魏大勇,譚傳東,崔藝馨,吳道明,李加納,梅家琴,錢偉
?
甘藍型油菜CMS育性恢復位點的全基因組關聯(lián)分析
魏大勇,譚傳東,崔藝馨,吳道明,李加納,梅家琴,錢偉
(西南大學農學與生物科技學院/重慶市油菜工程技術研究中心,重慶400716)
【目的】甘藍型油菜波里馬細胞質雄性不育(CMS)在中國已被廣泛應用于雜交種育種,其育性恢復程度表現(xiàn)出受1對主效基因的控制,并受微效修飾基因的影響。通過全基因組關聯(lián)分析方法挖掘育性恢復位點,并對候選基因進行比較分析?!痉椒ā客ㄟ^蕓薹屬60K SNP芯片對308份甘藍型油菜自然群體進行基因型分型,并用CMS系301A作母本,與上述材料分別進行雜交得到308份F1,每份F1分別于2013年和2014年進行種植,每年2次重復,于始花期根據(jù)花粉育性和花蕊發(fā)育情況調查F1植株的育性等級,同時對測交父本自然群體進行群體結構分析和親緣關系評估,并結合測交父本的基因型分型結果和F1的育性等級進行全基因組關聯(lián)分析(GWAS)。從GWAS分析中顯著的SNP左右100 kb區(qū)間或與顯著SNP處于同一單體型塊(2>0.5)的區(qū)間內預測候選基因,并對候選基因進行QTL比較分析和單體型或等位基因的效應分析。【結果】方差分析結果顯示,兩年F1的育性等級存在顯著差異(<0.01),但相關分析發(fā)現(xiàn),兩年的育性等級存在顯著的正相關(= 0.52,<0.001)。群體結構分析顯示,所有測交父本被分為3個亞群(冬性、春性和半冬性),親緣關系分析發(fā)現(xiàn),任何2個材料之間平均親緣關系值為0.072,73%的任意材料間親緣關系值小于0.1,其中,約53%的材料親緣關系值為0。GWAS分析共檢測到13個與育性恢復程度顯著關聯(lián)的SNP,構成了6個候選區(qū)間,分別位于A01、A09、C03、C06和C08 5條染色體上,單個SNP解釋的表型變異介于2.53%—9.96%。從中共預測到6個與育性恢復位點相關的候選基因,其中4個編碼的蛋白含有恢復基因特有的PPR保守基序。共線性分析發(fā)現(xiàn),4個候選基因中的2個(和)位于A09和C08染色體部分同源區(qū)間,且與已克隆的CMS育性恢復位點同源。另外2個新鑒定到的候選基因(和)連鎖的SNP等位基因或單體型變化都與育性等級顯著相關(<0.001)?!窘Y論】通過GWAS分析鑒定到多個與油菜育性恢復有關的候選基因,開發(fā)基于與這些基因連鎖位點或SNP的功能標記將有助于對該不育系統(tǒng)進行恢復系和保持系的篩選。
甘藍型油菜;波里馬細胞質雄性不育;育性恢復基因;全基因組關聯(lián)分析;SNP
【研究意義】雄性不育在植物界普遍存在,早在1763年,德國植物學家K?lreuter觀察到雄性不育現(xiàn)象。目前,雄性不育主要包括由線粒體基因和核基因共同控制的細胞質雄性不育(cytoplasmic male sterility,CMS)和由核基因單獨控制的細胞核雄性不育(genic male sterility,GMS)兩種[1]。油菜是世界上繼大豆和油棕之后的第三大油料作物,菜油是中國主要食用油之一。作為第一個有實用價值的油菜細胞質雄性不育類型,波里馬細胞質雄性不育(Polima CMS)已被廣泛應用于油菜雜交種的制種[2]。早前關于甘藍型油菜CMS恢復基因的研究多數(shù)是基于分離群體構建的連鎖圖譜進行QTL定位,費時費力。隨著甘藍型油菜參考基因組的釋放和高通量測序成本的不斷降低,新型技術比如高通量SNP芯片的出現(xiàn),加快了候選基因識別的進程。因此,本研究通過全基因組關聯(lián)分析快速挖掘影響CMS的育性恢復位點,對加快雜種油菜的育種進程具有重要現(xiàn)實意義?!厩叭搜芯窟M展】由于CMS在油菜育種中的廣泛應用,恢復基因()的定位越來越受到關注。前人對育性恢復性狀的遺傳分析說明,該性狀受1對顯性基因控制[3]。由于在白菜型油菜(AA)、芥菜型油菜(AABB)和甘藍型油菜(AACC)中都發(fā)現(xiàn)了,因此,推測可能位于A組染色體[4]。蔡強[5]通過連續(xù)回交構建的CMS育性恢復基因近等基因系群體,將與恢復基因連鎖的標記定位在N9連鎖圖上,位于分子標記pW123bE和CNU008之間;Li等[6]找到一個與遺傳距離為0.2 cM的SSR標記KBrDP1,并與DH系遺傳連鎖圖整合,將定位在9號連鎖群上;Liu等[7]將CMS育性恢復位點定位在白菜()的A09染色體29.2 kb內,并預測區(qū)間內一個開放閱讀框為候選位點;Liu等[8]驗證了上述開放閱讀框,并且發(fā)現(xiàn)是通過減少的表達來恢復油菜CMS的育性。截止到目前,已在七大作物中克隆了13個植物育性恢復基因,分別為玉米的[9-10],矮牽牛的[11],蘿卜的和[12-14],水稻的()[15-18]、[18]、[19]、[20]、[21]和[22],高粱的[23],甜菜的()[24-25]以及甘藍型油菜的[8]。