郭曉燕,付 立,張 露*,蘇 恒,梁躍龍
(1.江西農(nóng)業(yè)大學(xué),江西特色林木資源培育與利用2011協(xié)同創(chuàng)新中心,江西 南昌 330045;2.江西農(nóng)業(yè)大學(xué)生物科學(xué)與工程學(xué)院,江西 南昌 330045; 3.江西九連山國家級自然保護(hù)區(qū),江西 龍南 341700)
林地土壤及其真菌對毛紅椿種子發(fā)芽及幼苗保存的影響
郭曉燕1,2,付 立1,張 露1*,蘇 恒1,梁躍龍3
(1.江西農(nóng)業(yè)大學(xué),江西特色林木資源培育與利用2011協(xié)同創(chuàng)新中心,江西 南昌 330045;2.江西農(nóng)業(yè)大學(xué)生物科學(xué)與工程學(xué)院,江西 南昌 330045; 3.江西九連山國家級自然保護(hù)區(qū),江西 龍南 341700)
毛紅椿;種子萌發(fā);幼苗存活;土壤真菌
Abstract: [Objective]The barrier factors influencing the natural regeneration ofToonaciliatavar.pubescenswere explored through investigating the effects of forest soil and fungi in different natural communities on seed germination and seedling survival. [Method]Soil samples were collected from the root zone at three distances (2.5, 5.0, and 7.5 m) from the mother trees as well as the natural forest stands 25 m away from the mother trees in Jiulianshan National Nature Reserve. The seed germination trial on soils was carried out in the laboratory with non-forest soil as the control. In addition, the seedling infection trial in soil was also performed in the laboratory with root irrigation by fungi isolated from root zone soil and suspended with water or root exudates. The seed germination, seedling survival and seedling susceptibility were observed. [Result]The germination of seed in all kinds of soil revealed the tendency of increasing at initial and then decreasing, and reached the peak during the eighth to tenth day after sowing. There were no significant differences between forest soil and non-forest soil in germination rate, while the seedling survival rate of forest soil was significantly lower than that of non-forest soil. There were significant differences between root zone soil and non-root zone soil in seedling survival rate, and the seedling mortality of root zone soil was higher. It was also found that there were no significant differences in seedlings survival rate of root zone soil among different distances from the mother trees. It addition, there were extremely significant differences in seedling infection treatments, and the seedling disease incidence rates of RS2, RS5soil-borne fungi were significantly higher than those of the two blank controls, water (W) and root exudates (R). Moreover, the disease infection rate of RS2root exudates suspension was significantly higher than that of RS2water suspension. [Conclusion]Forest soil of different natural communities has no effect on seed germination ofT.ciliatavar.pubescens, However, the seedling establishment is disturbed by root zone soil of the same species; the interaction between root exudates and pathogens can significantly reduce the seedling survival rate. It could be inferred that there are potential pathogens in root zone soil ofT.ciliatavar.pubescensand root exudates can enhance their pathogenicity.
