李宇東,羅堅(jiān)義,莫希偉,張園園,曾慶光,何嘉健
?
Pt表面修飾WO3納米花薄膜對酒精氣體傳感性能的影響
李宇東,羅堅(jiān)義,莫希偉,張園園,曾慶光,何嘉健
(五邑大學(xué) 應(yīng)用物理與材料學(xué)院,廣東 江門 529020)
由于大多數(shù)半導(dǎo)體式酒精氣體傳感器必須工作在較高溫度下才能達(dá)到較高靈敏度,導(dǎo)致其在工作過程中存在安全隱患,不利于工業(yè)化生產(chǎn)及大規(guī)模應(yīng)用. 針對上述問題,本文利用熱氧化法制備了高比表面積的納米花薄膜,并利用磁控濺射法把Pt納米顆粒均勻地濺射到納米花表面上,形成Pt表面修飾納米花薄膜. 通過酒精氣體傳感測試平臺測定了該材料制備的酒精氣體傳感器的性能,并對Pt表面修飾納米花薄膜的酒精氣敏機(jī)理進(jìn)行討論. 結(jié)果表明,在低工作溫度下(),Pt表面修飾納米花薄膜的呼氣酒精質(zhì)量濃度檢測范圍為,該范圍已接近酒后駕駛的呼氣酒精質(zhì)量濃度標(biāo)準(zhǔn),并有效降低了酒精氣體傳感器的工作溫度,解決了使用中存在的安全隱患.
酒精氣體傳感器;納米花薄膜;Pt表面修飾;氣敏
酒精攝入人體后,被腸胃中的毛細(xì)血管吸收到血液循環(huán)系統(tǒng)中,含酒精的血液流經(jīng)肺部后,約90%的酒精通過肺泡的氣體交換擴(kuò)散到呼吸過程中[1]. 因此,通過測定人體呼氣酒精濃度即可獲得人體血液的酒精濃度. 我國在《道路交通安全法》中明確指出,當(dāng)每血液中的酒精含量大于時(shí),即屬于酒后駕駛. 研究表明,呼氣和血液中的酒精含量滿足的關(guān)系(BAC和BrAC分別代表血液中和呼氣中的酒精質(zhì)量濃度,單位是mg/mL),即當(dāng)呼氣中酒精含量大于時(shí),就屬于酒后駕駛[2]. 近年來,酒后駕駛、醉酒駕駛所造成的人員傷亡和財(cái)產(chǎn)損失對社會造成了嚴(yán)重的影響,檢測人體酒精濃度和預(yù)防酒后駕駛相關(guān)的研究成為了一個(gè)研究熱點(diǎn),大量不同類型的酒精濃度檢測技術(shù)得到了迅速發(fā)展,包括氣相色譜分析型、氣敏型、紅外光譜分析型、比色型等[3-6]. 目前,金屬氧化物半導(dǎo)體納米材料因具有高靈敏度和適合批量生產(chǎn)等優(yōu)點(diǎn)被廣泛應(yīng)用于制備氣體傳感器,如[7]、[8]、[9]. 但是,對這類材料的酒精氣體傳感器件的研究卻很少,且這類材料所制備的酒精氣體傳感器普遍存在工作溫度較高(以上)、功耗較大、靈敏度較低、電學(xué)穩(wěn)定性差等缺陷[10-11],不利于功能材料集成化和工業(yè)生產(chǎn). 因此研究者嘗試通過材料摻雜復(fù)合等改進(jìn)材料結(jié)構(gòu)的方式來降低傳感器的工作溫度[12-14].
氧化鎢作為一種寬禁帶的n型金屬氧化物半導(dǎo)體材料,因結(jié)構(gòu)獨(dú)特和存在多變氧化態(tài)而具有優(yōu)越的電致變色、氣致變色和光致變色等效應(yīng),從而被廣泛應(yīng)用于電致變色的“靈巧窗”、氣體傳感器、光催化、超級電容和場發(fā)射器件[15-21]. 近年來,貴金屬表面修飾基氣敏材料在低溫環(huán)境中表現(xiàn)出了良好的氣敏特性,其對表面吸附的氧化性和還原性氣體都具有較高的靈敏度,被認(rèn)為是檢測[22]、[23]、[24]等可燃?xì)怏w和[25]等還原性氣體最具發(fā)展性的復(fù)合氣敏材料之一. 同時(shí),三維納米材料的出現(xiàn)使得新型納米結(jié)構(gòu)的性能超越了傳統(tǒng)一維、二維結(jié)構(gòu),材料的比表面積的增加使氣體傳感性能得到明顯的提升[26-27]. 本文用熱氧化法制備了具有高比表面積的納米花薄膜,然后利用磁控濺射法在納米花表面上濺射一層Pt納米顆粒催化劑,并通過SEM、XRD對納米花薄膜的結(jié)構(gòu)、表面形貌進(jìn)行表征. 其次,測試了Pt表面修飾納米花薄膜的酒精氣體傳感性能,通過電阻變化率與酒精氣體質(zhì)量濃度特性曲線[28-29]研究該薄膜在工作溫度為時(shí)對酒精氣體的傳感特性. 最后提出了酒精氣體與Pt表面修飾納米花薄膜的反應(yīng)機(jī)理模型.
