梁峰,穆云松,李會(huì)仙,馮承蓮
1. 河南城建學(xué)院 市政與環(huán)境工程學(xué)院,平頂山 4670362. 中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國家重點(diǎn)實(shí)驗(yàn)室,北京 100012
羥基多溴代二苯醚與甲狀腺素運(yùn)載蛋白相互作用的3D-QSAR研究
梁峰1,穆云松2,*,李會(huì)仙2,馮承蓮2
1. 河南城建學(xué)院 市政與環(huán)境工程學(xué)院,平頂山 4670362. 中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國家重點(diǎn)實(shí)驗(yàn)室,北京 100012
近年來,羥基多溴代二苯醚(OH-PBDEs)的類甲狀腺素效應(yīng)逐漸引起人們的關(guān)注,然而其結(jié)構(gòu)效應(yīng)關(guān)系和致毒機(jī)制尚不清楚。甲狀腺激素結(jié)合球蛋白(TBG)和運(yùn)甲狀腺素蛋白(TTR)是人體轉(zhuǎn)運(yùn)甲狀腺素的重要蛋白,通過計(jì)算毒理學(xué)手段可以揭示OH-PBDEs的微觀毒理機(jī)制。利用分子對(duì)接技術(shù)研究OH-PBDEs與TBG、TTR的結(jié)合模式和構(gòu)象特征,識(shí)別關(guān)鍵氫鍵氨基酸為賴氨酸Lys270(TBG),亮氨酸Leu110(TTR)和絲氨酸Ser117(TTR)?;诨钚詷?gòu)象特征,構(gòu)建14種典型OH-PBDEs的3D-QSAR模型,定量預(yù)測OH-PBDEs與TBG、TTR的結(jié)合親和力。最佳預(yù)測模型的相關(guān)系數(shù)r2分別為0.966(TBG)和0.961(TTR),抽一法交叉驗(yàn)證相關(guān)系數(shù)q2分別為0.560(TBG)和0.525(TTR)。研究發(fā)現(xiàn),OH-PBDEs的靜電和氫鍵作用可增強(qiáng)結(jié)合親和力,分別貢獻(xiàn)65.4%(TBG)和68.7%(TTR)。研究結(jié)果為揭示OH-PBDEs與甲狀腺素轉(zhuǎn)運(yùn)蛋白的相互作用提供新視角,有助于全面評(píng)價(jià)OH-PBDEs對(duì)人體甲狀腺素調(diào)節(jié)功能的損傷。
羥基多溴代二苯醚;甲狀腺素結(jié)合球蛋白;運(yùn)甲狀腺素蛋白;競爭抑制;比較分子場分析;比較相似性指數(shù)分析
Received5 December 2016accepted23 January 2017
Abstract: Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) is a kind of emerging persistent organic pollutants that may interfere with regulating function of human thyroid hormone; however, the molecular mechanism behind remains unknown. In the present study, molecular docking was performed to explore the possible inhibition activity of OH-PBDEs to thyroxine-binding globulin (TBG) and transthyretin (TTR). Hydrogen bonding interaction was found to enhance the binding affinity of OH-PBDEs to these proteins through critical hydrogen bond amino acids of Lys270 (TBG), Leu110 (TTR) and Ser117 (TTR). Based on stimulated binding modes, the 3D-QSAR model on 14 OH-PBDEs, triiodothyronine (T3) and tyroxine (T4) was developed to predict binding affinities of OH-PBDEs to TBG and TTR. The optimal models from comparative molecular similarity index analysis (CoMSIA) were developed with r2value of 0.966 (TBG) and 0.961 (TTR), and q2value of 0.560 (TBG) and 0.525 (TTR). Electrostatic and hydrophobic field of OH-PBDEs account for 72% (TBG) and 68% (TTR) of binding affinities, respectively. These findings provide new insight into OH-PBDEs-TBG/TTR interactions, and will be conducive to evaluating damage of this type of chemicals to human health.