除了玉米的、水稻的和甜菜的外,其他10個恢復基因的編碼蛋白都含有PPR(pentatrieopeptide repeat)基序。PPR基序是由Small和Peeters于2000年發(fā)現(xiàn)和命名的,由35個氨基酸組成的序列單元經串聯(lián)重復排列而成的一個基因家族[26]。大部分PPR蛋白N端具有線粒體和葉綠體定位序列,是研究植物核質互作的理想模型[27]。目前研究傾向于認為,恢復基因的功能是通過抑制線粒體基因組中CMS相關嵌合基因的表達,來抑制或消除雄性不育的毒害效應,但是具體機制仍不清楚。由于多個物種的恢復基因中存在PPR保守基序,因此,PPR特征可以作為鑒定植物恢復基因候選基因的有效手段。【本研究切入點】盡管油菜CMS育性恢復主效基因已被鑒定,但育性恢復仍存在微效多基因的影響,因此,本研究采用CMS系301A作母本,與308份甘藍型油菜自然群體分別進行雜交得到308份F1,通過甘藍型油菜自然群體(測交父本)的SNP芯片數(shù)據(jù)對308份F1的育性等級進行全基因組關聯(lián)分析。【擬解決的關鍵問題】本研究通過GWAS期望尋找更多的甘藍型油菜CMS育性恢復位點或基因(包括微效基因),并通過等位基因或單體型效應分析,尋找與育性相關的SNP位點,為以后的功能標記開發(fā)奠定基礎,應用于該不育系統(tǒng)恢復系和保持系的篩選鑒定。
1.1 供試材料和表型測定
甘藍型油菜CMS 301A作母本,與308份不同來源的甘藍型油菜分別雜交產生308份F1,分別于2013年和2014年播種在重慶市油菜工程技術研究中心試驗地(重慶北碚),3行區(qū)播種,每行10株,每年2次重復。于始花期(每個株系有一半植株至少開花3朵)觀察5株長勢一致F1植株的花粉育性和雄蕊/雌蕊發(fā)育情況,統(tǒng)計每個F1的育性等級用于后續(xù)分析。同時也記錄了始花期當天和前10天的日平均溫度。參考楊光圣等[4]方法,根據(jù)花粉的多少和雄蕊/雌蕊發(fā)育情況劃定材料育性等級:1級,花藥發(fā)育正常,大量花粉;2級,花藥發(fā)育基本正常,中量花粉;3級,花藥退化成三角形,雄蕊低于雌蕊,少量花粉;4級,花藥退化成三角形,雄蕊明顯低于雌蕊,極少花粉;5級,花藥退化成三角形且呈乳白色,雄蕊明顯低于雌蕊,沒有花粉。其中1級和2級為可育,4級和5級為不育,3級為部分可育(圖1)。
a:F1育性等級的劃分依據(jù),P1為不育母本,P2為可育父本;b:2013和2014年育性等級的頻率分布
1.2 SNP基因型分型和數(shù)據(jù)過濾
于苗期選擇鮮嫩葉片提取總DNA,提取及純化使用TIANGEN?植物基因組DNA提取試劑盒(DP305),濃度最后統(tǒng)一稀釋成100 ng·μl-1,-20℃保存?zhèn)溆?。采用Illumina公司開發(fā)的60K SNP芯片對上述材料進行基因型分型[28]。將芯片數(shù)據(jù)得到的52 157個SNP位點與法國公布的甘藍型油菜品種“Darmor- Bzh”的基因組v4.1(http://www.genoscope.cns.fr/brassicanapus/data/)進行本地Blastn,比對的閾值設為e-10。比對結果參考Schiessl等[29]的條件過濾:序列一致性(identity)>95%,沒有gaps,比對長度(alignment length)>49 bp。
1.3 群體結構和親緣關系評估
群體結構分析采用STRUCTURE v2.3.4[30],亞群數(shù)目k設置為1到9 ,5次模擬運算,蒙特卡羅迭代(MCMC)和模擬參數(shù)迭代(length of bum in period)都設置為1í105次循環(huán),在混合模型和頻率相關模型下進行獨立運算。最后輸出的k值通過后驗概率值結果LnP (D)和2個連續(xù)的后驗概率值的變化速率Dk來矯正并確定群體中存在的最優(yōu)類群數(shù)目[31]。數(shù)據(jù)的可視化通過基于R語言的SelectionTools包(http://www. uni-giessen.de/population-genetics/downloads)來實現(xiàn)。利用SPAGeDi v1.4軟件[32]對甘藍型油菜自然群體進行親緣關系(relative kinship)評估。
1.4 全基因組關聯(lián)分析和候選基因預測
利用R語言的GenABEL包進行GWAS分析[33],采用PCA + K的混合線性模型對性狀和標記進行關聯(lián)位點的檢測,閾值設定為<4.25×10-5(1/所使用的標記,-log10= 4.37)。結果通過Manhattan圖和Q-Q圖顯示[34]。通過R語言的p.adjusted命令計算假陽性率(false discovery rate,F(xiàn)DR)。將顯著SNP位置左右各延伸100 kb或者與顯著SNP處于同一單體型塊(r2>0.5)的區(qū)間,定義為候選關聯(lián)區(qū)間,在此區(qū)間參考以下條件預測候選基因:1)在甘藍型油菜或擬南芥參考基因組上與性狀相關的已知功能的基因;2)SNP直接落在基因內部;3)參考已報道QTL定位的結果。