圖1-b所示是酒精氣體傳感器測試平臺,該平臺包括:測試電路、密閉空腔、控溫片、加熱片、滴管、風(fēng)扇. 測試中使用靜態(tài)配氣法,在條件下進(jìn)行. 酒精傳感器接入測試電路后,固定在密閉空腔內(nèi),小風(fēng)扇使通入的酒精氣體均勻分布在密閉空腔內(nèi). 在酒精氣體傳感器背面貼上控溫片,用以穩(wěn)定酒精傳感器的工作溫度. 測試時(shí),首先關(guān)閉密閉空腔的腔口,調(diào)試可變電阻使酒精傳感器兩端的電壓值為,調(diào)試控溫片使酒精氣體傳感器的工作溫度為,然后往加熱片滴入一定量的無水乙醇(分析純99.9%),無水乙醇迅速揮發(fā),并在風(fēng)扇的作用下均勻分布在密閉空腔內(nèi),形成一定濃度的酒精氣體. 靜置一段時(shí)間后酒精氣體傳感器與酒精氣體充分反應(yīng),使酒精氣體傳感器的電阻值發(fā)生變化. 最后,打開密閉空腔的腔口,使酒精氣體擴(kuò)散到密閉空腔外,酒精氣體傳感器的電阻值恢復(fù). 當(dāng)通入不同質(zhì)量濃度的酒精氣體后或者把酒精氣體釋放時(shí),Pt摻雜納米花薄膜酒精氣體傳感器的電阻將會改變,從而導(dǎo)致該傳感器兩端的電壓發(fā)生變化,而這種電壓的變化數(shù)據(jù)通過固定在樣品表面的Victor 86E多功能萬用表記錄并輸出至電腦.
a.酒精氣體傳感器的制備流程示意圖 b.酒精氣體傳感器測試平臺
2.1 材料表征
分別采用Nova Nano SEM432型場發(fā)射掃描電子顯微鏡、X射線衍射儀(XRD,XPert’Pro))表征上述制品的微觀形貌特征和晶體結(jié)構(gòu).
圖2 氧化鎢納米花薄膜的表征
2.2 氣敏特性測試
把圖3-c按文獻(xiàn)[28-29]數(shù)據(jù)處理方式轉(zhuǎn)換為圖4所示的溫度為時(shí)酒精氣體傳感器電阻變化率—質(zhì)量濃度特性曲線. 從圖4-a可以看出:隨著酒精質(zhì)量濃度的增加,電阻逐漸下降;其電阻變化率在的酒精氣體中為1%,響應(yīng)時(shí)間約為. 如圖4-b所示:在低濃度區(qū)間和高濃度區(qū)間,電阻變化率與酒精氣體質(zhì)量濃度成線性關(guān)系. 可見該酒精氣體傳感器在較低溫度下已具備較為良好的酒精氣體傳感性能,而這種特性可能是由納米花薄膜較大的比表面積和Pt納米顆粒對還原性氣體較強(qiáng)的催化作用所致. Pt具有較空的d電子軌道,其表面易吸附反應(yīng)物質(zhì),可產(chǎn)生活性中心,具有較高的催化活性[30]. 另外,在大于下測試酒精氣體傳感器時(shí),酒精氣體傳感器容易失效,這可能是由于乙醇分子吸附在Pt催化劑的活性中心上,覆蓋了Pt表面,從而減少了活性中心的數(shù)目.
