,2012,41:188- 196. [21] 易修,袁嘉韓,顧鎖娣,等.小麥根系吸收萘、菲、芘的動力學(xué)特征[J].環(huán)境科學(xué)學(xué)報,2013,33(4):1135- 1140. YI Xiu,YUAN Jiahan,GU Suodi,etal.Kinetic characteristics of naphthalene,phenanthrene and pyrene uptake by wheat roots[J].Acta Scientiae Circumstantiae,2013,33(4):1135- 1140. [22] WILD E,DENT J,THOMAS G O,etal.Direct observation of organic contaminant uptake,storage,and metabolism within plant roots[J].Environmental Science & Technology,2005,39:3695- 3702. [23] 李云桂.典型有機污染物在植物角質(zhì)層上的吸附行為與跨膜過程[D].杭州:浙江大學(xué),2011:7- 13. [24] BAKKER M I,VORENHOUT M,SIJM D,etal.Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species[J].Environmental Toxicology and Chemistry,1999,18(10):2289- 2294. [25] KEYTE I,WILD E,DENT J,etal.Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnumcupressiforme) using two-photon excitation microscopy with autofluorescence[J].Environmental Science & Technology,2009,43:5755- 5761. [26] LI Qingqing,CHEN Baoliang.Organic pollutant clustered in the plant cuticular membranes:visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy[J].Environmental Science & Technology,2014,48:4774- 4781. [27] WILD E,DENT J,BARBER J L,etal.A novel analytical approach for visualizing and tracking organic chemicals in plants[J].Environmental Science & Technology,2004,38:4195- 4199. [28] WILD E,DENT J,THOMAS G O,etal.Real-time visualization and quantification of PAH photodegradation on and within plant leaves[J].Environmental Science & Technology,2005,39:268- 273. [29] WILD E,DENT J,THOMAS G O,etal.Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:further studies utilizing two-photon excitation microscopy[J].Environmental Science & Technology,2006,40(3):907- 916. [30] BARBER J L,KURT P B,THOMAS G O,etal.Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environmental Science & Technology,2002,36:4282- 4287. [31] BRIGGS G G,BROMILOW R H,EVANS A A.Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley[J].Pesticide Science,1982,13:495- 504. [32] DU Wenchao,SUN Yuanyuan,CAO Lu,etal.Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation[J].Journal of Hazardous Materials,2011,188:408- 413. [33] REIKO K,ROBERT A O,RANDY L M,etal.Polycyclic aromatic hydrocarbons in edible grain:a pilot study of agricultural crops as a human exposure pathway for environmental contaminants using wheat as a model crop[J].Environmental Research,2008,107:145- 151. [34] REIKO K,THOMASM M C,ROBERT A O,etal.Controlled exposure chamber study of uptake and clearance of airborne polycyclic aromatic hydrocarbons by wheat grain[J].Environmental Science & Technology,2007,41:7934- 7940. [35] ESMAEIL S,ERIC M A,MOHAMED T,etal.Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat[J].Journal of Environmental Management,2015,155:171- 176. [36] CHIOU C T,SHENG Guangyao,MANES M.A partition-limited model for the plant uptake of organic contaminants from soil and water[J].Environmental Science & Technology,2001,35(7):1437- 1444. [37] AKYUZ M,CABUK H.Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak,Turkey[J].Science of the Total Environment,2010,408:5550- 5558. [38] MACKAY D,WANYING S,MA K C.Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals[J].Lewis Publishers,1992,1(7):551- 552. [39] YUAN Quan,MA Guangcai,XU Ting,etal.Developing QSPR model of gasparticle partition coefficients of neutral poly-perfluoroalkyl substances[J].Atmospheric Environment,2016,143:270- 277. [40] LU Guining,DANG Zhi,TAO Xueqin,etal.Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors[J].Science of the Total Environment,2007,373:289- 296. [41] XU Peng,MA Wencheng,HAN Hongjun,etal.Quantitative structure-biodegradability relationships for biokinetic parameter of polycyclic aromatic hydrocarbons[J].Journal of Environmental Sciences,2015,30:180- 185. [42] 蔡嘯宇,姜龍,曾婭玲,等.基于密度泛函理論的多環(huán)芳烴硝基衍生物的生物毒性預(yù)測[J].發(fā)光學(xué)報,2013,34(12):1667- 1671. CAI Xiaoyu,JIANG Long,ZENG Yaling,etal.Prediction of polycyclic aromatic hydrocarbon derivatives toxicity studies based on density functional Theory[J].Chinese Journal of Luminescence,2013,34(12):1667- 1671. [43] 馬恒亮.多環(huán)芳烴(菲)跨小麥根系界面的傳輸機制[D].