Keywords: OH-PBDEs; thyroxine-binding globulin; transthyretin; competitive inhibition; comparative molecular field analysis; comparative molecular similarity index analysis
多溴二苯醚(polybrominated diphenyl ethers,簡稱PBDEs)憑借優(yōu)異的阻燃性能在世界范圍內(nèi)被廣泛使用。然而,因其具有一定的毒性作用和內(nèi)分泌干擾效應(yīng),加上巨大的產(chǎn)量和穩(wěn)定的化學(xué)性質(zhì),成為近年來備受關(guān)注的持久性有機(jī)污染物。特別是在嬰幼兒體內(nèi)PBDEs的含量高于成人,其神經(jīng)發(fā)育毒性成為近年來環(huán)境毒理學(xué)的研究熱點(diǎn)[1]。目前,唯一獲得生產(chǎn)許可的PBDEs為全溴代同系物BDE-209,與其他PBDEs相比具有較低的甲狀腺素干擾水平,然而其代謝產(chǎn)物的毒性效應(yīng)不容忽視[2]。這些代謝產(chǎn)物在各種環(huán)境介質(zhì)中都有檢出,包括土壤、空氣、水體、沉積物、魚類、鳥類、哺乳動(dòng)物和人體中[3-6]。在人體的組織和血液檢出的PBDEs代謝產(chǎn)物主要包括四溴代二苯醚,五溴代二苯醚,六溴代二苯醚以及羥基化代謝產(chǎn)物[7]。對(duì)于一些特定的終點(diǎn),羥基多溴代二苯醚(OH-PBDEs)表現(xiàn)出更高的毒性效應(yīng)[8]。
甲狀腺素對(duì)生物體正常生長發(fā)育至關(guān)重要,溴代阻燃劑通過干擾甲狀腺素平衡導(dǎo)致北極海鳥幼體發(fā)育遲緩[9]。大量研究證實(shí),PBDEs的體內(nèi)代謝產(chǎn)物OH-PBDEs可導(dǎo)致血清中三碘甲狀腺原氨酸(T3)和四碘甲狀腺原氨酸(T4)水平降低[10-11]。它們是調(diào)節(jié)細(xì)胞代謝速率的重要化學(xué)成分,濃度降低對(duì)嚙齒類動(dòng)物的發(fā)育和行為影響造成不良影響[12]。研究發(fā)現(xiàn),外源污染物主要通過影響甲狀腺素的正常代謝和轉(zhuǎn)運(yùn)干擾甲狀腺系統(tǒng)功能[13]。在人體血漿中,甲狀腺素結(jié)合球蛋白(thyroid-binding globulin,簡稱TBG)和運(yùn)甲狀腺素蛋白(transthyretin,簡稱TTR)是2種最主要的甲狀腺素轉(zhuǎn)運(yùn)蛋白,分別轉(zhuǎn)運(yùn)75%和20%的甲狀腺素[14]。由于OH-PBDEs與T4的化學(xué)結(jié)構(gòu)相似,已被證實(shí)可通過與內(nèi)源激素競爭結(jié)合甲狀腺素轉(zhuǎn)運(yùn)蛋白而干擾機(jī)體的正常激素調(diào)節(jié)機(jī)能[13, 15]。Meert等[16]以碘同位素標(biāo)記的T4研究了OH-PBDEs與TTR的體外競爭結(jié)合,結(jié)果顯示,3種OH-PBDEs與人類TTR具有很高的結(jié)合能力,而PBDEs對(duì)T4-TTR結(jié)合無影響。Hamers等[17]發(fā)現(xiàn)小鼠肝臟細(xì)胞中BDE-47的6種代謝產(chǎn)物比T4具有更高的結(jié)合親和力,其中3-OH-BDE-47活性最高。
目前,動(dòng)物實(shí)驗(yàn)是了解化學(xué)物質(zhì)潛在甲狀腺素干擾效應(yīng)的主要途徑。然而,出于倫理,經(jīng)濟(jì)和可操作性的原因,不可能逐一測定所有潛在活性化學(xué)物。另外,動(dòng)物實(shí)驗(yàn)通常不能提供致毒機(jī)理信息,導(dǎo)致測定結(jié)果不能外推到其他物種。對(duì)于特定生命期或者生物需要通過調(diào)控甲狀腺素水平來適應(yīng)環(huán)境的情況,通過實(shí)驗(yàn)測定相關(guān)效應(yīng)更加困難。因此,采用體外實(shí)驗(yàn)和計(jì)算機(jī)模擬相結(jié)合,定量識(shí)別甲狀腺素干擾效應(yīng)尤為重要[18]。