a.不同質(zhì)量濃度酒精氣體傳感器的電阻變化率隨時(shí)間的變化曲線 b.電阻變化率—質(zhì)量濃度特性曲線
圖5 通入酒精氣體、氧氣時(shí)納米花接觸結(jié)的表面能量勢壘機(jī)理模型
需要特別指出的是,本文中的酒精氣體傳感機(jī)制與我們前期工作中關(guān)于Pt修飾一維納米線的反應(yīng)機(jī)理有所不同,主要表現(xiàn)在Pt表面修飾一維納米線和氫氣的反應(yīng)中,Pt催化氫氣脫氫產(chǎn)生的濃度較大,所產(chǎn)生的H+發(fā)生了下面兩種轉(zhuǎn)移過程:一方面,一部分和表面的反應(yīng)生成水分子并從薄膜中釋放出來;另一方面,一部分注入到晶格內(nèi)并與晶格中的氧原子形成結(jié)構(gòu)水分子[30],該結(jié)構(gòu)水分子在熱擾動或者光照情況下容易脫落原來的位置,導(dǎo)致氧空位的出現(xiàn),注入的電子填充到由于氧空位的出現(xiàn)引起的導(dǎo)帶底局域態(tài)中,從而引起W價(jià)態(tài)從+6變成+5,因此可以觀察到氣致變色現(xiàn)象. 但是,本實(shí)驗(yàn)中Pt表面修飾納米花薄膜在高濃度酒精氣體環(huán)境下并沒有觀察到氣致變色現(xiàn)象,可能是由于Pt催化乙醇脫氫產(chǎn)生的濃度較小,只在表面和反應(yīng)形成水分子,并沒有注入到晶體內(nèi).
[1] 賀再清,吳天杰,李蓓,等. 酒后呼出氣體酒精含量的動態(tài)測量[J]. 職業(yè)與健康,2014, 30(3): 311-317.
[2] 重慶市公安局交通管理局. 車輛駕駛?cè)搜?、呼氣酒精含量閾值與檢驗(yàn):GB19522—2010 [S]. 北京:中國國家標(biāo)準(zhǔn)化管理委員會,2011.
[3] DUFFIELD A M, DUFFIELD P H, BIRKETT D J, et al. Plasma quantitation of warfarin and warfarin alcohol by gas chromatography chemical ionization mass spectrometry in patients on warfarin maintenance therapy [J]. Journal of Mass Spectrometry, 1979, 6(5): 208-211.
[4] WAN Qing, LI Qian, CHEN Yujing, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl Phys Lett, 2004, 84(18): 3654-3656.
[5] KIM D, CHO B, LEE S H, et al. Application of fourier transform-mid infrared reflectance spectroscopy for monitoring Korean traditional rice wine ‘Makgeolli’ fermentation [J]. Sens Actuators B, 2016, 230: 753-760.
[6] ANTHON G E, BARRETT D M. Comparison of three colorimetric reagents in the determination of methanol with alcohol oxidase: Application to the assay of pectin methylesterase [J]. J Agr Food Chem, 2004, 52(3): 3749-3753.
[7] CHAISITSAK S. Nanocrystalline: F thin films for liquid petroleum gas sensors [J]. Sensors, 2011, 11(7): 7127-7140.
[8] 董立峰,崔作林. 電弧等離子體制備納米ZnO的氣敏特性[J]. 材料研究學(xué)報(bào),1998,12(4): 407-410.
[9] SICILIANO T, TEPORE A, MICOCCI G, et al.gas sensors prepared by thermal oxidization of tungsten [J]. Sens Actuators B, 2008, 133(1): 321-326.
[10] BUTTNER W J, POST M, BURGESS R, et al. An overview of hydrogen safety sensors and requirements [J]. Int J Hydrogen Energy, 2011, 36(3): 2462-2470.
[11] AROUTIOUNIAN V M. Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells [J]. Int J Hydrogen Energy, 2007, 32(9): 1145-1158.
[12] YANG Zunxian, HUANG Yun, CHEN Guonan, et al. Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels [J]. Sens Actuators B, 2009, 140(2): 549-556.
[13] ZENG Wen, LIU Tianmo, WANG Zhongchang, et al. Selective detection of formaldehyde gas using a Cd-dopedsensor [J]. Sensors, 2009, 9(11): 9029-9038.
[14] AN Dongmin, LI Yan, LIAN Xiaoxue, et al. Synthesis of porous ZnO structure for gas sensor and photocatalytic applications [J]. Colloids Surf A Physicochem Eng Asp, 2014, 447(5): 81-87.
[15] LIU Jianwei, JING Zheng, WANG Jinlong, et al. Ultrathinnanowire assemblies for electrochromic devices [J]. Nano Lett, 2013, 13(8): 3589-3593.
[16] ZHENG Haidong, OU Jianzhen, MICHAEL S S, et al. Nanostructured tungsten oxides properties, synthesis, and applications [J]. Adv Funct Mat, 2011, 21(12): 2175-2196.
[17] DEB S K. Opportunities and challenges in science and technology offor electrochromic and related applications [J]. Sol Energy Mat Sol Cells, 2008, 92(2): 245-258.
[18] ZHAO Zhigang, MASAHIRO M. Nanoporous-walled tungsten oxide nanotubes as highly active visible- light-driven photocatalysts [J]. Angew Chem, 2008, 47(37): 7051-7055.
[19] TIAN Yuyu, CONG Shan, SU Wenming, et al. Synergy ofand polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality [J]. Nano Lett, 2014, 14(4): 2150-2156.