每個SNP或單體型解釋的表型變異采用SAS軟件的proc glm進行計算,所用模型為y = geno,其中,y為表型觀測值,geno為SNP或單體型的基因型。
2.1 甘藍型油菜F1的育性等級分析
前期研究發(fā)現(xiàn),CMS系301A屬于低溫敏感型,持續(xù)低溫易形成微粉,所有父本材料不受環(huán)境影響,都正??捎?。301A與308份正??捎母仕{型油菜分別雜交所得F1,育性調查結果方差分析顯示,兩年的F1育性等級存在顯著差異(<0.01),說明環(huán)境對育性有一定的影響。但相關分析發(fā)現(xiàn),兩年的育性等級存在顯著的正相關(= 0.52,<0.01)(圖1)??紤]到CMS系301A對溫度的敏感,記錄調查育性等級當天及前10天的日平均溫度,相關性結果顯示,育性等級與始花期前10 d的日平均溫度存在顯著的負相關(=-0.41—-0.20,<0.01),但和始花期當天的日平均溫度沒有顯著的相關性(2013=-0.039,2013=0.338;2014=-0.082,2014=0.526),說明該育性恢復位點受雄蕊分化期間溫度的影響但不受調查時溫度的影響(電子附表1)。
2.2 SNP評價和分布
利用Illumina公司的GenomeStudio軟件對308份甘藍型油菜的60K芯片進行基因型分型。參考Schiessl等[29]方法,剔除沒有定位到甘藍型油菜參考基因組和定位在random染色體上的標記,同時刪除MAF小于0.05和缺失加雜合大于25%的標記,最后剩下23 489個定位到唯一染色體上的SNP標記,用于后續(xù)分析(電子附表2,http://pan.baidu.com/s/ 1mhVbk04)。
通過SNP在基因組上的分布發(fā)現(xiàn),SNP數(shù)目最多的是C04染色體,占10.3%(2 425個SNP);最少的是C09染色體,占2.80%。A和C亞基因組平均每條染色體分布1 093和1 396個SNP,結合甘藍型油菜A、C亞基因組的大小得出,A亞基因組SNP的密度(平均每100 kb有4.6個SNP)是C亞基因組的1.5倍,說明A亞基因組發(fā)生了更多的重組交換,這可能是由于油菜從歐洲引入亞洲后導入了油菜的親本之一白菜的遺傳成分,拓寬了油菜A亞基因組的遺傳多樣性。
2.3 群體結構和親緣關系
從19條染色體上均勻選取5 700個SNP(MAF>0.05)用于群體結構和親緣關系的估測。群體結構的亞群通過獨立的k值無法確定,因為LnP(D)值隨著k值的增加而增大,沒有出現(xiàn)拐點,因此,采用Evanno等[35]方法計算Δk值,Dk在k = 3時出現(xiàn)峰值(圖2-a)。所有308份父本最后被分為3個亞群,亞群1主要由冬性材料構成,亞群2主要是春性材料,而半冬性材料主要構成了亞群3(圖2-b),該結果與生態(tài)型的來源一致。
親緣關系分析發(fā)現(xiàn),任何2個材料之間平均親緣關系值為0.072,73%的任意材料間親緣關系值小于0.1,其中,約53%的材料親緣關系值為0(圖2-c)。以上結果表明所用材料之間的親緣關系較遠,適合GWAS的研究。
2.4 全基因組關聯(lián)分析和QTL比較
為了消除年度間的環(huán)境影響,采用Merk等[36]方法對2年的表型數(shù)據(jù)進行最佳線性無偏預測(best linear unbiased prediction,BLUP),估計育性等級的BLUP值,并結合SNP基因型數(shù)據(jù)采用基于R語言GenABEL包的PCA + K混合線性模型進行GWAS分析。
GWAS分析共檢測到13個SNP與育性等級顯著關聯(lián)(<4.26×10-5,-log10>4.37),分布在A01、A09、C03、C06和C08 5條染色體上,單個位點解釋的表型變異介于2.53%—9.96%,Q-Q圖顯示該模型很好地控制了假陽性概率的產生(圖3,表1)。根據(jù)位點間的連鎖不平衡(r2>0.5),檢測到的13個SNP被分為6個候選區(qū)間,預測到6個與育性相關的候選基因,其中4個候選基因的編碼蛋白含有育性恢復基因特有的PPR(pentatricopeptide repeat)保守基序(表1)。
A09染色體上顯著SNP(Bn-A09-p34393068和Bn-scaff_16445_1-p932699)構成的候選區(qū)間與C08染色體顯著SNP(Bn-A09-p34437367)所對應的候選區(qū)間有極高的共線性(圖3),且都定位在遠古祖先染色體核型A block(24個祖先染色體核型block之一,擬南芥對應位置在chr1:202 136—204 189,基因從到)。同時該區(qū)間與已報道的A09染色體上1個CMS恢復基因精細定位區(qū)間重疊,候選基因都對應同一個擬南芥基因,進一步驗證了該分析方法的準確性。