Keywords:Toonaciliatavar.pubescens; seed germination; seedling survival; soil-borne fungi
作為我國二級保護(hù)物種之一的毛紅椿(ToonaciliataRoem.var.pubescens(Franch.)Hand.-Mazz.[1],因其速生、珍貴、瀕危,近年來越來越受到學(xué)者關(guān)注。目前,在毛紅椿天然種群生態(tài)特征[2]、群落結(jié)構(gòu)特征[3]、群體遺傳結(jié)構(gòu)[4-5]、結(jié)實特性及生殖力[6-7]、種子萌發(fā)的影響因素[8-9]和毛紅椿資源保護(hù)對策和育苗技術(shù)[10-12]等方面開展了研究,本課題組探討了天然林毛紅椿種子庫、林下幼苗數(shù)量、基株個體大小和枯落物厚薄等生境因素對毛紅椿天然更新的影響[2,6,9]。植物種群更新限制主要來自三種機(jī)制:一是種子可獲得性低,導(dǎo)致有效傳播率低,引起種源限制;二是種子不能擴(kuò)散到合適地點而受到傳播限制;三是擴(kuò)散到微生境后,受生物和非生物因素影響而不能生長成幼樹,導(dǎo)致建成限制[13-15]。微生境生態(tài)因子包含多種限制因素,如土壤、水分、光照、枯落物、植物鄰居等,這些因子決定著幼樹的建成,不同種植物的主導(dǎo)因子存在差異[16]。土壤作為林木生長的重要生態(tài)因子,其物理、化學(xué)及生物學(xué)性質(zhì)直接影響森林的更新過程[17],森林群落植物的組成及分布,還與其森林系統(tǒng)根系分泌物的化感效應(yīng)存在密切聯(lián)系[18]。本文在毛紅椿天然優(yōu)勢群落中,研究根區(qū)土壤、土壤真菌及土壤性質(zhì)等對種子萌發(fā)和幼苗建成的影響,研究結(jié)果有助于尋找制約該物種生存和發(fā)展的主要因子,更好理解毛紅椿天然更新的障礙因素,為珍稀闊葉樹種毛紅椿致瀕提供有效的保護(hù)策略和保育技術(shù)。
表1 九連山毛紅椿天然林群落及母樹基本情況
2.1室內(nèi)模擬播種實驗
2015年4月,用0.3%的高錳酸鉀溶液進(jìn)行種子消毒30min,再用蒸餾水清洗殘液。將根區(qū)土、非根區(qū)土及河沙、沙壤土、菜地土分別裝入經(jīng)消毒滅菌的組培瓶(瓶高85mm,上口徑95mm,底面直徑80mm),每瓶置20粒種子,放入光照培養(yǎng)箱發(fā)芽,光照時間14h·d-1,溫度25℃,每天稱質(zhì)量補(bǔ)充水分,5次重復(fù)。觀察記錄種子發(fā)芽數(shù)、發(fā)芽天數(shù)及幼苗保存情況,以某處理中幼苗全部死亡結(jié)束整個實驗,計算毛紅椿種子發(fā)芽率和幼苗存活率。
種子發(fā)芽率=種子發(fā)芽數(shù)/種子數(shù)×100%
幼苗存活率=實驗結(jié)束時存活幼苗數(shù)/種子發(fā)芽數(shù)×100%
2.2土壤性質(zhì)測定
采用烘干法(105℃)測定土壤含水率,玻璃電極法測定土壤pH值,水合熱重鉻酸鉀氧化-比色法測定土壤有機(jī)質(zhì)含量,KCl浸提-靛酚藍(lán)比色法測定土壤銨態(tài)氮含量,紫外分光光度法測定土壤硝態(tài)氮含量,3,5-二硝基水楊酸比色法測定土壤纖維素酶和蔗糖酶活性[19]。
2.3根區(qū)土壤真菌分離及接種
2.3.1真菌分離 選取播種實驗幼苗死亡率較高的毛紅椿根區(qū)土樣,分離培養(yǎng)真菌。稱取5g根區(qū)土,梯度稀釋法制成土壤懸液,接種至ABPDA培養(yǎng)基(PDA培養(yǎng)基內(nèi)加100mg·L-1鏈霉素和100mg·L-1青霉素),28℃恒溫培養(yǎng)獲得單菌落,采用劃線分離法純化菌株,得到根區(qū)土壤真菌,再將其接種至PDA培養(yǎng)基斜面上保存待用。
2.3.2毛紅椿根系分泌物收集 挖取1年生毛紅椿幼苗3株,洗凈根系泥土,在盛有1000mL蒸餾水的容器中放置24h,收集水培液,過濾除菌獲得根系分泌物(R)[20]。
2.3.3真菌感染用幼苗培養(yǎng) 將消毒處理后的毛紅椿種子播于121℃間歇滅菌3次的沙壤土中,光照培養(yǎng)箱內(nèi)培養(yǎng)15d至初生葉形成,以備接種之用。
2.4數(shù)據(jù)處理
采用SPSS17.0統(tǒng)計軟件和Excel2007進(jìn)行數(shù)據(jù)分析,不同處理間參數(shù)的差異采用 Student-Newman-Keuls法進(jìn)行多重比較,比較兩參數(shù)采用獨立樣本t檢驗,變量相關(guān)性采用雙變量pearson 相關(guān)分析。
3.1毛紅椿林地土對毛紅椿實生苗更新的影響
圖1 毛紅椿種子萌發(fā)及幼苗數(shù)量隨時間的變化Fig.1 Changes on the number of seed germination and seedling of T. ciliata var. pubescens with the sowing time
表2 距毛紅椿母樹不同距離的種子發(fā)芽率與幼苗保存率
注:同列不同小寫字母間表示差異顯著(P<0.05),同列不同大寫字母間表示差異極顯著(P<0.01),下同。
Note:Different lowercase letter along the column indicate significant difference atP<0.05,Different capital letter along the column indicate extremely significant difference atP<0.01,the same as below.