南京:南京農(nóng)業(yè)大學(xué),2009:4. [44] ZHAN Xinhua,LIANG Xiao,JIANG Tinghui,etal.Interaction of phenanthrene and potassium uptake by wheat roots:a mechanistic model[J].BMC Plant Biology,2013,13:168. [45] LI Chen,ZHANG Shuzhen,HUANG Honglin,etal.Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (TriticumaestivumL.)[J].Environmental Science & Technology,2009,43:9136- 9141. [46] WEI Haiying,SONG Shanjuan,TIAN Hongling,etal.Effects of phenanthrene on seed germination and some physiological activities of wheat seedling[J].Comptes Rendus Biologies,2014,337:95- 100. [47] CHIOU C T,SHENG Guangyao,MANES M.A partition-limited model for the plant uptake of organic contaminants from soil and water[J].Environmental Science & Technology,2001,35(7):1437- 1444. [48] 薛海全.農(nóng)作物中多環(huán)芳烴和多氯聯(lián)苯的分布、累積規(guī)律[D].濟南:山東大學(xué),2011:33- 34. [49] 陰啟蓬.熒蒽在土壤-作物系統(tǒng)中的富集規(guī)律及對農(nóng)產(chǎn)品質(zhì)量的影響[D].南京:南京農(nóng)業(yè)大學(xué),2012:21. [50] YANG Xiuhong,GARNIER P,WANG Shizhong,etal.PAHs sorption and desorption on soil influenced by pine needle litter-derived dissolved organic matter[J].Pedosphere,2014,24(5):575- 584. [51] GAO Yanzhen,ZHU Lizhong.Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils[J].Chemosphere,2004,55(9):1169- 1178. [52] SUN Haifeng,SHI Jing,GUO Shuai,etal.In situ determination of the depuration of three- and four-ringed polycyclic aromatic hydrocarbons co-adsorbed onto mangrove leaf surfaces[J].Environmental Pollution,2016,208:688- 695. [53] 呂黎.陽離子表面活性劑對PAHs在土壤-作物間遷移的阻控作用及機制[D].杭州:浙江大學(xué),2011:59. [54] 李久海.多環(huán)芳烴(芘)在水稻土及其不同粒組中的吸附和老化效應(yīng)[D].杭州:浙江大學(xué),2003:4- 6. [55] ZHAN Xinhua,Yuan Jiahan,YUE Le,etal.Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings[J].Environmental Science and Pollution Research,2015,22:6280- 6287. [56] HOWSAM M,JONES K C,INESON P.PAHs associated with the leaves of three deciduous tree species:I.concentrations and profiles[J].Environmental Pollution,2000,108:413- 424. [57] JOLANTA W,STANISLAW S,MONIKA P,etal.Uptake and phytotoxicity of anthracene and benzo[k]fluoranthene applied to the leaves of celery plants (Apiumgraveolensvar.SecalinumL.)[J].Ecotoxicology and Environmental Safety,2015,115:19- 25. [58] BAKKER M I,KOERSELMAN J W,TOLLS J,etal.Localization of deposited polycyclic aromatic hydrocarbons in leaves of Plantago[J].Environmental Toxicology and Chemistry,2001,20(5):1112- 1116. [59] 匡少平.中原油田周邊土壤及玉米中PAHs的分布[J].環(huán)境化學(xué),2008,27(6):845- 846. [60] BALDANTONI D,NICOLA F D,ALFANI A.Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant[J].Atmospheric Pollution Research,2014,5:262- 269. [61] TERZAGHI E,ZACCHELLO G,SCACCHI M,etal.Towards more ecologically realistic scenarios of plant uptake modelling for chemicals:PAHs in a small forest[J].Science of the Total Environment,2015,505:329- 337. [62] NEINHUIS C,BARTHLOTT W.Characterization and distribution of water-repellent,self-cleaning pant surfaces[J].Annals of Botany,1997,79:667- 677. [63] 王雅琴,左謙,焦杏春,等.北京大學(xué)及周邊地區(qū)非取暖期植物葉片中的多環(huán)芳烴[J].環(huán)境科學(xué),2004,25(4):23- 27. WANG Yaqin,ZUO Qian,JIAO Xingchun,etal.Polycyclic promatic pydrocarbons in plant leaves from Peking University Campus and nearby in summer season[J].Environmental Science,2004,25(4):23- 27. [64] NAKAJIMA D,YOSHIDA Y,SUZUKI J,etal.Seasonal changes in the concentration of polycyclic aromatic hydrocarbons in Azalea leaves and relationship to atmospheric concentration[J].Chemosphere,1995,30(3):409- 418. [65] DIAS A P L,RINALDI M C S,DOMINGOS M.Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil)[J].Science of the Total Environment,2016,544:175- 184. [66] 萬開,江明,楊國義,等.珠江三角洲典型城市蔬菜中多環(huán)芳烴分布特征[J].土壤,2009,41(4):583- 587. [67] FISMES J,PERRIN-GANIER C,EMPEREREUR-BISSONNET P,etal.Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbon by vegetables grown on industrial contaminated soils[J].Journal of Environmental Quality,2002,31:1649- 1656. [68] SALEHI-LISAR S Y,DELJOO S,HARZANDI A M.Fluorene and phenanthrene uptake and accumulation by wheat,alfalfa and sunflower from the contaminated soil[J].International Journal of Phytoremediation,2015,17(12):1145- 1152. [69] 焦海華,潘建剛,徐圣君,等.原位生物修復(fù)提高多環(huán)芳烴污染土壤農(nóng)用安全性[J].