馮園麗,夏力,項(xiàng)曙光
?
馮園麗,夏力,項(xiàng)曙光
(青島科技大學(xué)過程系統(tǒng)工程研究所,山東青島 266042)
能源是國民經(jīng)濟(jì)發(fā)展和人們生活水平的重要物質(zhì)基礎(chǔ),能源的合理開發(fā)和有效利用對(duì)社會(huì)的發(fā)展和進(jìn)步產(chǎn)生很大的影響。國家“十三五”規(guī)劃建議提出推進(jìn)能源革命,加快能源技術(shù)創(chuàng)新,建設(shè)清潔低碳、安全高效的現(xiàn)代能源體系,提高非化石能源比重,推動(dòng)煤炭等化石能源清潔高效利用[1]。調(diào)整能源結(jié)構(gòu)、提高能源利用率、推廣節(jié)能技術(shù)已經(jīng)成為我國優(yōu)化過程能量系統(tǒng)和發(fā)展過程工業(yè)的內(nèi)在需求。
熱量輸運(yùn)過程的研究是化工過程中能量系統(tǒng)的基礎(chǔ)環(huán)節(jié),該過程的優(yōu)化能夠減少能量消耗,是化工過程系統(tǒng)節(jié)能的有效措施。在傳熱過程優(yōu)化的研究中,PRIGOGINE[2]基于變分法提出最小熵產(chǎn)原理,BEJAN[3]提出的熵產(chǎn)最小原則,即給定換熱速率,溫差最小,熵產(chǎn)最小,可用能損失最小。NEVERS和SEADER[4-5]基于熵平衡方程式,定義損失功和熱力學(xué)效率,從而提出了熵分析法。熵分析法在許多領(lǐng)域都有廣泛研究,比如熱力學(xué)[6-7]、生物學(xué)[8-9]、物理[10-11]、醫(yī)學(xué)[12]、工程技術(shù)[13-14],甚至哲學(xué)[15]、歷史[16-17]和經(jīng)濟(jì)[18-19]等。目前,在化工過程工業(yè)的節(jié)能方面,熵分析法較多地用于優(yōu)化換熱器參數(shù),較少用于雙流股換熱網(wǎng)絡(luò)[20],沒有用于多流股換熱網(wǎng)絡(luò)中,且熵分析法存在一定的局限性:BEJAN[21]對(duì)換熱器優(yōu)化設(shè)計(jì)時(shí),發(fā)現(xiàn)有效度隨著熵產(chǎn)數(shù)增大而增大的“熵產(chǎn)悖論”現(xiàn)象;BERTOLA等[22]證明熵產(chǎn)最小原理優(yōu)化導(dǎo)熱和流體流動(dòng)時(shí),不適用于靜止?fàn)顟B(tài)和傅里葉定律;ZHANG等[23]研究換熱器的傳熱效果時(shí),發(fā)現(xiàn)存在臨界熱平衡誤差,使得出現(xiàn)無效負(fù)熵產(chǎn)的現(xiàn)象。
1.1 換熱網(wǎng)絡(luò)中的熵分析法
換熱網(wǎng)絡(luò)中的熵分析法是基于熱力學(xué)第二定律,目的是研究在環(huán)境溫度0下熱物流對(duì)冷物流做的最大理想功。通過計(jì)算冷、熱物流各自的熵變、焓變、理想功或根據(jù)冷、熱物流的總熵變計(jì)算損失功,進(jìn)一步求解熱力學(xué)第二定律效率來作為評(píng)價(jià)換熱網(wǎng)絡(luò)能量回收效果的依據(jù),有助于指導(dǎo)制定相應(yīng)的節(jié)能措施。
假設(shè)換熱網(wǎng)絡(luò)中有h個(gè)熱物流(包括熱公用工程)和c個(gè)冷物流(包括冷公用工程),在換熱過程中流體不存在相變,沒有熱量損失和軸功,流體的流動(dòng)方式是逆流或并流,則從起始溫度為in到終點(diǎn)溫度為out的熵變?yōu)槭?1)、式(2)[31]。
式中,為熱容流率,即=質(zhì)量流率×定壓比熱容c。
物流所做的理想功為式(3)、式(4)。
式中,Δ為焓變;0為環(huán)境溫度。
換熱網(wǎng)絡(luò)的熱力學(xué)第二定律效率為式(5)。
式中,m,h,i、m,c,j為股熱物流和股冷物流的對(duì)數(shù)平均溫度。
傳熱溫差越大表明在換熱網(wǎng)絡(luò)中熱物流的熱量并不能較好地被冷物流利用,則損失功越大,熱力學(xué)第二定律效率越低。通常Δmin=15~25K[32-33],因此選擇不同的傳熱溫差,重復(fù)上述步驟,由式(5)分別得到熱力學(xué)第二定律效率Ⅱ,1、Ⅱ,2…,通過比較來評(píng)價(jià)換熱網(wǎng)絡(luò)中的熱量利用情況,確定最大熱回收網(wǎng)絡(luò)。
由式(1)、式(2)計(jì)算該過程的熵變,見式(10)。
根據(jù)式(5),可計(jì)算熱力學(xué)第二定律效率為 式(13)。
