李帥,蔣西子,梁偉芳,陳思涵,張享享,左登攀,胡亞會(huì),江彤
(安徽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,合肥 230036)
植物保護(hù)
利用酵母雙雜交系統(tǒng)篩選與草莓鑲脈病毒P6蛋白互作的森林草莓寄主因子
李帥,蔣西子,梁偉芳,陳思涵,張享享,左登攀,胡亞會(huì),江彤
(安徽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,合肥 230036)
【目的】草莓鑲脈病毒(Strawberry vein banding virus,SVBV)是侵染草莓的主要病毒,但其侵染草莓的機(jī)制尚不清楚。論文以SVBV的P6蛋白為誘餌篩選森林草莓(Fragaria vesca)cDNA文庫(kù)的寄主因子,為解析SVBV侵染草莓的分子機(jī)制提供理論依據(jù)。【方法】SVBV接種森林草莓,提取出現(xiàn)明顯癥狀葉片的總RNA,DnaseI處理后,用SMART法反轉(zhuǎn)錄合成ds cDNA,均一化處理cDNA并酶切純化,將<400 bp的短片段去除,其余片段連接到pGAD-T7質(zhì)粒載體上,構(gòu)建森林草莓初級(jí)cDNA文庫(kù)。同時(shí)將SVBV P6構(gòu)建到酵母雙雜交誘餌載體pGBK-T7上,再將pGBK-P6和pGBK-T7分別轉(zhuǎn)化酵母菌株AH109,陽(yáng)性酵母菌株接種SD/-Trp液體培養(yǎng)基,鑒定誘餌載體對(duì)酵母細(xì)胞的毒性。將轉(zhuǎn)化pGBK-P6的酵母菌分別涂布SD/-Trp、SD/-Leu-Trp和SD/-His-Trp平板,測(cè)定菌落生長(zhǎng)情況,分析P6蛋白對(duì)酵母報(bào)告基因的自激活活性。然后用森林草莓初級(jí)cDNA文庫(kù)質(zhì)粒轉(zhuǎn)化含有誘餌載體pGBK-P6的AH109酵母菌株,共轉(zhuǎn)化子依次涂布SD/-Leu-Trp、SD/-Leu-Trp-His和SD/-Trp-Leu-His-Ade/X-α-Gal平板,最終篩選藍(lán)色且長(zhǎng)勢(shì)較好的陽(yáng)性菌落,提取酵母質(zhì)粒并測(cè)序,GenBank中初步比對(duì)候選基因,利用Uniprot在線網(wǎng)站的gene ontology(GO)通路注釋互作蛋白因子,分析互作蛋白的生物學(xué)功能。【結(jié)果】3種cDNA文庫(kù)平均庫(kù)容超過(guò)2.0×106cfu,平均文庫(kù)重組率為97%,文庫(kù)插入片段平均擴(kuò)增長(zhǎng)度>1 kb,表明森林草莓cDNA文庫(kù)符合試驗(yàn)標(biāo)準(zhǔn)。最終利用SD/-Trp-Leu-His-Ade/X-α-Gal培養(yǎng)基篩選得到230個(gè)酵母陽(yáng)性克隆,經(jīng)過(guò)序列相似性比對(duì),除去重復(fù)序列、載體序列和移碼序列,共篩得15個(gè)與SVBV P6互作的寄主因子。GO通路注釋結(jié)果表明這些寄主因子參與了13種生物過(guò)程,包括泛素化、轉(zhuǎn)錄因子調(diào)節(jié)、防御反應(yīng)、代謝過(guò)程、氧化還原和胞內(nèi)氨基酸代謝等過(guò)程;這15個(gè)寄主因子的分子功能多樣,包括乙酰轉(zhuǎn)移酶活性、萜烯合酶活性、脫氫酶活性、金屬離子結(jié)合活性、蛋白激酶活性和水解酶活性等?!窘Y(jié)論】成功構(gòu)建了森林草莓酵母cDNA文庫(kù),篩選出15個(gè)與SVBV P6互作的森林草莓寄主因子,為進(jìn)一步探明SVBV與森林草莓互作的分子機(jī)理提供了理論依據(jù)。
草莓鑲脈病毒;森林草莓;cDNA文庫(kù);酵母雙雜交;篩選;寄主因子
Abstract:【Objective】Strawberry vein banding virus (SVBV) is a main virus infecting woodland strawberry (Fragaria vesca),but the SVBV infection mechanisms on woodland strawberry remains unknown. The objective of this study is to provide a theoretical basis for studying the SVBV infection mechanisms on woodland strawberry, SVBV P6 was used as a bait protein toscreen the host factors from the cDNA library of woodland strawberry. 【Method】 Woodland strawberries were inoculated with SVBV, and total RNA was extracted from the leaves showed obvious disease symptoms. The total RNA was treated with DnaseI and double-stranded cDNA was synthesized using SMART technology. cDNA was treated with homogenization and enzymatic digestion,and the short fragments with length less than 400 bp were removed. Then the other cDNA fragments were ligated to plasmid vector pGAD-T7 to construct the primary cDNA library of woodland strawberry. Simultaneously, SVBV P6 was ligated into the yeast two-hybrid bait vector pGBK-T7, and the plasmids of pGBK-P6 and pGBK-T7 were transformed into AH109, respectively. The positive yeast clones were grown in the SD/-Trp liquid medium for identifying the toxicity of pGBK-P6 on the yeast AH109. The yeast transformed with pGBK-P6 was grown on the plate of SD/-Trp, SD/-Leu-Trp and SD/-His-Trp medium, respectively, and then the growth situation of the yeast was tested and the self-activating effect of pGBK-P6 on the reporter gene of yeast was analyzed.Then the AH109 containing bait vector pGBK-P6 was transformed with the primary cDNA library of woodland strawberry, the co-transformed yeasts were coated on the plate of SD/-Leu-Trp, SD/-Leu-Trp-His and SD/-Trp-Leu-His-Ade/X-α-Gal medium in turn. Finally, the blue and well grown positive clones were selected. The plasmids of positive yeast clones were extracted and sequenced. The candidate genes were preliminarily compared in the GenBank, and the interacted protein factors were annotated and the protein’s biological functions were analyzed with gene ontology (GO) pathway of Uniprot online websites. 【Result】 Three libraries with the average capacity more than 2.0×106cfu were constructed, and the average library recombination rate was 97% and the average amplification sizes of inserts fragment of cDNA library were above 1 kb. It demonstrated that the cDNA library of woodland strawberry measured up to the experiment standard. The 230 positive clones were finally selected by using the SD/-Trp-Leu-His-Ade/X-α-Gal medium. After sequence similarity comparison, removing the repetitive sequences, the vector sequences and the frameshift sequences, the 15 host factors interacted with SVBV P6 were screened. GO pathway annotation showed that the 15 host factors were involved in 13 biological processes, including protein ubiquitination, regulation of transcription factor process, defense response, protein catabolic process, oxidation-reduction process and cellular amino acid metabolic process, etc.Moreover, molecular functions of the 15 host factors are mutiple, including acetyltransferase activity, terpene synthase activity,dehydrogenase activity, metalion binding activity, protease activity and hydrolase activity, etc.【Conclusion】The cDNA library of woodland strawberry was constructed successfully, and 15 host factors of woodland strawberry interacted with SVBV P6 were preliminarily screened. This work can provide a theoretical basis for further exploring the molecular interaction mechanism between SVBV and woodland strawberry.