環(huán)境科學(xué),2015,36(8):3038- 3044. JIAO Haihua,PAN Jiangang,XU Shengjun,etal.Improving agricultural safety of soils contaminated with polycyclic aromatic hydrocarbons by in situ bioremediation[J].Environmental Science,2015,36(8):3038- 3044. [70] GAO Yanzheng,COLLINS C D.Uptake pathways of polycyclic aromatic hydrocarbons in white clover[J].Environmental Science & Technology,2009,43:6190- 6195. [71] KIPOPOULOU A M,MANOLIA E,SAMARA C.Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J].Environmental Pollution,1999,106:369- 380. [72] DESALME D,BINET P,BERNARD N,etal.Atmospheric phenanthrene transfer and effects on two grassland species and their root symbionts:a microcosm study[J].Environmental and Experimental Botany,2011,71:146- 151. [73] ZEZULKA S,KLEMS M,KUMMEROVA M.Root and foliar uptake,translocation,and distribution of [14C] fluoranthene in pea plants fluoranthene in pea plants (Pisumsativum)[J].Environmental Toxicology and Chemistry,2014,33(10):2308- 2312. Research Advances in Uptake, Translocation and Accumulation of Polycyclic Aromatic Hydrocarbons in Winter Wheat SHI Taoran1,2, TIAN Kai1,2, BAO Huanyu1,2, HOU Shaowei1,2, LIU Xueping3, WU Fuyong1,2* 1.College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China 2.Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China 3.School of Municipal and Environment Engineering, Henan University of Urban Construction, Pingdingshan 467036, China Due to continuous economic and social development and the predominant use of coal in energy consumption, emissions of PAHs in China has maintained a high level for years, which has resulted in serious PAHs contamination in atmospheric and soil environments. To evaluate the processes and mechanisms contributing to accumulation and regulation of PAHs in wheat, based on systematic analysis of characteristics and mechanisms of uptake, translocation and accumulation of PAHs in wheat, the present work focused on the effects of root and foliar uptake of PAHs. Previous studies have found that wheat root uptake of PAHs mainly includes active and passive processes, of which active process is a carrier-mediated, energy-consuming and H+-coupled symport process. Besides simple diffusion, which is especially prevalent for passive uptake in higher plants, PAHs could enter into roots via aquaglyceroporin. PAHs could enter into leaves by gas-phase and particle-phase deposition onto the waxy cuticle or via the stomata. Root and foliage uptake of PAHs are governed by the physicochemical properties of PAHs, plant species and environmental conditions. Acropetal translocation of PAHs by root is associated withKOW, transpiration rate, nitrogen form and concentration in soil. Current studies face some challenges. The mechanisms of PAHs translocating from leaves to root need further research. In addition, winter wheat always suffers from the double pollutions of soil and atmosphere under field conditions, and the role of root and foliar uptake of PAHs in the accumulation of PAHs in wheat has not been developed yet. Therefore, more efforts should be devoted to illustrating the effects of phloem and xylem in translocation of PAHs, using powerful techniques such as isotope trace and two-photon excitation microscopy to visualize and track how such compounds enter, move and distribute within wheat foliage, providing insight into PAHs foliar uptake. Paying more attention to field experiments to fully address root and foliar uptake of PAHs will provide logical proofs for revealing mechanisms of uptake, accumulation and regulation of PAHs in wheat and for the safety of agro-products growing in the PAHs-polluted areas. polycyclic aromatic hydrocarbons; wheat; root uptake; foliar uptake; transport mechanism 2016-12-08 :2017-05-23 國家自然科學(xué)基金項目(41571456);河南省高??萍紕?chuàng)新人才支持計劃項目(14HASTIT048) 石陶然(1986-),女,山西忻州人,shitaoran@126.com. *責(zé)任作者,吳福勇(1973-),男,河南方城人,教授,博士,博導(dǎo),主要從事土壤植物修復(fù)、PAHs毒性機理、健康風(fēng)險評價及食品質(zhì)量安全研究,wfy09@163.com X56 :1001- 6929(2017)09- 1398- 08 ADOI:10.13198/j.issn.1001- 6929.2017.02.63 石陶然,田凱,包環(huán)宇,等.多環(huán)芳烴在冬小麥體內(nèi)的吸收與轉(zhuǎn)運及富集研究進展[J].環(huán)境科學(xué)研究,2017,30(9):1398- 1405. SHI Taoran,TIAN Kai,BAO Huanyu,etal.Research advances in uptake, translocation and accumulation of polycyclic aromatic hydrocarbons in winter wheat[J].Research of Environmental Sciences,2017,30(9):1398- 1405.4 結(jié)論