目前,關(guān)于OH-PBDEs與甲狀腺素轉(zhuǎn)運(yùn)蛋白相互作用機(jī)理的研究非常有限,考慮到環(huán)境暴露和人體代謝的復(fù)雜性,了解更多結(jié)構(gòu)類型OH-PBDEs與人類甲狀腺素轉(zhuǎn)運(yùn)蛋白的微觀分子機(jī)制尤為重要。Legler等[19]通過研究發(fā)現(xiàn),溴原子數(shù)量,取代位點(diǎn)和氫鍵作用是OH-PBDEs與甲狀腺素轉(zhuǎn)運(yùn)蛋白結(jié)合的主要貢獻(xiàn)因子。易忠勝等[20]采用基于預(yù)測的變量篩選和建模方法構(gòu)建了OH-PBDEs與甲狀腺素運(yùn)載蛋白結(jié)合能力的線性預(yù)測模型,證明溴原子數(shù)量和取代位置對(duì)OH-PBDEs生物活性具有重要影響。Cao等[21]采用logKow構(gòu)建了非線性預(yù)測模型,用于表征OH-PBDEs對(duì)2種甲狀腺素運(yùn)載蛋白的干擾效應(yīng),提出了絲氨酸是TBG的關(guān)鍵氫鍵結(jié)合位點(diǎn)。Yang等[22]嘗試構(gòu)建3D-QSAR模型預(yù)測PBDEs和OH-PBDEs對(duì)TTR的抑制活性。Yang等[23-24]基于分子模擬結(jié)果,選取16種分子描述符定量評(píng)估鹵代酚類化合物與TTR的干擾效應(yīng),并比較了離子態(tài)和分子態(tài)鹵代酚類化合物的作用模式差異。本研究在已有研究基礎(chǔ)上,旨在借助柔性分子對(duì)接和3D-QSAR建模手段,揭示OH-PBDEs與TBG、TTR的微觀結(jié)合模式差異,最終構(gòu)建基于OH-PBDEs活性構(gòu)象3D-QSAR預(yù)測模型,作為實(shí)驗(yàn)室毒性試驗(yàn)的有益補(bǔ)充。特別是在OH-PBDEs的危害評(píng)估中,可以在很大程度上突破基礎(chǔ)毒性數(shù)據(jù)不足的瓶頸。
1.1 模擬數(shù)據(jù)集
選取甲狀腺素T3、T4和14種OH-PBDEs作為研究對(duì)象,活性數(shù)據(jù)來源于熒光置換法測定的結(jié)合常數(shù)K[21]。OH-PBDEs與甲狀腺素轉(zhuǎn)運(yùn)蛋白的結(jié)合常數(shù)遵循Hansch方程。OH-PBDEs初始建模結(jié)構(gòu)來自于劍橋晶體結(jié)構(gòu)數(shù)據(jù)庫,利用Tripos力場對(duì)所有化合物進(jìn)行分子力學(xué)優(yōu)化,迭代次數(shù)設(shè)為10 000。價(jià)電子采用Gasteiger+Huckel力場優(yōu)化,收斂限為0.05 kcal·mol-1,其他參數(shù)均采用缺省值。優(yōu)化得到的最低能量構(gòu)象作為配體分子的初始低能穩(wěn)定構(gòu)型。利用SYBYLX1.0軟件構(gòu)建所有化合物的三維結(jié)構(gòu)模型。選擇人類T4/TBG復(fù)合物(PDB ID: 2CEO)[25]和T4/TTR復(fù)合物(PDB ID: 1ICT)[26]的晶體結(jié)構(gòu)作為甲狀腺素轉(zhuǎn)運(yùn)蛋白的三維結(jié)構(gòu)(http://www.rcsb.org/pdb)。在中性條件(pH=7)下,對(duì)蛋白結(jié)構(gòu)加氫和加電荷后利用MOLCAD程序確定靶蛋白的活性口袋,將晶體結(jié)構(gòu)中天然配體所在位置周圍6.5 ?范圍定義為蛋白結(jié)合活性位點(diǎn)。
1.2 分子對(duì)接和3D-QSAR模型構(gòu)建
采用Surflex-Dock分子對(duì)接程序?qū)3、T4和14種OH-PBDEs分別對(duì)接入TBG和TTR的活性位點(diǎn)。分子對(duì)接過程如下:將晶體結(jié)構(gòu)中的天然配體提取出來,采用Biopolymer程序去除水分子并增加氫原子;為蛋白質(zhì)分子增加Kollman原子電荷,其他參數(shù)采用缺失值;基于“鎖匙原理”,配體和甲狀腺素轉(zhuǎn)運(yùn)蛋白的對(duì)接結(jié)合能作為評(píng)價(jià)分子對(duì)接結(jié)果的主要指標(biāo),Surflex-Dock的打分函數(shù)包括疏水性、極性、排斥作用、熵和溶劑化效應(yīng)等,總打分值(Total Score,簡稱TS)用于估算配體受體的結(jié)合常數(shù)(K)。