Key words:Strawberry vein banding virus; woodland strawberry; cDNA library; yeast two-hybrid; screen; host factors
【研究意義】草莓鑲脈病毒(Strawberry vein banding virus,SVBV)是侵染草莓的主要病毒之一,在美洲、歐洲、澳大利亞和日本等多個(gè)國(guó)家和地區(qū)廣泛分布[1-2],中國(guó)河南、河北、吉林和浙江等省也均有報(bào)道,給草莓生產(chǎn)造成嚴(yán)重?fù)p失[3]。自然條件下,SVBV主要借助蚜蟲(chóng)以半持久性方式傳染[4]。SVBV侵染森林草莓(Fragaria vesca)表現(xiàn)出沿著葉脈黃化、小葉扭曲等癥狀[5];侵染栽培草莓可造成植株生長(zhǎng)衰弱,匍匐莖數(shù)量減少,果實(shí)偏小,產(chǎn)量和品質(zhì)大幅度降低[6]。實(shí)驗(yàn)室前期研究發(fā)現(xiàn)SVBV編碼的P6蛋白是一個(gè)多功能蛋白,既是病毒 RNA沉默抑制子,又是癥狀決定子,在病毒侵染寄主和致病過(guò)程中起到重要的作用。明確與SVBV P6蛋白互作的寄主因子,對(duì)探明病毒致病機(jī)理、解析寄主如何抵御病毒侵染均具有重要意義?!厩叭搜芯窟M(jìn)展】SVBV為花椰菜花葉病毒科(Caulimovidae)花椰菜花葉病毒屬(Caulimovirus)的重要成員[7],是一種大小為45—50 nm的環(huán)狀ds DNA病毒。PETRZIK等[8]于20世紀(jì)90年代完成了第一個(gè)SVBV美國(guó)分離物全基因組序列測(cè)定,SVBV核苷酸序列全長(zhǎng)7 876 nt,基因組結(jié)構(gòu)與同屬的花椰菜花葉病毒(Cauliflower mosaic virus,CaMV)的結(jié)構(gòu)相似,包含7個(gè)開(kāi)放閱讀框(open reading frame,ORF)[9]。有關(guān)SVBV各個(gè)ORF的功能研究目前在全世界范圍內(nèi)均未見(jiàn)報(bào)道,只能根據(jù)CaMV相應(yīng)ORF功能進(jìn)行推測(cè)。在線預(yù)測(cè)SVBV保守功能域,ORF I可能編碼移動(dòng)蛋白(movement protein,MP);ORF II編碼一個(gè)與蚜蟲(chóng)傳染有關(guān)的蛋白;ORF III可能編碼一個(gè)非序列?;缘?DNA結(jié)合蛋白;ORF IV編碼病毒的外殼蛋白(coat protein,CP);ORF V編碼逆轉(zhuǎn)錄酶蛋白;ORF VI編碼一個(gè)多功能蛋白;ORF VII編碼蛋白的功能尚不明確[10-11]。CaMV ORF VI編碼的P6蛋白功能多樣,相關(guān)研究較深入。CaMV P6蛋白是一個(gè)反式激活因子,能夠與翻譯起始因子eIF3以及60S核糖體的L18和L24蛋白亞基互作,調(diào)控35S RNA下游蛋白的翻譯[12];P6蛋白是病毒內(nèi)含體的主要組分,也是一個(gè) RNA沉默抑制子,決定癥狀類(lèi)型和癥狀嚴(yán)重度以及寄主范圍[13];P6蛋白還能調(diào)控寄主植物多個(gè)基因mRNA的表達(dá)量[14]。而關(guān)于SVBV P6蛋白的功能研究至今尚未見(jiàn)報(bào)道。近年來(lái),酵母雙雜交系統(tǒng)(yeast two-hybrid system,Y2H)廣泛應(yīng)用于病毒蛋白與寄主因子互作研究,Y2H應(yīng)用于病毒核酸復(fù)制及病毒基因表達(dá)調(diào)控、病毒介體傳播的分子機(jī)制、病毒致病機(jī)制等方面的研究已見(jiàn)報(bào)道[15]。構(gòu)建感病寄主酵母cDNA文庫(kù),再用誘餌載體篩選出與病毒蛋白互作的寄主因子,可為進(jìn)一步研究互作蛋白的功能提供理論依據(jù)。何乙坤等[16]利用 Y2H技術(shù)篩選出蘋(píng)果褪綠葉斑病毒(Apple chlorotic leaf spot virus,ACLSV)CP可以與光系統(tǒng) II(PSII)的裝配因子蛋白互作,推測(cè)ACLSV影響植物光系統(tǒng)的穩(wěn)定性及葉綠素的形成,導(dǎo)致蘋(píng)果樹(shù)產(chǎn)生褪綠癥狀;樓望淮等[17]篩選到與菊花 B病毒(Chrysanthemum virus B,CVB)CP蛋白互作的E3泛素連接酶ARIADNE-like蛋白和ATP結(jié)合蛋白,推測(cè)CP可能參與泛素-蛋白酶體降解途徑(UPP),并在病毒的侵染過(guò)程中起關(guān)鍵作用;趙藝澤等[18]構(gòu)建了異沙葉蟬(Psammotettix alienus)cDNA文庫(kù),篩選得到9個(gè)與小麥矮縮病毒(Wheat dwarf virus,WDV)CP蛋白互作的寄主因子,這些寄主因子參與介體體內(nèi)多條重要的代謝通路,可能與病毒突破昆蟲(chóng)介體中腸屏障,進(jìn)入血淋巴循環(huán)有重要關(guān)系,為進(jìn)一步深入研究病毒與昆蟲(chóng)介體的相互作用打下了基礎(chǔ);肖冬來(lái)等[19]利用水稻酵母文庫(kù)篩選出了與水稻黑條矮縮病毒(Rice black-streaked dwarf virus,RBSDV)P6蛋白互作的水稻代謝途徑關(guān)鍵酶 tAPX、IM和 A1EP,推測(cè) P6可能參與水稻的相關(guān)代謝途徑?!