SSOT裝置是指重質(zhì)油采用一次通過、加氫裂化尾油部分循環(huán)或全循環(huán)的方式操作進(jìn)行加氫脫硫、脫氮等反應(yīng),是現(xiàn)代煉化企業(yè)二次加工、重質(zhì)油輕質(zhì)化的重要手段。案例中SSOT裝置以減壓瓦斯油為原料,經(jīng)過預(yù)熱與氫氣混合后被加熱到一定溫度進(jìn)入反應(yīng)器進(jìn)行加氫脫硫、脫氮、裂解及烯烴和芳烴飽和等反應(yīng),反應(yīng)產(chǎn)物經(jīng)冷高分、冷低分,冷高分頂循環(huán)氣脫硫后返回到反應(yīng)部分循環(huán)使用,冷低分酸性氣輸送到其余脫硫單元,冷低分來的生成油脫除H2S后,進(jìn)入分餾塔將轉(zhuǎn)化產(chǎn)品與轉(zhuǎn)化產(chǎn)品分離,得到轉(zhuǎn)化產(chǎn)品石腦油、航煤、柴油和作為乙烯生產(chǎn)原料的尾油。該裝置的換熱網(wǎng)絡(luò)包括11股熱物流和9股冷物流,提取物流數(shù)據(jù)見表1,冷、熱公用工程數(shù)據(jù)見表2和 表3[38-39]。
2.1 現(xiàn)行換熱網(wǎng)絡(luò)分析
根據(jù)表1的數(shù)據(jù),選取環(huán)境溫度為0=298.15K,壓力=0.1013MPa,在-圖中繪制出冷、熱組合曲線,見圖1。
表1 工藝物流數(shù)據(jù)
表2 熱公用工程數(shù)據(jù)
表3 冷公用工程數(shù)據(jù)
(1)熵分析法 熱物流的熵變?yōu)?7.861kW/K,熱物流的理想功為1.547×104kW,冷物流的熵變?yōu)?2.445kW/K,冷物流的理想功為1.264×104kW,外加熱公用工程的熵變?yōu)?4.073kW/K,理想功為3.670×103kW,冷公用工程的熵變?yōu)?8.003kW/K,理想功為3.531×103kW,則熱力學(xué)第二定律效率為81.70%。
圖1 SSOT裝置現(xiàn)有換熱網(wǎng)絡(luò)的冷、熱組合曲線圖
2.2 最大能量回收下的換熱網(wǎng)絡(luò)分析
假設(shè)取Δmin=20K時(shí),夾點(diǎn)溫度為408K(位移溫度),即對(duì)于熱物流為418K,對(duì)于冷物流為398K,在-圖中繪制最大熱回收換熱網(wǎng)絡(luò)的冷、熱組合曲線圖見圖2。
圖2 SSOT裝置最大熱回收換熱網(wǎng)絡(luò)組合曲線圖[38-39]
(1)熵分析法 熱物流的熵變?yōu)?.002×102kW/K,熱物流的理想功為1.479×104kW,冷物流的熵變?yōu)?0.905kW/K,冷物流的理想功為1.310×104kW,外加熱公用工程熵變?yōu)?.669kW/K,理想功為5.352×102kW,冷公用工程熵變?yōu)?2.283kW/K,理想功為1.817×103kW,則熱力學(xué)第二定律效率為88.59%,節(jié)能67.34%。
按照上述方法,分別再取Δmin=15K、25K,計(jì)算結(jié)果見表4、表5。
表4 熵分析法結(jié)果
表5 分析法結(jié)果
圖3 熱力學(xué)效率和傳遞效率隨ΑΒΓΔTmin的變化
由圖3和表4、表5可以看出,對(duì)于熵分析法,隨著Δmin=15K、20K和25K變化時(shí),熱物流的熵變?cè)絹碓酱?,所做的理想功越來越小;冷物流的熵變?cè)絹碓叫?,所做的理想功越來越大,而熱力學(xué)第二定律效率卻越來越大,分別為86.80%、88.59%和90.42%。由式(1)知熵與熱量和溫度有關(guān),當(dāng)熱量一定時(shí),冷、熱流體溫差越小,總熵變?cè)叫?,做功能力越?qiáng),根據(jù)BEJAN提出的熵產(chǎn)最小原則,熵變?cè)叫”砻鲹p失功越小。而案例中冷熱流體的傳熱溫差越大,反而總熵變?cè)酱螅瑩p失功越小,熱力學(xué)效率越大,節(jié)能效果越差,出現(xiàn)違背熵產(chǎn)最小原則的現(xiàn)象。因此,熵分析法并不適用于描述換熱網(wǎng)絡(luò)的節(jié)能效果。
CP——熱容流率,kW/K cv——定容比熱容,kJ/(kg·K) cp——定壓比熱容,kJ/(kg·K) E——,kW·K ΔE——耗散,kW·K H——焓變,kW m ——質(zhì)量流率,kg/s P——壓力,MPa Q——熱容量,J S——熵變,kW/K T——溫度,K ΔTmin——最小傳熱溫差,K W——功,kW ηII——熱力學(xué)第二定律效率,% ηE——傳遞效率,% 下角標(biāo) c——冷物流 h——熱物流 i, j——物流的組分?jǐn)?shù) m——對(duì)數(shù)平均 in——起始 out——終點(diǎn) id——理想狀態(tài)