將配體-受體復(fù)合物體系能量最低的配體構(gòu)象作為低能活性構(gòu)象,以最大公共子結(jié)構(gòu)進(jìn)行分子疊合。將疊合好的分子置于一個(gè)三維網(wǎng)格中,格點(diǎn)間距離為2 ?。sp3雜化碳原子作為分子探針,探針半徑1 ?,帶+1價(jià)電荷,計(jì)算分子在每個(gè)網(wǎng)格點(diǎn)上的立體場、靜電場、疏水場、氫鍵給體場和氫鍵受體場,其他都采用缺省值。柱過濾設(shè)置為1.0 kcal·mol-1是為了提高分析速度和降低噪聲,能量閾值均為126 kJ·mol-1。
1.3 數(shù)據(jù)統(tǒng)計(jì)分析
以比較分子場分析(CoMFA)和比較分子相似性指數(shù)(CoMSIA)方法計(jì)算的力場參數(shù)作為自變量,配體-受體結(jié)合常數(shù)(-logK)為因變量,利用偏最小二乘法(PLS)建立3D-QSAR模型。最佳主成分?jǐn)?shù)通過抽一法進(jìn)行交叉驗(yàn)證過程確定。模型統(tǒng)計(jì)學(xué)指標(biāo)包括相關(guān)系數(shù)(r)、標(biāo)準(zhǔn)偏差(SE)、F值、交叉驗(yàn)證相關(guān)系數(shù)(q2)和預(yù)測標(biāo)準(zhǔn)誤差(RMSEcv)由公式1和公式2計(jì)算。
(1)
(2)
2.1 OH-PBDEs與甲狀腺素轉(zhuǎn)運(yùn)蛋白的結(jié)合模式
基于天然配體T3和T4的構(gòu)象,對(duì)TBG和TTR的活性位點(diǎn)進(jìn)行識(shí)別。將晶體結(jié)構(gòu)(PDB ID: 2CEO)中的T4提取出來,然后重新對(duì)接入TBG的活性位點(diǎn),均方根偏差(RMSD)為0.2 ?,結(jié)合模式見圖1(a)。T4位于TBG的淺表型活性位點(diǎn)中,并分別與賴氨酸Lys270,天冬酰胺Asn273和精氨酸Arg378形成穩(wěn)定的氫鍵網(wǎng)絡(luò),表現(xiàn)出很強(qiáng)的結(jié)合親合力?;钚晕稽c(diǎn)內(nèi)部具有很強(qiáng)的疏水狹長凹槽,使T4的2個(gè)苯環(huán)嵌入其中。分子對(duì)接得到的結(jié)合模式與晶體結(jié)構(gòu)信息一致。雖然T3與T4的結(jié)合位點(diǎn)相同,T3的結(jié)合模式與T4存在差異,形成氫鍵的關(guān)鍵氨基酸為天冬酰胺Asn273和精氨酸Arg378(圖1(b))。由于T3比T4少一個(gè)碘原子取代基,導(dǎo)致T3兩苯環(huán)的二面角大于T4,結(jié)合能低于T4。
TTR晶體結(jié)構(gòu)(PDB ID: 1ICT)的天然共結(jié)晶配體為T4。結(jié)合模式見1(c),T4位于四聚體TTR結(jié)合所形成的疏水通道中,并分別與2個(gè)蛋白單體的賴氨酸Lys15和絲氨酸Ser117形成穩(wěn)定的氫鍵網(wǎng)絡(luò),表現(xiàn)出很強(qiáng)的結(jié)合親合力?;钚晕稽c(diǎn)內(nèi)部具有很強(qiáng)的疏水狹長凹槽,使T4的2個(gè)苯環(huán)嵌入其中。圖中紅色分子為晶體結(jié)構(gòu)中T4的構(gòu)象,彩色分子為分子對(duì)接得到的T4構(gòu)象,兩者的RMSD值小于0.5 ?。T3與TTR的結(jié)合模式見圖1(d),結(jié)合位點(diǎn)和關(guān)鍵氨基酸與T4相同。
圖2 14種OH-PBDEs與TBG(a)、TTR(b)的結(jié)合模式注:TBG和TTR三維結(jié)構(gòu)用飄帶結(jié)構(gòu)表示,對(duì)接配體用棍狀模型表示,活性位點(diǎn)的疏水性質(zhì)用MOLCAD彩色表面描述,氫鍵以黃色虛線表示。Fig. 2 Binding modes of 14 OH-PBDEs with TBG (a) and TTR (b)Note: 3D structures of TBG and TTR were expressed as ribbon structures, docked ligands were expressed as stick model, hydrophobic properties of the active sites were produced by the MOLCAD programme, and hydrogen bond were expressed as yellow dotted lines.