表3表明:林地土(根區(qū)土、非根區(qū)土)種子發(fā)芽率的總均值(71.86%)與非林地土(河沙、沙壤土、菜地土)對照的種子發(fā)芽率總均值(72.67%)差異不顯著,但林地土的保存率總均值(40.58%)極顯著低于非林地土的(70.02%)(F=5.352,df=49,P=0.000<0.01);林地根區(qū)土與非根區(qū)土的種子發(fā)芽率差異不顯著,但幼苗保存率差異極顯著(F=30.074,P=0.000<0.01),林地根區(qū)土幼苗存活率較低,僅32.44%。以上結(jié)果進(jìn)一步表明,林地土毛紅椿幼苗保存率低的原因主要來源于根區(qū)土的影響。
表3 不同類型土壤毛紅椿種子發(fā)芽率與幼苗保存率
3.2土壤理化性質(zhì)、酶活性與毛紅椿幼苗保存的相關(guān)性
鑒于非根區(qū)土壤幼苗保存率與3種非林地土均差異不顯著,故探討林地土壤(根區(qū)土和非根區(qū)土)性狀與毛紅椿幼苗保存率間的關(guān)系。
九連山毛紅椿林地土部分理化性質(zhì)和酶活性見表4。獨立樣本t檢驗結(jié)果表明:毛紅椿根區(qū)土的pH值顯著高于非根區(qū)土的(F=0.049,df=34,P=0.016<0.05),但毛紅椿根區(qū)土和非根區(qū)土的含水率、蔗糖酶、纖維素酶、有機(jī)質(zhì)、銨態(tài)氮、硝態(tài)氮差異不顯著。
相關(guān)分析結(jié)果(表5)表明:不同類型土壤指標(biāo)與種子發(fā)芽率和幼苗保存率相關(guān)不顯著。
表4九連山林地土壤的理化性質(zhì)和酶活性
Table4Enzymeactivityandphysical-chemicalpropertiesofJiulianshanforestsoil
土壤性狀Soiltraits根區(qū)Rootzone大丘田Daqiutian蝦公塘Xiagongtang電站Dianzhan非根區(qū)Non?rootzone大丘田Daqiutian蝦公塘Xiagongtang電站Dianzhan含水率Watercontent%32.57±1.4234.97±3.8226.34±3.8437.67±8.7239.24±3.6528.60±3.00pH值pHvalue5.39±0.295.40±0.226.09±0.145.11±0.294.90±1.835.68±0.36有機(jī)質(zhì)SOM(g·kg-1)15.16±5.4410.56±0.487.40±2.3417.00±4.3711.36±0.519.36±0.54蔗糖酶Invertase(mg·g-1)4.34±3.243.17±0.995.61±3.816.40±2.375.33±3.663.72±2.98纖維素酶Cellulose(mg·g-1)1.38±0.861.92±0.571.41±0.857.86±0.792.38±0.190.95±0.26銨態(tài)氮(NH4+)N(mg·kg-1)13.60±5.8632.55±2.8221.01±10.3321.13±11.0333.13±1.9616.71±7.43硝態(tài)氮(NO3-)N(mg·kg-1)1.61±0.611.63±0.281.34±0.391.86±0.651.71±0.401.13±0.42
表5 九連山林地土壤理化性質(zhì)、酶活性與種子發(fā)芽率和幼苗保存率相關(guān)分析
3.3根區(qū)土壤真菌對毛紅椿幼苗保存率的影響