颈狙芯壳腥朦c(diǎn)】研究病毒致病因子與寄主因子的互作關(guān)系,對(duì)探明病毒致病機(jī)理、解析寄主如何抵御病毒侵染十分重要,這也是當(dāng)前植物病毒學(xué)研究的熱點(diǎn)問(wèn)題。目前運(yùn)用酵母雙雜交體系研究病毒蛋白與寄主因子互作的方法已經(jīng)很成熟,筆者實(shí)驗(yàn)室已證明SVBV ORF VI基因編碼的P6蛋白是一個(gè)致病因子,能夠抑制GFP局部沉默和系統(tǒng)沉默,加重寄主的癥狀表型,與病毒的致病性密切相關(guān)。而關(guān)于SVBV 致病因子P6蛋白與寄主因子互作機(jī)理尚未見(jiàn)報(bào)道。因此,發(fā)現(xiàn)與P6蛋白互作的寄主因子是探明 SVBV致病機(jī)理的關(guān)鍵。【擬解決的關(guān)鍵問(wèn)題】構(gòu)建森林草莓葉片酵母cDNA文庫(kù),以SVBV P6為誘餌蛋白,篩選出與P6互作的寄主因子。再進(jìn)一步研究寄主因子的生物學(xué)功能,為探明SVBV致病特征,明晰病毒與寄主的互作機(jī)理提供依據(jù)。
試驗(yàn)于 2015—2016年在安徽農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院植物病毒實(shí)驗(yàn)室完成。
森林草莓種植于溫室大棚,感病草莓cDNA文庫(kù)由寶生物工程(大連)有限公司構(gòu)建;SVBV-T simple-P6質(zhì)粒和SVBV侵染性克隆pBIN-1.25SVBVUS由筆者實(shí)驗(yàn)室保存,酵母菌株AH109,pGAD-T7和pGBK-T7等質(zhì)粒購(gòu)自Clontech公司;酵母質(zhì)粒小提試劑盒、大腸桿菌DH5α感受態(tài)細(xì)胞購(gòu)自北京康為世紀(jì)公司;Primer STAR GXL DNA聚合酶、pMD18-T simple載體、T4-DNA連接酶、Nde I、Sal I限制性內(nèi)切酶和瓊脂糖凝膠回收試劑盒等購(gòu)自寶生物工程(大連)有限公司;引物合成與序列測(cè)序由上海生工生物股份有限公司完成。
1.2.1 森林草莓的接種及 cDNA文庫(kù)的構(gòu)建 利用SVBV全長(zhǎng)基因組侵染性克隆pBIN-1.25SVBV-US接種森林草莓,8周后系統(tǒng)葉表現(xiàn)出沿葉脈黃化癥狀,SDS法提取草莓顯癥葉片總RNA,具體步驟詳見(jiàn)說(shuō)明書(shū),使用1%瓊脂糖凝膠電泳檢測(cè)RNA的完整性,將RNA樣本送寶生物工程(大連)有限公司構(gòu)建森林草莓cDNA文庫(kù)。
1.2.2 P6擴(kuò)增和誘餌載體 pGBK-P6的構(gòu)建 設(shè)計(jì)SVBV P6特異性引物 P6-Nde I-F/P6-Sal I-R,以SVBV-P6-T simple質(zhì)粒為模板擴(kuò)增P6,膠回收純化P6基因片段,連接pMD18-T simple載體,轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,涂布于氨芐青霉素抗性LB平板,菌落PCR篩選陽(yáng)性克隆,提取質(zhì)粒命名為 pMD-P6。用Nde I和Sal I酶雙酶切重組質(zhì)粒pMD-P6,將P6插入pGBK-T7,篩選陽(yáng)性克隆,命名為pGBK-P6。
1.2.3 誘餌載體 pGBK-P6毒性及自激活檢測(cè) 醋酸鋰法制備酵母菌AH109感受態(tài)細(xì)胞,分別轉(zhuǎn)化誘餌載體pGBK-P6和空載體pGBK-T7。涂布SD/-Trp培養(yǎng)基,30℃倒置培養(yǎng)3—5 d,挑取單菌落并篩選陽(yáng)性克隆,鑒定誘餌載體pGBK-P6是否成功轉(zhuǎn)化至AH109。
含有pGBK-P6和空載體pGBK-T7的酵母菌分別接種于 50 mL SD/-Trp(20 μg·mL-1)液體培養(yǎng)基中,30℃ 250 r/min 振蕩培養(yǎng)24 h,檢測(cè)菌液的OD600,鑒定誘餌載體對(duì)細(xì)胞的毒性;將含有pGBK-P6重組質(zhì)粒的酵母菌株AH109分別涂布SD/-Trp、SD/-Trp-His和SD/-Trp-Ade平板,30℃倒置培養(yǎng)3—5 d,觀察平板菌落生長(zhǎng)情況,分析pGBK-P6對(duì)酵母細(xì)胞的自激活活性。
1.2.4 cDNA文庫(kù)質(zhì)粒轉(zhuǎn)化攜帶 pGBK-P6的酵母菌醋酸鋰法制備含有pGBK-P6的酵母菌AH109感受態(tài)細(xì)胞,再將插入森林草莓cDNA片段的pGAD-T7文庫(kù)質(zhì)粒轉(zhuǎn)化到 AH109感受態(tài)細(xì)胞,轉(zhuǎn)化產(chǎn)物涂布于SD/-Trp-Leu固體培養(yǎng)板,30℃倒置培養(yǎng)3—5 d;無(wú)菌水收集 SD/-Trp-Leu上的酵母菌落,再涂布于SD/-His-Leu-Trp固體培養(yǎng)基,30℃倒置培養(yǎng) 3—5 d后;挑取SD/-His-Leu-Trp固體培養(yǎng)基上長(zhǎng)勢(shì)良好的酵母單菌落,轉(zhuǎn)移到SD/-Trp-Leu-His-Ade/X-α-Gal固體培養(yǎng)基,30℃倒置培養(yǎng)。