14種OH-PBDEs與TBG、TTR的分子對(duì)接結(jié)果見圖2。OH-PBDEs的羥基取代基通過與TBG的賴氨酸Lys270形成氫鍵而表現(xiàn)出較強(qiáng)的結(jié)合親合力。TTR的活性口袋由于是二聚體共同形成,因此活性位點(diǎn)的氨基酸具有對(duì)稱特征,形成氫鍵的關(guān)鍵氨基酸為絲氨酸Ser117和絡(luò)氨酸Leu110。但是,TTR的活性口袋比TBG更加開放,空腔體積更大,OH-PBDEs與TTR結(jié)合的空間取向更豐富。
所有化合物的對(duì)接分值見表1,T4、T3與TBG的對(duì)接結(jié)合能高于OH-PBDEs,但4-羥基-2,2’,3,4’-四溴二苯醚、4’-羥基-2,2’,4-三溴二苯醚、4’-羥基-2,2’,4,5’-四溴二苯醚等化合物與T3處于同一數(shù)量級(jí)。說明OH-PBDEs可以和T3、T4競爭結(jié)合TBG,進(jìn)而干擾體內(nèi)正常甲狀腺激素調(diào)節(jié)功能。通過比較OH-PBDEs與TTR的對(duì)接結(jié)合能,發(fā)現(xiàn)OH-PBDEs與T3、T4的結(jié)合能力更為接近,2’-羥基-4-溴二苯醚、2’-羥基-2,3’,4,5’-四溴二苯醚和6-羥基-2,2’,3,4,4’-五溴二苯醚的結(jié)合能力強(qiáng)于T3和T4。
表1 OH-PBDEs與TBG、TTR的對(duì)接結(jié)合能Table 1 Binding constants (K) and docking affinity (Total Score, TS) of fourteen OH-PBDEs with TTR and TBG obtained from the fluorescence displacement measurements
2.2 OH-PBDEs的分子疊合與3D-QSAR模型
T4、T3和14種OH-PBDEs的對(duì)接活性構(gòu)象采用最大公共子結(jié)構(gòu)進(jìn)行疊合(圖3)。OH-PBDEs的2個(gè)苯環(huán)中心和疏水中心重合。
隨機(jī)選取3個(gè)化合物,3'-羥基-2,4-二溴二苯醚、3'-羥基-2,4,4'-三溴二苯醚和2'-羥基-2,4,4'-三溴二苯醚為外部驗(yàn)證集,分別構(gòu)建TBG和TTR結(jié)合常數(shù)的3D-QSAR預(yù)測模型。最佳模型的統(tǒng)計(jì)學(xué)參數(shù)和各個(gè)模型的力場貢獻(xiàn)值見表2。CoMFA模型的抽一法交叉驗(yàn)證相關(guān)系數(shù)q2分別為0.270(TBG)和0.317(TTR),最佳主成分?jǐn)?shù)分別為5(TBG)和4(TTR),非交叉驗(yàn)證相關(guān)系數(shù)r2為0.967。CoMSIA模型的抽一法交叉驗(yàn)證相關(guān)系數(shù)q2分別為0.560(TBG)和0.525(TTR),最佳主成分?jǐn)?shù)為5,非交叉驗(yàn)證相關(guān)系數(shù)r2分別為0.966(TBG)和0.961(TTR)。
3D-QSAR模型預(yù)測能力見圖4。圖中紅色數(shù)據(jù)點(diǎn)為CoMFA模型的預(yù)測值,藍(lán)色數(shù)據(jù)點(diǎn)為CoMSIA模型的預(yù)測值,TBG預(yù)測集的結(jié)合常數(shù)范圍在7.5~8.5之間,TTR預(yù)測集的結(jié)合常數(shù)范圍在7.0~8.25之間。依據(jù)Topliss與Costello原則,多元線性QSAR模型結(jié)構(gòu)描述符與訓(xùn)練集樣本最小數(shù)目是1:5[27],可見模型的主成分?jǐn)?shù)偏大,采用Golbraikh等[28]提出的方法評(píng)價(jià)預(yù)測值和實(shí)驗(yàn)值的一致性。TBG-CoMSIA模型一致性參數(shù)為R02=0.8871,R0’2=0.9572,k=1.0057,k’=0.9942;TTR-CoMSIA模型一致性參數(shù)為R02=0.9946,R0’2=0.9935,k=1.0034,k’=0.9966。根據(jù)判定規(guī)則:模型的q2>0.5,R2>0.6,R02或R0’2接近R2,k值和k’值介于0.85與1.15之間,證明CoMSIA模型具有良好的預(yù)測能力。
圖3 T3、T4和14種OH-PBDEs的分子疊合圖Fig. 3 Molecular alignment of 14 OH-PBDEs, T3 and T4
圖4 觀測結(jié)合常數(shù)與模型預(yù)測值的比較Fig. 4 Observed vs. predicted binding constant (-logK) obtained from the CoMFA and CoMSIA model
表2 CoMFA和CoMSIA的統(tǒng)計(jì)學(xué)結(jié)果和力場貢獻(xiàn)Table 2 CoMFA and CoMSIA model to predict binding constant of TBG and TTR
OH-PBDEs與內(nèi)源甲狀腺素T3或T4具有相近的分子結(jié)構(gòu)特征,包括二苯醚骨架結(jié)構(gòu),多鹵素取代和苯環(huán)上的羥基取代位點(diǎn),決定了OH-PBDEs對(duì)甲狀腺素蛋白具有潛在的抑制效應(yīng)。由于14種OH-PBDEs的溴原子數(shù)量和取代位不同,導(dǎo)致與TBG和TTR的結(jié)合模式存在差異。分子對(duì)接結(jié)果可有效識(shí)別出OH-PBDEs的結(jié)合位點(diǎn)和發(fā)生氫鍵相互作用的關(guān)鍵氨基酸殘基。對(duì)比TBG和TTR的活性位點(diǎn)特征,TBG屬于淺表性活性口袋,T4分子中的氨基丙酸取代基可通過構(gòu)象回折形成氫鍵[25]。OH-PBDEs無氨基丙酸取代基,因此復(fù)合物的穩(wěn)定性降低,分子對(duì)接結(jié)果也證明OH-PBDEs與TBG的對(duì)接結(jié)合能不及T4。TTR的活性位點(diǎn)是四聚體結(jié)構(gòu)形成的疏水性通道中,T4分子中的一個(gè)苯環(huán)深埋入疏水性口袋底部,與絲氨酸Ser117的氫鍵作用增加了復(fù)合物的穩(wěn)定性。TTR的多聚體結(jié)構(gòu)有助于了OH-PBDEs的穩(wěn)定結(jié)合。通過對(duì)TBG和TTR活性位點(diǎn)的特征分析不難發(fā)現(xiàn),各OH-PBDEs的二苯醚骨架在活性位點(diǎn)中的空間取向相近,靜電作用和氫鍵結(jié)合位點(diǎn)決定了結(jié)合能的強(qiáng)弱。同時(shí),OH-PBDEs與通過競爭結(jié)合T3或T4干擾甲狀腺素的調(diào)節(jié)作用。