a:后驗概率LnP(D)估計值和Δk值,k值取1到9;b:聚類結果;c:親緣關系的分布
表1 GWAS結果和候選基因預測
圖中橫的虛線代表閾值(1/23490,-log10p = 4.37),豎的虛線代表在A09和C08部分同源區(qū)間共定位的SNP。紅色標記表示本研究和Liu等[7]共同預測的候選基因
2.5 單體型效應
除了上述2個候選基因與已有報道的結果一致,另外2個含有PPR保守基序的候選基因未發(fā)現(xiàn)相對應的QTL報道,接下來對這兩個候選區(qū)間進行單體型效應分析。C03染色體上候選基因位于顯著SNP(Bn-scaff_26320_1-p297674)上游45 kb處,該區(qū)域SNP平均2大于0.8,構成一個單體型塊,所有7個SNP構成5種單體型,單體型效應分析發(fā)現(xiàn),68.9%的材料具有單體型G-T-A-T-G-A-G,平均育性等級為3.9±1.44,20.1%的材料具有單體型A-C-C-C-N-C-A,平均育性等級為2.1±1.53,剩下3種單體型共占10.5%,2種比例最大的單體型與育性等級顯著關聯(lián)(<0.001)。C06染色體候選基因位于顯著SNP(Bn-scaff_15818_1- p374433)下游100 kb處,編碼的蛋白同樣含有PPR保守基序,該100 kb區(qū)間內所有SNP處于極高的LD(r2>0.9)(圖4-a),只存在2種單體型,通過一個位點的效應分析可以預測整個區(qū)間的效應。隨后對候選基因上游最近的1個SNP(Bn-scaff_15818_1-p471106,上游2.9 kb)等位基因(C/T)效應分析發(fā)現(xiàn),當SNP位點從CC變?yōu)門T時,可育材料(1和2級)增加了71.7%,不育材料(4和5級)降低了37.8%(圖4-b),該位點與育性等級顯著關聯(lián)(<0.001)。
a:C06候選區(qū)間LD分析,*代表顯著的SNP,藍色字體代表預測的候選基因,基因結構顯示在基因的下方。b:候選基因上游最近的SNP(Bn-scaff_15818_1-p471106)等位基因效應分析
本研究所使用的60K SNP芯片已被廣泛應用在基于自然群體的全基因組關聯(lián)分析[37]和基于分離群體的QTL定位研究中[38]。利用該SNP芯片對308份油菜F1的育性等級進行GWAS分析,最終預測了4個含PPR保守基序的候選基因,其中2個落在A09和C08染色體的部分同源區(qū)間,且與已克隆的A09上的CMS恢復基因位點()相同,對應同一個擬南芥基因。該候選區(qū)間被多個群體的QTL定位重復檢測到[5-7]。另外2個候選基因對應的區(qū)間未發(fā)現(xiàn)相應的QTL報道,貢獻率都不到5%,可能是由微效多基因控制,因而在早前基于雙親的分離群體中不容易被檢測到。進一步單體型分析說明,與2個候選基因處于同一單體型塊的SNP的等位基因或單體型的變化與CMS的育性顯著相關,通過這些SNP的差異可以開發(fā)功能標記,應用于甘藍型油菜CMS恢復系和保持系的篩選。
高通量測序技術的迅猛發(fā)展,將基因組學水平的研究帶入了一個新的時期。蕓薹屬60K SNP芯片的開發(fā)和甘藍型油菜參考基因組的釋放,使我們能夠快速、準確地挖掘重要農藝性狀的候選基因和進一步的深入研究。本研究采用目前在植物中廣泛應用的全基因組關聯(lián)分析方法,成功鑒定出與甘藍型油菜CMS育性恢復相關的位點,省時省力,同時該自然群體可以對其他農藝性狀和品質性狀進行定位,成為快速解碼大量未知基因功能的重要途徑。同時該研究將有助于其他CMS系統(tǒng)育性恢復候選基因的快速挖掘,促進油菜的雜種優(yōu)勢利用。
通過GWAS分析,成功鑒定出13個可能影響CMS育性恢復有關的SNP位點,分布在5條染色體上。預測了4個含PPR保守基序的候選基因,其中2個候選基因在A09和C08染色體的部分同源區(qū)間,且與早前報道的一個CMS育性恢復位點一致。另外2個為新鑒定到的微效基因,與候選基因處于同一單體型塊內的SNP變化與育性等級顯著相關。
[1] Chen L, Liu Y G. Male sterility and fertility restoration in crops., 2014, 65: 579-606.
[2] Fu T D, Yang G S, Yang X N. Studies on three line Polima cytoplasmic male sterility developed in., 1990,104: 115-120.
[3] Yang G S, Fu T D, Ma C Z, Yang X N. Screening and genetic analysis of the restoring genes of polima cytoplasmic male sterility in., 1996, 29: 17-22.