[1] 國務(wù)院. 中華人民共和國國民經(jīng)濟(jì)和社會(huì)發(fā)展第十三個(gè)五年規(guī)劃綱要[EB/OL]. 新華社,2016[2016-03-17]. http://www.china. com.cn/ lianghui/news/2016-03/17/content_38053101.htm
The State Council.The 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China[EB/OL]. [2016-03- 17]. http://www.china.com.cn/lianghui/news/2016-03/17/content_ 38053101. htm
[2] PRIGOGINE I.Problèmes d'évolution dans la Thermodynamique des Phénomènes Irréversibles[M].The Origin of Life on the Earth (English-French-German Edition).New York:Academic Press,1959:418-427.
[3] BEJAN A.Entropy generation minimization:the new thermodynamics of finite-size devices and finite-time processes[J]. Journal of Applied Physics,1996,79(3):1191-1218.
[4] NEVERS N D,SEADER J D.Lost work:a measure of thermodynamic efficiency[J].Energy,1980,5(8/9):757-769.
[5] NEVERS N D,SEADER J D.Mechanical lost work,thermodynamic lost work,and thermodynamic efficiencies of processes[J].Revista Latinoamericana De Transferencia De Calor Y Materia,1984,8(1/2):77-105.
[6] BUTT A S,ALI A.Entropy analysis of magnetohydrodynamic flow and heat transfer over a convectively heated radially stretching surface[J].Journal of the Taiwan Institute of Chemical Engineers,2014,45(4):1197-1203.
[7] NATERER G.Transition criteria for entropy reduction of convective heat transfer from micropatterned surfaces[J].Physical Review A,2015,87(4):2940-2949.
[8] SHAW C A,SENEFF S,KETTE S D,et al.Aluminum-induced entropy in biological systems:implications for neurological disease[J].Journal of Toxicology,2014(10):1-27.
[9] BAEZ J C,POLLARD B S.Relative entropy in biological systems[J].Entropy,2015,18(2):1-22.
[10] GIFFIN A,CAFARO C,ALI S A.Application of the maximum relative entropy method to the physics of ferromagnetic materials[J].Physica A:Statistical Mechanics and its Applications,2016,455(8):11-26.
[11] DUBROCA B,BRULL S,MALLET J.General moment system for plasma physics based on minimum entropy principle[J].Kinetic & Related Models,2015,8(3):533-558.