圖5 TBG-CoMSIA的三維等值線圖注:立體場(a),靜電場(b),疏水場(c),氫鍵給體和受體(d)。模型綠色和黃色色塊分別代表立體場的正貢獻(xiàn)和負(fù)貢獻(xiàn),藍(lán)色和紅色色塊分別 代表靜電場的正貢獻(xiàn)和負(fù)貢獻(xiàn),黃色和白色色塊分別代表疏水場的正貢獻(xiàn)和負(fù)貢獻(xiàn),青色和紫色色塊分別代表氫鍵給 體場的正貢獻(xiàn)和負(fù)貢獻(xiàn),紫紅色和紅色色塊分別代表氫鍵受體場的正貢獻(xiàn)和負(fù)貢獻(xiàn)。Fig. 5 3D contour plots from TBG-CoMSIA analysisNote: Steric contour plots (a), green contours indicate regions where bulky groups increase activity, whereas yellow contours indicate regions where bulky groups decrease activity; Electrostatic contour plots (b), blue contours indicate regions where positive groups increase activity, whereas red contours indicate regions where negative charge increases activity; Hydrophobic contour plots (c), yellow contours indicate regions where hydrophobic groups increase activity, whereas white contours indicate regions where hydrophobic groups decrease activity; H-bond donor and acceptor contour map (d), cyan contours indicate regions where hydrogen-bond donor groups on the receptor increase activity, whereas purple contours indicate regions where hydrogen-bond donor groups on the receptor decrease activity; magenta contours indicate regions where hydrogen-bond acceptor groups on the receptor increase activity, whereas red contours indicate regions where hydrogen-bond acceptor groups on the receptor decrease activity.
盡管前人建立了預(yù)測OH-PBDEs甲狀腺素效應(yīng)的線性和非線性模型,但仍需要進(jìn)一步完善。易忠勝等[20]采用Dragon軟件計(jì)算14種OH-PBDEs結(jié)構(gòu)描述符,構(gòu)建生物活性的線性預(yù)測模型。模型具有良好的穩(wěn)健性和擬合能力。不足之處在于線性模型自由度過大,并且無驗(yàn)證集。Cao等[21]利用OH-PBDEs的理化性質(zhì)log Kow預(yù)測毒性效應(yīng),僅從模型中無法獲得OH-PBDEs結(jié)構(gòu)特征和結(jié)合模式的信息。Yang等[22]提出的CoMSIA模型預(yù)測PBDEs和OH-PBDEs對(duì)TTR的抑制活性,沒有涉及OH-PBDEs與2種甲狀腺素轉(zhuǎn)運(yùn)蛋白的結(jié)合模式差異。綜合考慮,本文提出的3D-QSAR不僅可以獲得較好的模型穩(wěn)健性,同時(shí)可獲得OH-PBDEs不同取代基對(duì)抑制甲狀腺素轉(zhuǎn)運(yùn)蛋白活性的貢獻(xiàn)。模型的不足之處在于,與2D-QSAR模型相比,3D-QSAR模型需要分子疊合,特別是基于分子對(duì)接的活性構(gòu)象,在一定程度上削弱了模型的易用性。
比較CoMFA和CoMSIA模型的預(yù)測結(jié)果,CoMSIA模型具有較高的r2和q2值,比CoMFA模型穩(wěn)健。CoMFA模型的立體場貢獻(xiàn)分別為59.1%(TBG)和62.2%(TTR),而CoMSIA模型的靜電場貢獻(xiàn)降低為40.2%(TBG)和39.4%(TTR),而模型對(duì)OH-PBDEs氫鍵作用的識(shí)別能力更強(qiáng),分別貢獻(xiàn)25.2%和29.3%。預(yù)測TBG結(jié)合常數(shù)的CoMSIA模型三維等值線圖如圖5所示,OH-PBDEs分子周圍引入靜電基團(tuán)以及C4取代位上引入氫鍵給體基團(tuán)和醚氧原子周圍引入氫鍵受體取代基團(tuán)有助于親合力的提高。
如圖6所示,TTR-CoMSIA的等值線圖中OH-PBDEs周圍引入空間大位阻基團(tuán)有利于TTR結(jié)合力提高。OH-PBDEs分子周圍引入靜電基團(tuán)以及C4取代位上引入氫鍵給體基團(tuán)和醚氧原子周圍引入氫鍵受體取代基團(tuán)有助于親合力的提高。在與TTR結(jié)合過程中,氫鍵給體取代基團(tuán)的貢獻(xiàn)大于與TBG結(jié)合的貢獻(xiàn)。
綜上所述,本研究采用分子對(duì)接和3D-QSAR技術(shù),構(gòu)建了14種典型OH-PBDEs的類甲狀腺素活性預(yù)測模型。研究表明,持久性有機(jī)污染物PBDEs的代謝產(chǎn)物OH-PBDEs通過與甲狀腺素轉(zhuǎn)運(yùn)蛋白TBG和TTR競爭結(jié)合干擾人體甲狀腺素系統(tǒng)的正常生理功能。OH-PBDEs的羥基取代基通過氫鍵作用與TBG、TTR結(jié)合,不同溴取代基的數(shù)量和取代位點(diǎn)影響蛋白結(jié)合親和力。研究方法可應(yīng)用于評(píng)價(jià)其他鹵代污染物代謝產(chǎn)物的人體甲狀腺素功能損傷。
圖6 TTR-CoMSIA的三維等值線圖注:立體場(a),靜電場(b),疏水場(c),氫鍵給體和受體(d)。Fig. 6 3D contour plots from TTR-CoMSIA analysisNote: Steric contour plots (a), Electrostatic contour plots (b), Hydrophobic contour plots (c), and H-bond donor and acceptor contour map (d).
致謝:感謝上海源資公司周梅女士提供計(jì)算機(jī)模擬軟件支持。
[1] Costa L G, de Laat R, Tagliaferri S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity [J]. Toxicology Letters, 2014, 230: 282-294