1.2.5 cDNA文庫(kù)陽(yáng)性克隆的鑒定 挑取 SD/-Trp-Leu-His-Ade/X-α-Gal上顯藍(lán)色的酵母單菌落,接種于5.0 mL SD/-Leu(20 μg·mL-1)液體培養(yǎng)基,30℃,250 r/min振蕩擴(kuò)繁1—2 d后,提取酵母質(zhì)粒。
1.2.6 陽(yáng)性克隆的序列分析與生物信息學(xué)分析 通用引物(T7-Promoter:5′-CTATTCGATGATGAAGAT ACCCCACCAAACCC-3′;3′ AD:5′-GTGAACTTGCG GGGTTTTTCAGTATCTACGATT-3′)PCR 擴(kuò)增酵母質(zhì)粒中的插入片段,選擇插入片段>400 bp的酵母質(zhì)粒,轉(zhuǎn)化大腸桿菌DH5α,送上海生工生物公司測(cè)序,利用GenBank網(wǎng)站(http://blast.ncbi.nlm.nih.gov/Blast.Cgi)分析插入片段所屬基因,再用Uniprot在線網(wǎng)站GO通路注釋(http://www.uniprot.org/)該基因編碼的蛋白因子。
提取感病森林草莓總RNA,瓊脂糖凝膠電泳檢測(cè)發(fā)現(xiàn),5.8S、18S和28S條帶清晰,完整性好(圖1)。NanoDrop檢測(cè) RNA OD260/OD280=1.97,OD260/OD230=2.19,RNA濃度為2 086.4 ng·μL-1,說(shuō)明RNA質(zhì)量較好,可以用于文庫(kù)構(gòu)建。森林草莓 cDNA文庫(kù)報(bào)告結(jié)果顯示,3個(gè)讀碼框初級(jí)文庫(kù)庫(kù)容分別為 1.5×106、2.5×106和2.0×106cfu,文庫(kù)重組率為97%,均一化處理ds cDNA并酶切純化,顯示合成的ds cDNA呈彌散狀分布,其片段大小分布范圍為0.5—3.0 kb(圖2)。文庫(kù)質(zhì)粒轉(zhuǎn)入大腸桿菌DH5α,隨機(jī)挑取16個(gè)克隆,PCR擴(kuò)增插入片段,平均長(zhǎng)度>1 kb(圖3)。
圖1 SVBV侵染的森林草莓總RNA瓊脂糖凝膠電泳Fig. 1 Agarose gel electrophoresis of RNA of woodland strawberry infected with SVBV
圖2 森林草莓ds cDNA純化后的電泳圖Fig. 2 Electrophoresis of purified ds cDNA of woodland strawberry
以 SVBV-P6-simple模板,用引物 P6-NdeI-F、P6-SalI-R進(jìn)行PCR擴(kuò)增,可擴(kuò)增出1條約為1 600 bp的特異性條帶,片段大小與預(yù)期結(jié)果相符。將此特異性條帶克隆并測(cè)序,證明插入pMD19-T simple的P6沒(méi)有發(fā)生變異。再將P6克隆到酵母載體pGBK-T7上,PCR篩選pGBK-P6陽(yáng)性克隆,Nde I和Sal I雙酶切驗(yàn)證pGBK-P6質(zhì)粒,片段大小和理論值完全相符(圖4),第2次測(cè)序進(jìn)一步驗(yàn)證P6基因序列未發(fā)生突變,說(shuō)明插入的P6讀碼框正確。pGBK-P6質(zhì)粒轉(zhuǎn)化酵母菌株AH109,提取酵母質(zhì)粒,PCR擴(kuò)增得到大小約1 600 bp的特異性條帶(圖5),證明pGBK-P6質(zhì)粒已成功轉(zhuǎn)化到酵母菌株AH109。
圖 3 cDNA文庫(kù)插入片段的PCR鑒定Fig. 3 PCR identification of inserts in the cDNA library
圖4 pGBK-P6重組質(zhì)粒酶切電泳圖譜Fig. 4 Electrophoresis patterns of recombinant plasmid pGBK-P6 digested with restriction endonuclease enzymes
圖5 重組質(zhì)粒pGBK-P6轉(zhuǎn)化酵母菌陽(yáng)性克隆的PCR鑒定Fig. 5 Positive clone verification of recombinant plasmid pGBK-P6 expression in yeast by PCR
pGBK-P6和pGBK-T7質(zhì)粒分別轉(zhuǎn)化AH109感受態(tài)細(xì)胞,2組轉(zhuǎn)化菌在SD/-Trp培養(yǎng)基上均生長(zhǎng)良好,菌落無(wú)明顯差異(圖6);2組轉(zhuǎn)化菌在SD/-Trp(20 μg·mL-1)液體培養(yǎng)基培養(yǎng) 24 h 后,菌液 OD600均>0.8,說(shuō)明 pGBK-P6載體對(duì)酵母細(xì)胞沒(méi)有毒性。將含有pGBK-P6的酵母菌分別涂布于SD/-Trp、SD/-Trp-His和SD/-Trp-Ade培養(yǎng)基,發(fā)現(xiàn)酵母菌能在SD/-Trp培養(yǎng)基上生長(zhǎng),而不能在 SD/-Trp-His和 SD/-Trp-Ade培養(yǎng)基上生長(zhǎng),說(shuō)明pGBK-P6不能激活報(bào)告基因His及Ade的表達(dá),沒(méi)有自激活活性(圖7),可進(jìn)行下游篩庫(kù)試驗(yàn)。