[4] 楊光圣, 傅廷棟. 油菜細胞質雄性不育恢保關系的研究. 作物學報, 1991, 17(2): 151-156.
Yand G S, Fu T D. A preliminary study on the restoring-maintaining relationship in rapeseed., 1991, 17(2): 151-156. (in Chinese)
[5] 蔡強. 甘藍型油菜波里馬細胞質雄性不育恢復基因的分子標記篩選與初步定位[D]. 武漢: 華中農業(yè)大學, 2009.
Cai Q. Identification of molecular markers and perliminary mapping of fertility restorer gene () for the ‘polima’ CMS inL.[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[6] Li Y, Liu Z, Cai Q, Yang G S, He Q B, Liu P W. Identification of a microsatellite marker linked to the fertility-restoring gene for a polima cytoplasmic male-sterile line inL.., 2011, 10(47): 9563-9569.
[7] Liu Z, Liu P W, Long F R, Hong D F, He Q B, Yang G SFine mapping and candidate gene analysis of the nuclear restorer geneforCMS in rapeseed (L.)., 2012, 125(4): 773-779.
[8] Liu Z, Yang Z H, Wang X, Li K D, An H, Liu J, Yang G S, Fu T D, Yi B, Hong D FA mitochondria-targeted PPR protein restorescytoplasmic male sterility by reducingtranscript levels in oilseed rape., 2016, 9(7): 1082-1084.
[9] Cui X, Wise R P, Schnable P S. Thenuclear restorer gene of male-sterile T-cytoplasm maize., 1996, 272: 1334-1336.
[10] Liu F, Cui X Q, Horner H T, Weiner H, Schnable P S. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize., 2001, 13(5): 1063-1078.
[11] Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants., 2002, 99(16): 10887-10892.
[12] Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J F, Cheung W Y, Landry B SThe radishrestorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats., 2003, 35(2): 262-272.
[13] Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane AIdentification of the fertility restoration locus,, in radish, as a member of the pentatricopeptide-repeat protein family., 2003, 4(6): 588-594.
[14] Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura JGenetic characterization of a pentatricopeptide repeat protein gene,, that restores fertility in the cytoplasmic male-sterile Kosena radish., 2003, 34(4): 407-415.
[15] Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura TPositional cloning of the ricegene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein., 2004, 108(8): 1449-1457.
[16] Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu YThe rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162., 2012, 24(1): 109-122.
[17] Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta NMap-based cloning of a fertility restorer gene,, in rice (L.)., 2004, 37(3): 315-325.
[18] Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y GCytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing., 2006, 18(3): 676-687.
[19] Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene,, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein., 2011, 65(3): 359-367.
[20] Fujii S, Toriyama K. Suppressed expression of retrograde- regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants., 2009, 106(23): 9513-9518.
[21] Tang H W, Luo D P, Zhou D H, Zhang Q Y, Tian D S, Zheng X M, Chen L T, Liu Y G. The rice restorerfor wild-abortive cytoplasmic male sterility encodes a mitochondrial- localized PPR protein that functions in reduction oftranscripts., 2014, 7(9): 1497-1500.
[22] Huang W C, Yu C C, Hu J, Wang, L L, Dan Z W, Zhou W, He C L, Zeng, Y F, Yao G X, Qi J Z, Zhang Z H, Zhu R S, Chen X F, Zhu Y G. Pentatricopeptide-repeat family proteinfunctions with hexokinase 6 to rescue rice cytoplasmic male sterility., 2015, 112(48): 14984-14989.
[23] Klein R R, Klein P E, Mullet J E, Minx P, Rooney W L, Schertz K FFertility restorer locus[corrected] of sorghum (L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12., 2005, 111(6): 994-1012.
[24] Hagihara E, Itchoda N, Habu Y, Iida S, Mikami T, Kubo TMolecular mapping of a fertility restorer gene for Owen cytoplasmic male sterility in sugar beet., 2005, 111(2): 250-255.
[25] Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, Yui-Kurino R, Taguchi K, Tamagake H, Mikami T, Kubo TUnusual and typical features of a novel restorer-of-fertility gene of sugar beet (L.)., 2012, 192(4): 1347-1358.
[26] Small I D, Peeters N. The PPR motif - a TPR-related motif prevalent in plant organellar proteins., 2000, 25(2): 46-47.
[27] 丁安明, 屈旭, 李凌, 孫玉合. 植物PPR蛋白家族研究進展. 中國農學通報, 2014, 9: 218-224.
Ding A M, Qu X, Li L, Sun Y H. The progress of PPR protein family in plants., 2014, 9: 218-224. (in Chinese)
[28] Edwards D, Batley J, Snowdon R J. Accessing complex crop genomes with next-generation sequencing., 2013, 126(1): 1-11.
[29] Schiessl S, Iniguez-Luy F, Qian W, Snowdon R J. Diverse regulatory factors associate with flowering time and yield responses in winter-type., 2015, 16(1): 737-797.
[30] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data., 2000, 155(2): 945-959.
[31] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study., 2005, 14(8): 2611-2620.
[32] Hardy O J, Vekemans X. SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels., 2002, 2(4): 618-620.