[20] TIAN Yuyu, ZHANG Weikun, CONG Shan, et al. Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism [J]. Adv Funct Mater, 2015, 25(36): 5833-5839.
[21]ZHAO Changzhao, DENG Shaozhi, XU Ningsheng, et al. Correlation between surface chemistry, gasochromism and field emission properties of tungsten oxide nanowire thin films when exposed to atomic oxygen [J]. RSC Adv, 2015, 5(86): 70059-70063.
[22] YAACOB M H, BREEDON M, KALANTARZADEH K, et al. Absorption spectral response of nanotexturedthin films with Pt catalyst towards[J]. Sens Actuators B, 2009, 137(1): 115-120.
[23] WANG Yinglin, LIU Jie, CUI Xiaoyong, et al.gas sensing performance enhanced by Pt-loaded on mesoporous[J]. Sens Actuators B, 2017, 238: 473-481.
[24] SHEN Yanbai, ZHANG Baoqing, CAO Xianmin, et al. Microstructure and enhancedsensing properties ofPt-loadedthin films [J]. Sens Actuators B, 2014, 193: 273-279.
[25] PENZA M, TAGLIENTE M A, MIRENGHI L, et al. Tungsten trioxidesputtered thin films for agas sensor [J]. Sensors and Actuators B-chemical, 1998, 50(1): 9-18.
[26] PONZON A, COMINI E, SBERVEGLIERI G, et al. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks [J]. Appl Phys Lett, 2006, 88(20): 203101-1-203101-3.
[27] LUO Jianyi, CHEN Feng, CAO Zhi, et al. Complex three-dimensional tungsten oxide nanowire networks: controllable synthesis and growth mechanism [J]. Cryst Eng Comm, 2014, 17(4): 889-894.
[28] ZHU Lianfeng, JIA Yi, GAI Guosheng, et al. Ambipolarity of large-area Pt-functionalized graphene observed insensing [J]. Sens Actuators B, 2014, 190: 134-140.
[29] HUBERT T, BOONBRETT L, BLACK G D, et al. Hydrogen sensors-a review [J]. Sens Actuators B, 2011, 157(2): 329-352.
[30] LUO Jianyi, CHEN Xuexian, LI Weida, et al. Variable-temperature Raman spectroscopic study of the hydrogen sensing mechanism in Pt-nanowire film [J]. Appl Phys Lett, 2013, 102(11): 113104-1- 113104-5.
[責(zé)任編輯:熊玉濤]
A Study of the Sensing Property of Pt-coatedNanoflowers for Alcohol Gas
LIYu-dong, LUOJian-yi, MOXi-wei, ZHANGYuan-yuan, ZENGQing-guang, HEJia-jian
(School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China)
Most semiconductor alcohol gas sensors must operate at a high temperature to achieve high sensitivity, resulting in security risks during the operation of an alcohol gas sensor, which was detrimental to industrialization of production and large-scale application. To solve the problem, ananoflowers film with a high specific surface area was prepared by a thermal oxidation method in this study. Then the Pt nanoparticles were uniformly sputtered on the surfaces of the nanoflowers to form a Pt-coatednanoflowers film. A simple test platform was built to test the sensing property of the alcohol gas sensor based on Pt-coatednanoflower film, and its gas sensing reaction mode were discussed. The experimental result indicated that the alcohol gas sensor was able to detect the breath alcohol concentration in air from 20 to 500 mg/L at relative low temperature (), and the lower limit of the detection range can satisfy the breath alcohol concentration standards of drunk-driving. These features can also effectively compensate for the deficiency of semiconductor alcohol gas sensors and avoid a variety of security risks.
alcohol gas sensor;nanoflowers film; Pt-coated; gas sensing
1006-7302(2017)03-0031-08
TP212.2
A
2017-03-14
廣東省自然科學(xué)杰出青年基金資助項(xiàng)目(2015A030306031);國家自然科學(xué)基金資助項(xiàng)目(51402218);廣東省自然科學(xué)基金資助項(xiàng)目(2014A030313622);廣東高校創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目(2015KCXTD025);廣東高校優(yōu)秀青年教師培養(yǎng)計(jì)劃項(xiàng)目(YQ2015160);五邑大學(xué)青年科研基金資助項(xiàng)目(2013zk05,2014td01);2016年廣東大學(xué)生科技創(chuàng)新培育專項(xiàng)資金立項(xiàng)項(xiàng)目(pdjh2016b0514)
李宇東(1991—),男,廣東江門人,在讀碩士生,研究方向?yàn)榧{米材料;羅堅(jiān)義,副教授,博士,碩士生導(dǎo)師,通信作者,研究方向?yàn)楣怆姴牧?