將森林草莓cDNA文庫(kù)質(zhì)粒轉(zhuǎn)化到含有pGBK-P6誘餌載體的酵母菌AH109感受態(tài)細(xì)胞中,轉(zhuǎn)化產(chǎn)物經(jīng)SD/-Trp-Leu、SD/-His-Leu-Trp和 SD/-Trp-Leu-His-Ade/X-α-Gal固體培養(yǎng)基順次篩選后,最終在SD/-Trp-Leu-His-Ade/X-α-Gal培養(yǎng)基篩選到230個(gè)生長(zhǎng)狀況良好且顯藍(lán)色的菌落(圖8)。
擴(kuò)繁230個(gè)顯藍(lán)色菌落的菌株,分別提取質(zhì)粒,轉(zhuǎn)化大腸桿菌 DH5α,PCR篩選陽(yáng)性菌株,其中 180個(gè)菌株呈陽(yáng)性,可擴(kuò)增出約1 kb的特異性片段。測(cè)序并進(jìn)行序列比對(duì),除去重復(fù)序列、載體序列和移碼序列,最終獲得174個(gè)有效序列,共對(duì)應(yīng)15個(gè)寄主基因,這15個(gè)基因編碼的寄主因子可能與P6蛋白互作(表1)。這15個(gè)寄主因子篩選豐度差異較大,篩選頻率最高的是CHY型鋅指蛋白(CHY zinc finger protein,ZFP),其次是低溫誘導(dǎo)的半胱氨酸蛋白酶(lowtemperature-induced cysteine proteinase,LTICP),然后是3S,6E-橙花叔醇合酶1(3S,6E-nerolidol synthase 1,36NS),這3個(gè)寄主因子的篩選頻數(shù)達(dá)118次,占篩選總數(shù)174個(gè)有效序列的67.8%。
圖6 轉(zhuǎn)化pGBK-P6和pGBK-T7質(zhì)粒的酵母菌在SD/-Trp培養(yǎng)基的生長(zhǎng)情況Fig. 6 The growth situation of yeast containing plasmids pGBK-P6 and pGBK-T7 in SD/-Trp medium
利用Uniprot在線網(wǎng)站的GO通路注釋這15個(gè)森林草莓寄主因子(圖9),發(fā)現(xiàn)這15個(gè)寄主因子參與了13種生物過(guò)程,包括泛素化、轉(zhuǎn)錄因子調(diào)節(jié)、防御反應(yīng)、代謝過(guò)程、氧化還原、胞內(nèi)氨基酸代謝、蛋白水解、生物合成、胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)、蛋白質(zhì)磷酸化、誘導(dǎo)系統(tǒng)抗性、光系統(tǒng)II修復(fù)和細(xì)胞分裂等過(guò)程;其分子功能有12種,包括乙酰轉(zhuǎn)移酶活性、萜烯合酶活性、脫氫酶活性、金屬離子結(jié)合活性、蛋白激酶活性、水解酶活性、氧化還原酶活性、磷酸酶活性、DNA結(jié)合活性、ATP結(jié)合活性、蛋白自身結(jié)合和肽鏈內(nèi)切酶抑制劑活性。
表1 15個(gè)與SVBV P6互作的森林草莓寄主因子Table 1 Fifteen host factors of woodland strawberry interacting with SVBV P6
圖9 Gene ontology注釋Fig. 9 Annotation by gene ontology
目前,世界范圍內(nèi)已經(jīng)鑒定出了30多種植物病毒沉默抑制子,其功能主要為增加病毒的積累、協(xié)助病毒的胞間運(yùn)動(dòng)及促進(jìn)病毒的長(zhǎng)距離運(yùn)輸?shù)萚20]。而SVBV P6蛋白作為沉默抑制子的主要功能及作用機(jī)理尚不清楚。本試驗(yàn)構(gòu)建了高質(zhì)量的森林草莓 cDNA文庫(kù),以SVBV P6為誘餌蛋白,從感染SVBV的森林草莓酵母cDNA文庫(kù)中篩選與P6互作的寄主因子,為進(jìn)一步探究SVBV的致病機(jī)理,解析病毒與寄主的分子互作機(jī)制打下了基礎(chǔ)。
本研究共篩得15個(gè)寄主因子,序列比對(duì)發(fā)現(xiàn)15個(gè)寄主因子中,ZFP篩選豐度最高,篩選比率達(dá)到46%,說(shuō)明ZFP與P6密切互作,具有較高的研究參考價(jià)值。鋅指蛋白ZFP是一類(lèi)結(jié)合鋅離子折疊成手指狀結(jié)構(gòu)域的蛋白,廣泛分布于動(dòng)植物和微生物[21]。主要由半胱氨酸(Csy)和/或組氨酸(His)組成,與鋅離子結(jié)合形成“指”狀四面體結(jié)構(gòu),鋅離子在穩(wěn)定鋅指蛋白結(jié)構(gòu)和發(fā)揮調(diào)控功能方面具有關(guān)鍵作用[22]。鋅指蛋白可以與靶分子DNA、RNA、DNA-RNA的序列特異性結(jié)合[23],在轉(zhuǎn)錄和翻譯水平上調(diào)控基因的表達(dá)、細(xì)胞分化以及胚胎發(fā)育等[24]。