[33] Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis., 2007, 23(10): 1294-1296.
[34] Turner S D. qqman: an R package for visualizing GWAS results using QQ and manhattan plots., 2014, doi: http://dx.doi.org/ 10.1101/005165.
[35] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study., 2005, 14: 2611-2620.
[36] Merk H L, Yarnes S C, Van Deynze A, TONG N K, MENDA N, MUELLER L A, MUTSCHLER M A, LOEWEN S A, MYERS J R, FRANCIS D M. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm., 2012, 137: 427-437.
[37] Wei L J, Jian H J, Lu K, Filardo F, Yin N W, Liu L Z, Qu C M, Li W, Du H, Li J N. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in., 2016, 14: 1368-1380.
[38] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y, Snowdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL inL.., 2013, 8(12): e83052.
(責任編輯 李莉)
附表1 供試材料及表型數(shù)據(jù)
Supplementary Table 1 List of rapeseed accessions used in this study
可育父本編號Fertility male parents accession生態(tài)型 Ecotype2013年育性等級Fertility levelsin 20132013年始花期當天的日平均溫度Daily average temperature of beginning flowering in 2013 (℃)2013年始花期前10天的日平均溫度Daily average temperature 10 days ages from beginning flowering in 20132014年的育性等級Fertility levles in 20142014年始花期當天的日平均溫度Daily average temperature of beginning floweringin 2014 (℃)2014年始花期前10天的日平均溫度Daily average temperature 10 days ages from beginning flowering in 2014 Bn-197W22015.621615.3 Bn-188W22015.611816.5 Bn-180W214.513.7115.516.8 Bn-203W314.513.7116.516.9 Bn-056W32014.151714.4 Bn-075W32014.1316.515 Bn-200W22015.6216.515 Bn-129W42014.1516.515 Bn-041W22014.1219.516 Bn-067W42014.741615.3 Bn-139W32014.1416.515 Bn-070W214.513.721615.3 Bn-141W2131141616.9 Bn-016W32014.7415.514.9 Bn-079W22015.6419.516 Bn-017W32015.621816.5 Bn-198W22014.1516.515 Bn-147W22014.741714.4 Bn-185W22015.631616.9 Bn-183W42014.1517.514.9 Bn-027W42015.641816.5 Bn-174W314.513.7218.515.5 Bn-064W21110.7219.516 Bn-191W214.513.7115.514.9 Bn-199W21315.5518.515.5 Bn-137W212.516.3416.515 Bn-160W212.516.3418.515.5 Bn-158W312.516.331616.9 Bn-213W312.516.321816.5 Bn-172W212.516.3216.515 Bn-103W22014.141616.9 Bn-133W41211.3415.514.9 Bn-121W32014.111816.5 Bn-168W21216.1215.514.9 Bn-156W32014.731816.5 Bn-119W52014.1316.515 Bn-120W32015.651814.4 Bn-134W21216.141816.5 Bn-054W217.513.7116.515 Bn-012W31712.1320.514.6 Bn-044W51311416.515 Bn-015W42010.941616.9 Bn-078W217.513.7215.514.9 Bn-028W31611.7319.516.7 Bn-040W217.513.7518.515.5 Bn-008W217.513.7516.515 Bn-072W215.512.742116.8 Bn-052W214.513.7315.514.9 Bn-059W41211.3420.514.6 Bn-085W32014.1216.515 Bn-061W215.512.741714.4 Bn-038W22419.2416.516.9 Bn-001W32015.6417.516.8 Bn-086W314.513.7316.516.9 Bn-002W32014.1517.514.9 Bn-018W32014.1316.516.9 Bn-045W22015.611816.5 Bn-053W21216.151714.4 Bn-023W21215.8317.516.9 Bn-055W312.516.3118.515.5 Bn-202W317.513.731816.5 Bn-186W22014.1219.516.7 Bn-031W314.513.731816.5 Bn-107W217.513.7119.516.7 8Q 263W21611.751614.9 8Q 265W21215.9115.514.9 8Q 264S31310.831716.8 Bn-311S31310.8518.516 Bn-395S31310.8519.514.4 Bn-273S21211.3315.514.9 Bn-320S21116.2317.516.5 Bn-238S11210.7316.516.9 Bn-364S21310.8315.514.9 Bn-245S21311.422116.8 Bn-274S21611.741716.8 Bn-279S21712.1219.516.7 Bn-343S11311.411816.5 Bn-309S31210.7517.514.9 Bn-316S21211.3516.515.3 Bn-269S3129.4416.516.9 Bn-339S412.513.5418.516 Bn-361S21211.3515.515.3 Bn-400S21210.8519.514.4 Bn-392S21210.7218.516 Bn-275S31210.851614.9 Bn-328S4129.451815.5 Bn-348S11712.112116.8 Bn-355S41210.7315.515.3 Bn-291S21110.7415.515.3 Bn-335S21211.332116.8 Bn-334S31310.8116.516.9 Bn-366S212.59419.516.7 Bn-248S4129.841815.5 Bn-313S3127.2319.516.7 Bn-330S31311316.516.9 Bn-360S21211.3119.516.7 Bn-292S412.5951815.5 Bn-340S515.512.7217.516.5 Bn-359S212.513.5416.516.9 Bn-363S31313.722116.8 Bn-365S31210.8417.516.5 Bn-376S21311219.516.7 Bn-483S21210.841815.5 Bn-299S41211.351615 Bn-342S31110.7518.516 Bn-350S3131151615 Bn-323S213.511.451714.6 Bn-314S312.5931615 