根區(qū)土死亡的幼苗表現(xiàn)為苗莖或其葉子著生處感染褐化干枯而死,疑似真菌感染所致。因此,從幼苗死亡率較高的根區(qū)土壤中分離出真菌(RS2和RS3來自大丘田群落距毛紅椿大樹2.5m處根區(qū)土壤,RS5來自蝦公塘群落距毛紅椿大樹5m處根區(qū)土壤),分別用其水(RS2W、RS3W、RS5W)或毛紅椿根系分泌物孢子懸液(RS2R、RS3R、RS5R)對毛紅椿健康幼苗灌根接種,無菌水(W)和根系分泌物(R)為對照,幼苗保存結(jié)果見圖2。
方差分析結(jié)果表明:處理間差異極顯著(F=20.802,df=7,P=0.000<0.01)。多重比較表明:2個對照間差異不顯著,無菌水懸浮液RS2W、RS5W和根系分泌物懸浮液RS2R、RS5R處理的幼苗保存率均顯著低于其相應(yīng)的對照;RS3W和RS3R孢子懸浮液處理的幼苗保存率與無菌水(W)和根系分泌物(R)的差異不顯著;RS2R處理的幼苗保存率顯著低于RS2W處理的,RS5R處理的幼苗保存率低于RS5W處理的,但差異不顯著(圖2)。以上結(jié)果表明:RS2和 RS5真菌可能為毛紅椿潛在致病菌,且毛紅椿根系分泌物能顯著增強(qiáng)RS2真菌的致病力。
圖2 根區(qū)土壤真菌孢子懸浮液對毛紅椿幼苗保存率的影響Fig.2 Effect of the soil-borne fungal spore suspension on the survival of T. ciliata var. pubescens seedlings
森林土壤中的真菌及細(xì)菌等有較大的空間變異性[23],土壤中病原菌對土壤的改變,將不利于植物的生存和生長,特別是對原有植物種的擴(kuò)展產(chǎn)生限制作用,在幼苗更新過程中,這種限制作用表現(xiàn)為距同種成年樹越近,幼苗死亡率越高。研究已證實,土壤中病害真菌導(dǎo)致熱帶和亞熱帶森林中成年樹附近幼苗死亡,這可能是由土傳病原菌引起的植物-土壤的負(fù)反饋作用對植物豐度的調(diào)節(jié)[24-26]。近年來,越來越多的學(xué)者認(rèn)為,根系分泌物生態(tài)效應(yīng)的間接作用及土壤微生物區(qū)系紊亂是導(dǎo)致植物連作障礙形成的主要因素[27]。由于根系分泌物的輸入,根際沉積物有不同于非根際沉積物的化學(xué)、物理和微生物特性[28]。植物根系周圍的特殊區(qū)域?qū)ν寥乐械奈⑸锒裕且粋€天然的選擇性培養(yǎng)基,如果大量繁殖的微生物為病原菌,則可能入侵植物根系,導(dǎo)致病害發(fā)生[27,29]。劉艷霞等[30]研究表明,煙草根系分泌物及其酚酸類成分促進(jìn)煙草青枯病原菌(茄科勞爾氏菌)的生長,而對拮抗菌(短芽孢桿菌)的生長具有抑制作用。某些根系分泌物成分對植物病原菌的毒性物質(zhì)分泌具有促進(jìn)作用,如Wu等[31]研究發(fā)現(xiàn),蘭州百合根系分泌物成分鄰苯二甲酸顯著刺激百合枯萎病原菌(尖孢鐮刀菌)發(fā)病相關(guān)水解酶的活性。關(guān)于根系分泌物和土壤病原菌對毛紅椿實生更新的影響還有待進(jìn)一步研究。
在本研究的不同類型土壤中,毛紅椿種子萌發(fā)規(guī)律基本一致,幼苗數(shù)均呈先上升后下降的趨勢,且毛紅椿林地土壤理化性狀與酶活性等均與種子發(fā)芽率及幼苗保存率不顯著相關(guān),但根系分泌物能夠影響某些病原菌的致病性,使毛紅椿根區(qū)土壤中存在潛在致病真菌導(dǎo)致幼苗死亡,不利于其幼苗保存和建成。建議下一步應(yīng)側(cè)重于致病微生物鑒定、對根系分泌物趨化性和其成分分析,以期提高毛紅椿幼苗存活率,促進(jìn)幼苗建成。
[1] 傅立國.中國植物紅皮書(第1冊)[M].北京:科學(xué)出版社,1991:142-669.