鋅指蛋白ZFP在調(diào)節(jié)植物生長(zhǎng)發(fā)育和抵御病原物侵染過(guò)程中均發(fā)揮重要的作用。將棉花鋅指蛋白基因GhZFP1轉(zhuǎn)入煙草,GhZFP1能夠上調(diào)煙草抗病相關(guān)蛋白(resistance related protein)GZIRD21A和GZIPR5的表達(dá),提高煙草對(duì)立枯絲核菌(Rhizoctonia solani)侵染的抗性[25]。稻瘟病菌(Magnaporthe oryzae)侵染水稻,水稻鋅指蛋白 OsSYP71能提高病程相關(guān)基因PR-1b的表達(dá),同時(shí)增強(qiáng)過(guò)氧化物酶的活性,清除寄主體內(nèi)的過(guò)氧化氫(H2O2),抵御病菌的侵染[26]。煙草花葉病毒(Tobacco mosaic virus,TMV)侵染普通煙(Nicotiana tabacum)時(shí),寄主WRKY轉(zhuǎn)錄因子鋅指蛋白 TIZZ的表達(dá)量提高,誘導(dǎo)寄主產(chǎn)生過(guò)敏性壞死反應(yīng)(hypersensitive response,HR),抵御病毒的進(jìn)一步侵染[27]。黃瓜花葉病毒(Cucumber mosaic virus,CMV)侵染普通煙,鋅指蛋白Tsip1能夠與CMV的復(fù)制復(fù)合體在液泡膜上互作,影響病毒的胞間運(yùn)輸,Tsip1還能與CMV 1a和CMV 2a形成復(fù)合體,干擾病毒的復(fù)制和轉(zhuǎn)移[28]。SVBV的復(fù)制的機(jī)理與CaMV極為相似,P6作為一個(gè)反式激活因子,可在細(xì)胞質(zhì)中調(diào)控35S RNA翻譯出病毒其余蛋白[29]。因此,推測(cè)鋅指蛋白ZFP和SVBV致病因子P6蛋白的互作,能夠干擾P6蛋白與35S RNA的結(jié)合能力,影響病毒的復(fù)制過(guò)程,抵御病毒的侵染。
半胱氨酸蛋白酶(cysteine protease)作為一類(lèi)重要的蛋白酶家族,廣泛參與植物的各種生理過(guò)程[30]。研究發(fā)現(xiàn),半胱氨酸蛋白酶在各種衰老的植物器官中大量表達(dá),可降解光合作用必需酶 Rubisco(1,5-二磷酸核酮糖脫羧/加氧酶)大亞基,抑制光合作用,促進(jìn)植物衰老[31]。當(dāng)植物受到病原菌侵染時(shí),半胱氨酸蛋白酶mRNA含量會(huì)顯著增加,參與響應(yīng)寄主的過(guò)敏性壞死反應(yīng),誘導(dǎo)植物細(xì)胞的程序性死亡(PCD),阻止病原菌在寄主的進(jìn)一步擴(kuò)散[32]。因此,筆者推測(cè)受SVBV侵染后,P6蛋白與半胱氨酸蛋白酶RD21a結(jié)合,上調(diào)RD21a的表達(dá),抑制葉片光合作用,使植物提前衰老,進(jìn)一步表現(xiàn)出沿著葉脈黃化、小葉扭曲等感病癥狀。
植物SNF1激酶(SNF1-related protein kinase)是動(dòng)物AMP激活蛋白激酶的同源物,為體內(nèi)代謝的全局調(diào)控因子,在消耗ATP的脅迫反應(yīng)中起重要作用[33]。SUNTER等[34]將番茄金色花葉病毒(Tomato golden mosaic virus,TGMV)AC2和甜菜曲頂病毒(Beet curly top virus,BCTV)的C2分別轉(zhuǎn)入煙草,發(fā)現(xiàn)轉(zhuǎn)基因植株對(duì)TGMV、BCTV和TMV的感病性增加,進(jìn)一步利用酵母雙雜交技術(shù)驗(yàn)證蛋白互作,發(fā)現(xiàn) TGMV AC2和 BCTV的 C2蛋白與擬南芥(Arabidopsis thaliana)的蔗糖非發(fā)酵激酶SNF1互作,并在體外和體內(nèi)抑制SNF1激酶的活性,表達(dá)反義SNF1的擬南芥對(duì)雙生病毒的感病性增強(qiáng),而過(guò)量表達(dá)正義 SNF1的擬南芥對(duì)雙生病毒表現(xiàn)出抗性。表達(dá) AC2/C2的擬南芥對(duì)雙生病毒的感病性增強(qiáng),但在擬南芥中表達(dá)缺失與SNF1激酶互作結(jié)構(gòu)域的AC2/C2則不能增強(qiáng)對(duì)雙生病毒的感病性[35]。這些結(jié)果表明植物代謝通路的調(diào)節(jié)可能是植物應(yīng)對(duì)病毒侵染的一種重要防衛(wèi)反應(yīng)。由此推測(cè)SVBV P6蛋白可能與寄主SNF1激酶互作,抑制SNF1的活性,調(diào)節(jié)寄主代謝通路,影響草莓的正常生理代謝,導(dǎo)致草莓表現(xiàn)出生長(zhǎng)衰弱、匍匐莖數(shù)量減少等不良生長(zhǎng)狀況。
成功構(gòu)建了高質(zhì)量的森林草莓cDNA文庫(kù),篩選得到了15個(gè)與SVBV P6蛋白互作的寄主因子,這些蛋白因子生物功能多樣,可能參與SVBV侵染寄主過(guò)程中的多條重要通路,在協(xié)助寄主抵御病毒侵染,減輕發(fā)病癥狀等方面發(fā)揮重要作用,為進(jìn)一步深入研究SVBV與寄主的相互作用打下了理論基礎(chǔ)。
[1]RATTI C, PISI A, AUTONELL C R, BABINI A, VICCHI V. First report of Strawberry vein banding virus on strawberry in Italy. Plant Disease, 2009, 93(6): 675.