Bn-290S41110.751815.5 Bn-333S21311.4120.516.9 Bn-289S21611.751615 Bn-281S21310.831616.9 Bn-240S21310.831616.9 Bn-259S42014.741716.8 Bn-283S31611.7417.516.5 Bn-393S21112.531815.5 Bn-357S2131141616.9 8Q 268S3129.841616.9 8Q 269S41210.8516.515.3 8Q 271S31310.8319.514.6 8Q 272S21611.751815.5 Bn-322S21611.741616.9 9w237SW39.55.8317.516.5 9w238SW11211.3215.515.3 9w239SW1131111716.8 9w240SW112.516215.515.3 9w241SW11212116.516.9 9w242SW11210.7116.516.7 9w243SW11210.822116.8 9w244SW31311518.516 9w245SW11311116.516.8 9w246SW11213.8117.516.5 9w247SW31211.3518.516 9w248SW4129.4519.514.6 9w249SW31611.7417.516.5 9w251SW11611.7219.516.7 9w252SW11210.8119.516.7 9w253SW21611.7515.515.3 9w255SW51110.751714.6 9w256SW11310.8114.516.7 9w257SW21310.8418.515.1 9w259SW413.511.4419.516.7 9w261SW11611.7115.515.3 9w262SW31211.3520.515.3 9w263SW31712.1520.515.3 9w264SW11311115.515.3 9w266SW11310.8116.516.8 9w267SW31611.751815.5 9w268SW31211.3518.515.3 9w269SW41712.131815.5 9w270SW11210.811815.5 9w271SW41210.8418.515.1 9w272SW21611.7516.514.9 9w273SW51210.8415.515.3 9w274SW4129.8516.514.9 9w275SW211.510.351615 9w276SW11611.721615 9w277SW311.510.351815.5 9w279SW513.511.4419.516.7 9w280SW21112.151815.5 9w281SW41311515.515.3 9w282SW41311519.514.4 9w283SW31110.7516.514.9 9w284SW313.511.4516.514.9 9w285SW41210.7315.515.3 9w286SW415.512.7316.514.9 9w287SW31311319.514.6 9w288SW1129.411615 9w289SW11210.811815.5 9w290SW41211.3515.515.3 9w292SW21311515.515.3 9w294SW21712.1117.516.5 9w295SW313.511.411815.5 9w297SW31311515.515.3 9w298SW31311519.514.6 9w299SW31611.7416.514.9 9w300SW315.512.7516.514.9 9w301SW31611.7420.517.2 9w302SW31311.4418.515.1 9w303SW2131132116.8 9w304SW513.511.4515.515.3 9w305SW11210.711616.9 9w306SW31311516.514.4 9w307SW21211.351615 9w309SW41211.3516.514.4 9w313SW212.59519.514.6 9w314SW31211.3518.515.3 9w315SW31611.7417.516.5 9w317SW41311.441615 9w318SW31211.3515.515.3 9w319SW311.510.3516.514.9 9w320SW1129.8216.514.9 9w321SW213.511.441615 9w322SW51310.8419.514.6 9w324SW41310.8519.514.6 9w325SW4129.8516.514.9 9w327SW41210.8416.514.9 9w328SW51110.7515.515.3 9w330SW31211.3416.514.9 9w333SW4127.9516.514.9 9w335SW41210.8415.515.3 9w336SW1129.411815.5 9w337SW21210.8116.514.9 9w340SW2129.4218.515.1 9w341SW21210.822116.8 9w342SW21311419.514.6 9w343SW41210.7515.515.3 9w345SW31210.741716.8 9w349SW21310.8518.515.3 9w350SW31210.8515.515.3 9w351SW41310.8516.514.9 9w354SW4127.2517.514.9 9w355SW11210.8218.515.1 9w356SW21210.751615 9w357SW465.922116.8 9w358SW211.510.351815.5 9w359SW31211.341815.5 OJ105SW31310.8519.514.6 OJ106SW411.510.3518.515.3 OJ107SW21310.8319.514.6 OJ108SW3131151615 OJ110SW21611.731615 OJ111SW51211.3518.515.3 OJ115SW3116517.514.4 OJ117SW41311.4415.515.3 OJ118SW31311515.515.3 OJ119SW410.58.4414.516.7 OJ120SW21211.3515.515.3 OJ121SW313.511.451714.6 OJ122SW31311.4516.514.9 0J125SW31311416.514.9 0Q230SW31110.7519.514.6 0Q231SW31110.7118.515.1 0Q232SW311.510.3215.515.3 0Q233SW31311515.515.3 0Q234SW21611.751815.5 0Q236SW411651615 0Q237SW11211.3416.514.9 0Q239SW51310.841815.5 0Q240SW51211.351714.6 0Q242SW21712.1518.516 0Q229SW311.510.3416.514.9 2Q 174SW41311416.514.4 2Q 175SW41210.751815.5 2Q 226SW11215.812116.8 2Q 237SW31311519.514.6 2Q 240SW41611.7516.514.9 2Q 426SW112.514.921815.5 2Q 430SW11210.8116.516.8 2Q 431SW41210.8516.514.4 2Q 433SW313.511.4216.514.4 2Q 435SW11310.8119.516.8 2Q 440SW31311419.514.6 2Q 451SW213.511.451815.5 2Q 463SW31210.841616.9 2Q 466SW41110.751615.3 2Q 467SW11210.8115.515.3 2Q 474SW31311516.514.4 2Q 476SW312.59119.516.8 2Q 477SW3129.4119.516.8 2Q 483SW4131131615 2Q 484SW21311417.516.5 2Q 494SW213.511.4318.516 2Q 495SW21211.3115.515.3 2Q 496SW31311317.516.5 2Q 511SW412.59416.514.9 2Q 516SW511.58.651615 2Q 518SW11212.5116.514.9 2Q 522SW111.510.3119.516.8 2Q 525SW11310.8115.515.3 2Q 528SW213.511.442116.8 2Q 531SW2129.4516.514.4 2Q 542SW410.58.431615 2Q 544SW11212.6116.516.8 2Q 547SW3129.8516.514.4 2Q 