[2] 楊清培,付方林,張 露,等. 九連山自然保護(hù)區(qū)毛紅椿天然林鄰體干擾效應(yīng)[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,2013,35(4):748-754.
[3] 劉 軍,陳益泰,羅陽富,等. 毛紅椿天然林群落結(jié)構(gòu)特征研究[J].林業(yè)科學(xué)研究,2010,16(1):93-97
[4] 劉 軍,陳益泰,孫宗修,等. 基于空間自相關(guān)分析研究毛紅椿天然居群的空間遺傳結(jié)構(gòu)[J].林業(yè)科學(xué),2008,44(6):45-52.
[5] 溫 強(qiáng),葉金山,周 誠. 江西毛紅椿天然群體的遺傳多樣性分析[J]. 南方林業(yè)科學(xué),2016,44(3):1-6,55.
[6] 黃紅蘭,張 露,廖承開. 毛紅椿天然林種子雨、種子庫與天然更新[J]. 應(yīng)用生態(tài)學(xué)報,2012,23(4):972-978.
[7] 黃紅蘭,張 露,郭曉燕,等. 九連山毛紅椿種群的結(jié)實特性及其生殖力[J].林業(yè)科學(xué),2013,49(7):170-174.
[8] 張 麗,張 露.毛紅椿種子萌發(fā)影響因素初探[J].林業(yè)科技開發(fā),2011(6):51-56.
[9] 郭曉燕,張 露,梁躍龍,等. 枯枝落葉物厚度影響毛紅椿種子出苗的模擬研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報,2014,36(2):332-337.
[10] 張汝忠,彭佳龍,王堅婭,等. 毛紅椿播種育苗技術(shù)及苗期生長規(guī)律研究[J]. 浙江林業(yè)科技,2007,27(4):51-53.
[11] 孫洪剛,劉 軍,董汝湘,等. 水分脅迫對毛紅椿幼苗生長和生物量分配的影響[J].林業(yè)科學(xué)研究,2014,27(3):381-387.
[12] 唐 強(qiáng),李志輝,吳際友,等.毛紅椿無性系扦插繁殖試驗研究[J]. 中南林業(yè)科技大學(xué)學(xué)報,2015,35(1):67-70.
[13] Münzbergová Z,Herben T. Seed,dispersal,microsite,habitat and recruitment limitation: identification of terms and concepts in studies of limitations[J]. Oecologia,2005,145(1):1-8.
[14] Cordeiro N J,Ndangalasi H J,McEntee J P,etal. Disperser limitation and recruitment of an endemic African tree in a fragmented landscape[J]. Ecology,2009,90(4):1030-1041.
[15] Marques M C M,Burslem D F R P. Multiple stage recruitment limitation and density dependence effects in two tropical forests[J]. Plant Ecology,2015,216(9):1243-1255.