[12] CRANE P W,ZHOU Y,SUN Y,et al.Entropy:a conceptual approach to measuring situation-level workload within emergency care and its relationship to emergency department crowding[J].Journal of Emergency Medicine,2014,46(4):551- 559.
[13] THARAYIL T,ASIRVATHAM L G,DAU M J,et al.Entropy generation analysis of a miniature loop heat pipe with grapheme-water nanofluid: Thermodynamics model and experimental study[J].International Journal of Heat and Mass Transfer,2017,106(3):407-421.
[14] MUNITZ A,MESHI L,KAUFMAN M J.Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy[J].Materials Science and Engineering:A,2017,689(3):384-394.
[15] REUTLINGER A.Can Interventionists be Neo-Russellians? Interventionism,the open systems argument, and the arrow of entropy[J].International Studies in the Philosophy of Science,2013,27(3):273-293.
[16] DAVIES T,F(xiàn)RY H,WILSON A,et al.Application of an entropy maximizing and dynamics model for understanding settlement structure:the khabur triangle in the middle bronze and iron ages[J].Journal of Archaeological Science,2014,43(2):141-154.
[17] BUSTINCE H,BARRENECHEA E,PAGOLA M,et al.A historical account of types of fuzzy sets and their relationships[J].IEEE Transactions on Fuzzy Systems,2016,24(1):179-194.
[18] ARGENTIERO A,BOVI M,CERQUETI R.Bayesian estimation and entropy for economic dynamic stochastic models:an exploration of overconsumption[J].Chaos Solitons & Fractals,2016,88:143-157.
[19] GO D S,LOFGREN H,RAMOS F M,et al.Estimating parameters and structural change in CGE models using a Bayesian cross-entropy estimation approach[J].Economic Modelling,2016,52(18):790-811.
[20] CHENG X T,LIANG X G.Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance[J].Energy Conversion and Management,2012,58:163-170.
[21] BEJAN A.Second-law analysis in heat transfer and thermal design[J].Advances in Heat Transfer,1982,15:1-58.
[22] BERTOLA V,CAFARO E.A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow[J].International Journal of Heat and Mass Transfer,2008, 51(7-8):1907-1912.
[23] ZHANG Z,ZHANG Y,ZHOU W,et al.Critical heat balance error for heat exchanger experiment based on entropy generation method[J].Applied Thermal Engineering,2016,94(2):644-649.
GUO Z Y,LIANG X G,ZHU H Y.Entransy—A physical quantity describing heat transfer ability[J].Progress in Natural Science,2006,16(10):1288–1296.
[25] 陳群,許云超,過增元. 傳熱學(xué)中的狀態(tài)圖及其應(yīng)用[J].科學(xué)通報(bào),2012,57(28):2771-2777.
CHEN Q,XU Y C,GUO Z Y.The property diagram in heat transfer and its applications[J].Chinese Science Bulletin,2012,57(28):2771-2777.
[26] WU J,GUO Z Y.Application of entransy analysis in self-heat recuperation technology[J].Industrial & Engineering Chemistry Research,2013,53(3):1274-1285.
WANG Y F,CHEN Q.An entransy dissipation resistance-based method for optimization of heat exchanger networks[J].Journal of Chemical Industry and Engineering(China),2015,66(s1):272-276.
[28] XU Y C,CHEN Q,GUO Z Y.Optimization of heat exchanger networks based on lagrange multiplier method with the entransy balance equation as constraint[J].International Journal of Heat and Mass Transfer,2016,95:109-115.
[29] 柳雄斌,過增元.換熱器性能分析新方法[J].物理學(xué)報(bào),2009,58(7):4766-4771.
LIU X B,GUO Z Y.A new method for performance analysis of heat exchangers[J].Acta Physica Sinica,2009,58(7):4766-4771.
[30] XU Y C,CHEN Q,GUO Z Y.Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems[J].Energy,2015,86(4):696-708.
[31] 施云海.化工熱力學(xué)[M]. 2版. 上海:華東理工大學(xué)出版社,2013:192-193.
SHI Y H.Chemical engineering thermodynamics[M].2nd. Shanghai:East China University of Science and Technology Press,2013:192-193.