551SW41210.7515.515.3 2Q 553SW11210.7115.515.3 2Q 554SW31210.8515.515.3 2Q 558SW3131152114.9 2Q 560SW31110.7415.515.3 2Q 561SW31611.7316.514.4 2Q 583SW11310.8119.516.8 2Q 592SW5129.841615 2Q 594SW412.59216.514.9 2Q 605SW31611.7318.516 2Q 607SW31211.341716.8 2Q 609SW47.55.951714.6 2Q 612SW31210.7518.516 2Q 622SW111.510.311716.8 2Q 645SW21712.151714.9 2Q 706SW31210.7515.515.3 2Q 731SW21611.7216.514.9 2Q 813SW31311316.514.9 2Q 853SW2129.4518.516 2Q 002SW1131111815.5 2Q 031SW5129.4516.514.4 2Q 038SW21712.151615.3 2Q 055SW41611.751815.5 2Q 057SW21712.1418.516 2Q 071SW311.58.6518.516 2Q 073SW11311116.515 2Q 079SW31210.7516.514.4 2Q 081SW21110.751714.9 2Q 101SW41311.4515.515.3 2Q 114SW31712.1316.514.9 2Q 132SW112.5911615 2Q 135SW111.515.8116.515 2Q 151SW212.59516.514.4
Genome-wide association study of the fertility restorer loci forCMS in rapeseed (L.)
WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei
(College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400716)
【Objective】 Polima system of cytoplasmic male sterility (CMS) in(rapeseed), controlled by a major gene as well as polygenes, has been widely used in China for hybrid rapeseed breeding. Genome-wide association study (GWAS) was performed in a rapeseed population to identify genetic loci and candidate genes for fertility restorer ofCMS. 【Method】 301A, a rapeseedCMS line, was chosen as the female parent to cross with a panel of 308 accessions in natural population of rapeseed which has been genotyped previously using the 60 kSNP array. The F1hybrids were grown for fertility evaluation in 2013 and 2014, respectively, with two replications each year. The fertility of F1was classified according to pollen fertility and performance of pistil and stamen, and population structure and relative kinship of 308 male accessions were analyzed. GWAS was conducted by associating the fertility of F1with the single nucleotide polymorphisms (SNPs) of males. Candidate genes was identified from the region of 100 kb each side of the peak SNP or trait-associated SNPs at LD (2>0.5). Comparative analysis of QTL and haplotype effect evaluation for candidate genes were performed. 【Result】A significant difference (<0.01) was found in the fertility of F1between two years, but a high correlation was detected in it between two years (= 0.52,<0.001). The population structure analysis classified the 308 male accessions into three genetic groups (winter, spring and semi-winter). The relative kinships analysis found that 73% of the kinship coefficients between lines were <0.1 and 53% were equal to 0. A total of 13 SNPs were detected to be with significant association with the fertility of F1, formed six genetic intervals on chromosomes A01, A09, C03, C06 and C08. Six genes related to fertility were predicted from the six intervals, and four of these could encode the PPR type proteins which is a conserve structure encoded by fertility restorer genes. Collinearity analysis revealed two PPR type candidate genes (and) detected in homoeologous regions between chromosome A09 and C08 were homology with, an open reading frame functioning as the reported rapeseed nuclear restorer gene ofCMS. The other two PPR type candidates (and) were novel candidate restorer genes forrapeseedCMS, of which the linked alleles or haplotypes of SNPs were found to significantly associated with the fertility level of the F1(<0.001).【Conclusion】The present study identified several fertility restorer genes forCMS in rapeseed from both A and C subgenomes. Developing functional markers from the alleles or SNPs linked with the candidate genes will benefit the screening of restorer and maintainer lines in theCMS system.
; polima CMS; fertility restorer gene; GWAS; SNP
2016-09-23;接受日期:2016-12-12
國家“973”計劃(2015CB150201)、國家自然科學基金(31601333)
魏大勇,E-mail:dylanmay@swu.edu.cn。通信作者梅家琴,Tel:023-68250701;E-mail:jiaqinmay@163.com