[16] 李 寧,白 冰,魯長虎.植物種群更新限制—從種子生產(chǎn)到幼樹建成[J].生態(tài)學(xué)報,2011,31(21):6624-6632
[17] 曾思齊,甘靜靜,肖化順,等. 木荷次生林林木更新與土壤特征的相關(guān)性[J]. 生態(tài)學(xué)報,2014,34(15):4242-4250.
[18] 陳 鋒,孟永杰,帥海威,等. 植物化感物質(zhì)對種子萌發(fā)的影響及其生態(tài)學(xué)意義[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2017,25(1):36-46.
[19] 鄭必昭.土壤分析技術(shù)指南[M].北京:中國農(nóng)業(yè)出版社,2012.
[20] Khorassani R,Hettwer U,Ratzinger A,etal. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus[J]. BMC Plant Biology,2011,11(1):121-128.
[21] Comita L S,Queenborough S A,Murphy S J,etal. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival[J]. Journal of Ecology,2014,102:845-856.
[22] Mccarthy-Neumann S,Ibáez I. Plant—soil feedback links negative distance dependence and light gradient partitioning during seedling establishment[J]. Ecology,2013,94(94):780-786.
[23] Morris S J. Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns[J]. Soil Biology & Biochemistry,1999,31(10):1375-1386.
[24] Packer A,Clay K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree[J]. Nature,2000,404(6775):278-281.
[25] Bagchi R,Gallery R E,Gripenberg S,etal. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature,2014,506(7486):85-88.
[26] Liu Y,Yu S,Xie Z,etal. Analysis of a negative plant-soil feedback in a subtropical monsoon forest[J]. Journal of Ecology,2012,100(4):1019-1028.
[27] 吳林坤,林向民,林文雄. 根系分泌物介導(dǎo)下植物-土壤-微生物互作關(guān)系研究進(jìn)展與展望[J].植物生態(tài)學(xué)報,2014,38(3):298-310.
[28] Liu B,Liu X,Huo S,etal. Properties of root exudates and rhizosphere sediment of Bruguiera gymnorrhiza (L.)[J]. Journal of Soils & Sediments,2016,17(1):1-11.
[29] Qi J J,Yao H Y,Ma X J,etal. Soil microbial community composition and diversity in the rhizosphere of a Chinese medicinal plant. Communications in Soil[J]. Science and Plant Analysis,2009,40(9-10):1462-1482.
[30] 劉艷霞,李 想,蔡劉體,等. 煙草根系分泌物酚酸類物質(zhì)的鑒定及其對根際微生物的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2016,22(2):418-428.
[31] Wu Z,Yang L,Wang R,etal. In vitro study of the growth,development and pathogenicity responses of Fusarium oxysporum to phthalic acid,an autotoxin from Lanzhou lily[J]. World Journal of Microbiology and Biotechnology,2015,31(8):1227-1234.
(責(zé)任編輯:徐玉秀)
EffectsofForestSoilandSoil-borneFungionSeedGerminationandSeedlingSurvivalofToonaciliatavar.pubescens
GUOXiao-yan1,2,F(xiàn)ULi1,ZHANGLu1,SUHeng1,LIANGYue-long3
(1.2011 Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization,Jiangxi Agricultural University,Nanchang 330045,Jiangxi, China; 2. College of Bioscience and Bioengineering,Jiangxi Agricultural University,Nanchang 330045,Jiangxi,China;3.Jiulianshan National Nature Reserve, Longnan 341000,Jiangxi, China)
S718.5
A
1001-1498(2017)05-0871-07
10.13275/j.cnki.lykxyj.2017.05.022
2017-03-06
國家自然科學(xué)基金項目(31360171);高等學(xué)校博士學(xué)科點專項科研基金資助課題(20123603110002)
郭曉燕(1970—),博士研究生,主要從事森林培育和微生物研究.E-mail: guoxiaoyan1970@126.com
* 通訊作者:張 露,博士,教授,主要從事珍貴闊葉樹繁育理論與技術(shù)研究.E-mail: zhlu856@163.com