[2] Wang H, Zhang Y, Liu Q, et al. Examining the relationship between brominated flame retardants (BFR) exposure and changes of thyroid hormone levels around e-waste dismantling sites [J]. International Journal of Hygiene and Environmental Health, 2010, 213: 369-380
[3] Darnerud P O, Eriksen G S, Johannesson T, et al. Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology [J]. Environmental Health Perspectives, 2001, 109: 49-68
[4] Letcher R J, Bustnes J O, Dietz R, et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish [J]. Science of the Total Environment, 2010, 408: 2995-3043
[5] Gabrielsen K M, Krokstad J S, Villanger G D, et al. Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus) [J]. Environmental Research, 2015, 136: 413-423
[6] Dahlberg A K, Chen V L, Larsson K, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in long-tailed ducks (Clangula hyemalis) and their main food, Baltic blue mussels (Mytilus trossulus x Mytilus edulis) [J]. Chemosphere, 2016, 144: 1475-1483
[7] Sjodin A, Hagmar L, Klasson-Wehler E, et al. Flame retardant exposure: Polybrominated diphenyl ethers in blood from Swedish workers [J]. Environmental Health Perspectives, 1999, 107: 643-648
[8] Wiseman S B, Wan Y, Chang H, et al. Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: Environmental sources, metabolic relationships, and relative toxicities [J]. Marine Pollution Bulletin, 2011, 63: 179-188
[9] Nost T H, Helgason L B, Harju M, et al. Halogenated organic contaminants and their correlations with circulating thyroid hormones in developing Arctic seabirds [J]. Science of the Total Environment, 2012, 414: 248-256
[10] Hallgren S, Sinjari T, Hakansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice [J]. Archives of Toxicology, 2001, 75: 200-208
[11] Zhou T, Taylor M M, DeVito M J, et al. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption [J]. Toxicological Sciences, 2002, 66: 105-116
[12] Eriksson P, Jakobsson E, Fredriksson A. Brominated flame retardants: A novel class of developmental neurotoxicants in our environment? [J]. Environmental Health Perspectives, 2001, 109: 903-908
[13] Hallgren S, Darnerud P O. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone effects [J]. Toxicology, 2002, 177: 227-243
[14] Larsson M, Pettersson T, Carlstrom A. Thyroid-hormone binding in serum of 15 vertebrate species-isolation of thyroxine-binding globulin and prealbumin analogs [J]. General and Comparative Endocrinology, 1985, 58: 360-375
[15] Savu L, Vranckx R, Maya M, et al. Thyroxine-binding globulin and thyroxine-binding prealbumin in hypothyroid and hyperthyroid developing rats [J]. Biochimica et Biophysica Acta, 1989, 992: 379-384
[16] Meerts I A T M, Zanden J J V, Luijks E A C, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2000, 56: 95-104
[17] Hamers T, Kamstra J H, Sonneveld E, et al. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) [J]. Molecular Nutrition & Food Research, 2008, 52: 284-298