[32] 華賁,仵浩,劉二恒. 基于?經(jīng)濟(jì)評(píng)價(jià)的換熱器最優(yōu)傳熱溫差[J].化工進(jìn)展,2009,28(7):1142-1146.
HUA B,WU H,LIU E.Exergy-economics based method about optimal temperature difference in heat-exchanger[J].Chemical Industry and Engineering Progress,2009,28(7):1142-1146.
[33] 肯普. 能量的有效利用-夾點(diǎn)分析與過程集成[M]. 項(xiàng)曙光,賈小平,夏力譯. 北京:化學(xué)工業(yè)出版社,2010:69-70.
KEMP I C. Pinch analysis and process integration[M]. XIANG S G,JIA X P,XIA L. translation. Beijing:Chemical Industry Press,2010:69-70.
CHENG X G.Entransy and its applications in heat transfer optimization[D].Beijing:Tsinghua University,2004.
[35] 施林德爾.換熱器設(shè)計(jì)手冊(cè)第三卷換熱器的熱設(shè)計(jì)與流動(dòng)設(shè)計(jì)[M]. 北京:機(jī)械工業(yè)出版社,1988:1-2.
SCHLUNDER E U.Thermal and flow design of heat exchangers of the heat exchanger design handbook[M].Beijing:China Machine Press,1988:1-2.
[36] VDI-Gesellschaft.VDI heat atlas[M].Berlin:Springer,2010.
[37] 柳雄斌,孟繼安,過增元.換熱器參數(shù)優(yōu)化中的熵產(chǎn)極值和火積耗散極值[J]. 科學(xué)通報(bào),2008,53(24):3026-3029.
LIU X B,MENG J A,GUO Z Y.Minimum entropy generation and minimum entransy dissipation in parameter optimization of heat exchanger[J].Chinese Science Bulletin,2008,53(24):3026-3029.
[38] 王凌燕,夏力,高凱,等.SSOT裝置換熱網(wǎng)絡(luò)節(jié)能研究[J].化工進(jìn)展,2011,30(s1):689-693.
WANG L Y,XIA L,GAO K,et al.Energy saving research on SSOT heat exchanger network[J].Chemical Industry and Engineering Progress, 2011,30(s1):689-693.
[39] 王凌燕.SSOT裝置的模擬與節(jié)能研究[D].青島:青島科技大學(xué),2012.
WANG L Y.Studies on simulation and energy saving of SSOT device[D].Qingdao:Qingdao University of Science and Technology, 2012.
Comparative study on heat exchanger network adaptability based on entropy analysis and entransy analysis
FENG Yuanli,XIA Li,XIANG Shuguang
(Institute of Process System Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong,China)
Entropy and entransy are the measure of irreversibility of heat transfer process,which can be used to evaluate the utilization of energy in the heat exchanger networks(HENs). In view of the irreversibility of HENs,firstly,the mathematical models of HENs energy efficiency were established based on entropy analysis method and entransy analysis method. Then, taking the maximum energy recovery as the goal,the HEN analysis of the single-stage once through hydrocracker (SSOT) unit was carried out. The applicability of the two methods was compared,and it was proved that the entropy analysis method is suitable for the analysis of complex HENs. The results showed that the minimum temperature differencesminwere selected 15K,20K,25K respectively,and the heat transfer efficiency calculated by the two methods were different. The efficiency of the second law of thermodynamics calculated by entropy analysis method increased 86.80%,88.59% and 90.42%,respectively,which was inconsistent with the principle of minimum entropy production. The entransy transfer efficiency decreased 76.45%,74.86%,73.41%,respectively. The results of entropy analysis method were consistent with the greater the temperature differences,the lower the heat transfer ability. Thus,the entransy analysis method is more suitable for the analysis of energy utilization efficiency of HENs than that of entropy analysis method. At the same time,this method is helpful to evaluate the energy saving potential of heat transfer network.
heat transfer;entropy;entransy;optimization;heat exchanger networks
TQ021.8
A
1000-6613(2017)10-3657-08
10.16085/j.issn.1000-6613.2017-0355
2017-03-07;
2017-06-05。
國家自然科學(xué)基金項(xiàng)目(21406124)。
馮園麗(1992—),女,碩士研究生。
項(xiàng)曙光,教授,博士生導(dǎo)師,研究方向?yàn)榛み^程系統(tǒng)工程。E-mail:xsg@qust.edu.cn。