[2]HONETSLEGROVA J, MRAZ I, SPAK J. Detection and isolation of Strawberry vein banding virus in the Czech Republic. Acta Horticulturae,1995, 385: 29-32.
[3]肖敏, 張志宏. 草莓鑲脈病毒研究進(jìn)展. 遼寧農(nóng)業(yè)科學(xué), 2005(4):36-38.XIAO M, ZHANG Z H. Research advance in Strawberry vein banding virus. Liaoning Agricultural Sciences, 2005(4): 36-38. (in Chinese)
[4]MORRIS T J, MULLIN R H, SCHLEGEL D E, COLE A, ALOSI M C. Isolation of a Caulimovirus from strawberry tissue infected with Strawberry vein banding virus. Phytopathology, 1980, 70(2): 156-160.
[5]PETRZIK K, MRAZ I, DULIC-MARKOVIC I. Quarantine Strawberry vein banding virus firstly detected in Slovakia and Serbia.Acta Virologica, 1998, 42(2): 87-89.
[6]FRAZIER N W. Detection of graft-transmissible diseases in strawberry by a modified leaf grafting technique. Plant Disease Reporter, 1974, 58: 203-207.
[7]洪健, 李德葆, 周雪平. 植物病毒分類(lèi)圖譜. 北京: 科學(xué)出版社,2001: 12.HONG J, LI D B, ZHOU X P. Classification Atlas of Plant Viruses.Beijing: Science Press, 2001: 12. (in Chinese)
[8]PETRZIK K, BENES V, MRAZ I, HONETSLEGROVA F J,ANSORGE W, SPAK J. Strawberry vein banding virus-definitive member of the genus Caulimovirus. Virus Genes, 1998, 16(3):303-305.
[9]PAPPU H R, DRUFFEL K L. Use of conserved genomic regions and degenerate primers in a PCR-based assay for the detection of members of the genus Caulimovirus. Journal of Virological Methods, 2009,157(1): 102-104.
[10]KAREL P, VLADIMIR B, IVAN M, HONETSLEGROVA- FRANOVA J,ANSORGE W, SPAK J. Strawberry vein banding virus-definitive member of the genus Caulimovirus. Virus Genes, 1998, 16(3):303-305.
[11]LEH V, YOT P, KELLER M. The Cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L18 of Arabidopsis thaliana. Virology, 2000, 266(1): 1-7.
[12]ANDREW J L, JANET L, JUSTIN H, HAMILTON A J,SADANANDOM A, MILNER J J. Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. Journal of General Virology,2007, 88(12): 3439-3444.
[13]GAIL A B, JERRY D J, STEPHEN H H. Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proceeding of the National Academy Sciences of the United States of America, 1988, 85(3): 733-737.
[14]CHIARA G, CECCHINI E, MARIA E G,SIMON N C, JOEL J M.Altered patterns of gene expression in Arabidopsis elicited by Cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Molecular Plant, 1999, 12(5): 377-384.