[18] Murk A J, Rijntjes E, Blaauboer B J, et al. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals [J]. Toxicology in Vitro, 2013, 27: 1320-1346
[19] Legler J, Brouwer A. Are brominated flame retardants endocrine disruptors? [J]. Environment International, 2003, 29: 879-885
[20] 易忠勝, 李連臣, 葉廷文, 等. 羥基多溴二苯醚生物活性的QSAR研究[J]. 桂林理工大學(xué)學(xué)報(bào), 2011, 31: 430-438
Yi Z S, Li L C, Ye T W, et al. QSAR study on bioactivity of hydroxylated polybrominated diphenyl ethers [J]. Journal of Guilin University of Technology, 2011, 31: 430-438 (in Chinese)
[21] Cao J, Lin Y, Guo L H, et al. Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins [J]. Toxicology, 2010, 277: 20-28
[22] Yang W H, Shen S D, Mu L L, et al. Structure-activity relationship study on the binding of PBDEs with thyroxine transport proteins [J]. Environmental Toxicology and Chemistry, 2011, 30: 2431-2439
[23] Yang X H, Xie H B, Chen J W, et al. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms: Nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals [J]. Chemical Research in Toxicology, 2013, 26: 1340-1347
[24] 楊先海, 陳景文, 李斐. 化學(xué)品甲狀腺干擾效應(yīng)的計(jì)算毒理學(xué)研究進(jìn)展[J]. 科學(xué)通報(bào), 2015, 60: 1761-1770
Yang X H, Chen J W, Li F. Progress in computational toxicology for evaluation of thyroid disrupting effects of chemicals [J].Chinese Science Bulletin, 2015, 60: 1761-1770 (in Chinese)
[25] Zhou A W, Wei Z Q, Read R J, et al. Structural mechanism for the carriage and release of thyroxine in the blood [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 13321-13326
[26] Wojtczak A, Neumann P, Cody V. Structure of a new polymorphic monoclinic form of human transthyretin at 3 angstrom resolution reveals a mixed complex between unliganded and T-4-bound tetramers of TTR [J]. Acta Crystallographica Section D-Biological Crystallography, 2001, 57: 957-967
[27] Topliss J G, Costello R J. Chance correlations in structure-activity studies using multiple regression-analysis [J]. Journal of Medicinal Chemistry, 1972, 15: 1066-1068
[28] Golbraikh A, Tropsha A. Beware of q2! [J]. Journal of Molecular Graphics and Modelling, 2002, 20: 269-276
◆
3D-QSARStudyonInteractionsbetweenHydroxylatedPBDEsandThyroidHormonesTransportProteins
Liang Feng1, Mu Yunsong2,*, Li Huixian2, Feng Chenglian2
1. School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
10.7524/AJE.1673-5897.20161205001
2016-12-05錄用日期2017-01-23
1673-5897(2017)3-251-10
X171.5
A
穆云松(1982-),男,環(huán)境化學(xué)博士,副研究員,主要研究方向?yàn)榄h(huán)境化學(xué)和預(yù)測毒理學(xué),發(fā)表學(xué)術(shù)論文30余篇。
國家自然科學(xué)基金面上項(xiàng)目(41673087);河南省科技攻關(guān)計(jì)劃項(xiàng)目(162102310389) ;河南省教育廳科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目(14A610012)
梁峰(1973-),男,講師,研究方向?yàn)榄h(huán)境污染物的構(gòu)效關(guān)系研究,E-mail: liangfeng@hncj.edu.cn;
*通訊作者(Corresponding author), E-mail: muys@craes.org.cn
梁峰, 穆云松, 李會(huì)仙, 等. 羥基多溴代二苯醚與甲狀腺素運(yùn)載蛋白相互作用的3D-QSAR研究[J]. 生態(tài)毒理學(xué)報(bào),2017, 12(3): 251-260
Liang F, Mu Y S, Li H X, et al. 3D-QSAR study on interactions between hydroxylated PBDEs and thyroid hormones transport proteins [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 251-260 (in Chinese)