[15]吳建國(guó), 蔡麗君, 胡梅群, 謝荔巖, 林奇英, 吳祖建, 謝聯(lián)輝. 水稻瘤矮病毒 P3、P7、P8、Pn9、Pn10、Pnl1、Pnl2的酵母雙雜交載體的構(gòu)建及自激活效應(yīng)檢測(cè). 熱帶作物學(xué)報(bào), 2009, 30(9):1364-1368.WU J G, CAI L J, HU M Q, XIE L Y, LIN Q Y, WU Z J, XIE L H.Construction of yeast two-hybrid vectors of P3, P7, P8, Pn9, Pn10,Pn11 and Pn12 of Rice gall dwarf virus and identification of their self-activation. Chinese Journal of Tropical Crops, 2009, 30(9):1364-1368. (in Chinese)
[16]何乙坤, 鐘敏, 胡同樂(lè), 王樹(shù)桐, 段豪, 丁麗, 王亞南, 曹克強(qiáng). 利用酵母雙雜交篩選與蘋(píng)果褪綠葉斑病毒CP互作的寄主因子. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(24): 4821-4829.HE Y K, ZHONG M, HU T L, WANG S T, DUAN H, DING L,WANG Y N, CAO K Q. Screening of the host factors interacting with CP of Apple chlorotic leaf spot virus by yeast two-hybrid system.Scientia Agricultura Sinica, 2014, 47(24): 4821-4829. (in Chinese)
[17]樓望淮, 蔣甲福, 陳素梅, 房偉民, 陳發(fā)棣, 管志勇, 廖園. 菊花 B病毒外殼蛋白互作蛋白的篩選. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 36(4):43-48.LOU W H, JIANG J F, CHEN S M, FANG W M, CHEN F D, GUAN Z Y, LIAO Y. Screening of proteins interacting with the coat protein of Chrysanthemum virus B. Journal of Nanjing Agricultural University, 2013, 36(4): 43-48. (in Chinese)
[18]趙藝澤, 劉艷, 王錫鋒. 利用酵母雙雜交系統(tǒng)篩選介體異沙葉蟬中與小麥矮縮病毒外殼蛋白互作的蛋白質(zhì). 中國(guó)農(nóng)業(yè)科學(xué), 2015,48(12): 2354-2363.ZHAO Y Z, LIU Y, WANG X F. Screening of putative proteins in vector Psammotettix alienus L. that are interacted with coat protein of Wheat dwarf virus by a split-ubiquitin yeast membrane system.Scientia Agricultura Sinica, 2015, 48(12): 2354-2363. (in Chinese)
[19]肖冬來(lái), 鄧慧穎, 謝荔巖, 吳祖建, 謝聯(lián)輝. 酵母雙雜交系統(tǒng)篩選與水稻黑條矮縮病毒 P6互作的水稻蛋白. 熱帶作物學(xué)報(bào), 2010,31(3): 435-438.XIAO D L, DENG H Y, XIE L Y, WU Z J, XIE L H. Screening of rice proteins interacting with P6 of Rice black-streaked dwarf virusfrom rice cDNA library by yeast two hybrid system. Chinese Journal of Tropical Crops, 2010, 31(3): 435-438. (in Chinese)
[20]蔣琳, 魏春紅, 李毅. 病毒基因沉默抑制子及其作用機(jī)制. 中國(guó)科學(xué): 生命科學(xué), 2012, 42(1): 16-28.JIANG L, WEI C H, LI Y. Viral suppressor of RNA silencing. Scientia Sinica Vitae, 2012, 42(1): 16-28. (in Chinese)
[21]FRANKEI A D, PABO C O. Fingering too many proteins. Cell, 1998,53(6): 675.
[22]HOOVERS J M, MANNENS M, JOHN R, BLIEK J, VERONICA V H, PORTEOUS D J, LESCHOT N J, WESTERETVELD A, LITTLE P F. High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics, 1992, 12(2):254-263.
[23]ESPINOSA J M, PORTAL D, LOBO G S, PEREIRA C A, ALONSO G D, GOMEZ E B, LAN G H, POMAR R, FLAWIA M M, TORRES H N. Trypanosoma cruzi poly-zinc finger protein: a novel DNA/RNA-binding CCHC-zinc finger protein. Molecular and Biochemical Parasitology, 2003, 131(1): 35-44.
[24]JAUCH R, BOURENKOV G P, CHUNG H R, URLAUB H, REIDT U, JACKLE H, WAHL M C. The zinc finger associated domain of the Drosophila transcription factor grauzone is a novel zinc-coordinating protein-protein interaction modules. Structure, 2003, 11(11):1393-1402.
[25]GUO Y H, YU Y P, WANG D, WU C A, YANG G D, HUANG J G,ZHENG C C. GhZFP1, A novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 2009, 183(1): 62-75.
[26]BAO Y M, SUN S J, LI M, LI L, CAO W L, LUO J, TANG H J,HUANG J, WANG Z F, WANG J F. Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa). Gene, 2012, 504(2):238-244.
[27]YODA H, OGAWA M, YAMAGUCHI Y, KOIZUMI N, KUSANO T,SANO H. Identification of early-responsive genes associated with the hypersensitive response to Tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Molecular Genetics and Genomics, 2002, 267(2): 154-161.
[28]HUH S U, KIM M J, HAM B K, PAEK K H. A zinc finger protein Tsip1 controls Cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant.New Phytologist, 2011, 191(3): 746-762.
[29]MURIEL H, MARINA B, ANGèLE G, PIERRE Y, MARIO K.Cauliflower mosaic virus: still in the news. Molecular Plant Pathology,2002, 3(6): 419-429.
[30]李思濱, 劉英, 祖元?jiǎng)? 半胱氨酸蛋白酶在植物細(xì)胞程序性死亡中的作用. 植物生理學(xué)通訊, 2008, 44(2): 345-349.LI S B, LIU Y, ZU Y G. Role of cysteine proteinase in programmed cell death of plant. Plant Physiology Communications, 2008, 44(2):345-349. (in Chinese)
[31]WANG W, ZHANG L, GUO N, ZHANG X, ZHANG C, SUN G, XIE J. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana.Molecules, 2014, 19: 2374-2389.
[32]HARRAK H, AZELMAT S, BAKER E N, TABAEIZADEH Z.Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome, 2001,44: 368-374.
[33]NIGEL G H, GRAHAME D H. SNF1-related protein kinases: global regulators of carbon metabolism in plants. Plant Molecular Biology,1998, 37: 735-748.
[34]SUNTER G, SUNTER J L, BISARO D M. Plants expressing Tomato golden mosaic virus AL2 or Beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses.Virology, 2001, 285: 59-70.
[35]HAO L H, WANG H, SUNTER G, BISARO D M. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. The Plant Cell, 2003, 15(4): 1034-1048.
(責(zé)任編輯 岳梅)
Screening of the Host Factors of Woodland Strawberry Interacting with P6 of Strawberry vein banding virus by Yeast Two-Hybrid System
LI Shuai, JIANG XiZi, LIANG WeiFang, CHEN SiHan, ZHANG XiangXiang,ZUO DengPan, HU YaHui, JIANG Tong
(School of Plant Protection, Anhui Agricultural University, Hefei 230036)
2017-03-20;接受日期:2017-05-09
國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201303028)、國(guó)家自然科學(xué)基金(31671999,31371915)
聯(lián)系方式:李帥,E-mail:18356086590@163.com。通信作者江彤,E-mail:jiangtong4650@sina.com