唐祥祥,王 茉,徐柏青,3
(1.中國(guó)科學(xué)院青藏高原研究所,北京 100101; 2.中國(guó)科學(xué)院大學(xué),北京 100049; 3.中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101)
青藏高原大氣和雪冰黑碳的空間分布特征
唐祥祥1,2,王 茉1,徐柏青1,3
(1.中國(guó)科學(xué)院青藏高原研究所,北京 100101; 2.中國(guó)科學(xué)院大學(xué),北京 100049; 3.中國(guó)科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101)
青藏高原為亞洲主要河流提供水資源。青藏高原周邊地區(qū)排放的黑碳?xì)馊苣z經(jīng)大氣環(huán)流可被傳輸至高原內(nèi)部,并沉降到雪冰表面,對(duì)降水和冰川物質(zhì)平衡產(chǎn)生重要影響?;仡櫧畮啄陙?lái)青藏高原大氣和雪冰黑碳空間分布特征。結(jié)果表明:青藏高原大氣黑碳濃度在空間分布上呈現(xiàn)出由外圍向內(nèi)部逐漸降低、由低海拔向高海拔指數(shù)降低的趨勢(shì);從季節(jié)變化看,西風(fēng)氣候區(qū)大氣黑碳濃度夏季出現(xiàn)高值,季風(fēng)氣候區(qū)則冬、春季出現(xiàn)高值;青藏高原雪冰黑碳含量具有同大氣黑碳濃度相一致的季節(jié)變化特征,并在空間分布上呈現(xiàn)出由南向北增加、由低海拔向高海拔降低的趨勢(shì)。
黑碳;空間分布;季節(jié)變化;大氣;雪冰;氣溶膠;排放;青藏高原
青藏高原被譽(yù)為亞洲“水塔”,擁有除南、北兩極之外最多的冰川儲(chǔ)備,其冰川融水是亞洲眾多河流的重要淡水補(bǔ)給,與全球60%人口的生活生產(chǎn)息息相關(guān)[1]。然而,青藏高原周邊地區(qū)人口密集,能源結(jié)構(gòu)和燃燒技術(shù)相對(duì)落后。包括黑碳(BC)氣溶膠在內(nèi)的污染物不但對(duì)人類(lèi)健康造成危害[2],同時(shí)也會(huì)產(chǎn)生一系列的氣候環(huán)境效應(yīng),特別是對(duì)區(qū)域地-氣輻射收支、降水時(shí)空分布和冰川物質(zhì)平衡的影響[3-5],引起了國(guó)際社會(huì)的廣泛關(guān)注[6-7]。
由生物質(zhì)和化石燃料燃燒排放的黑碳?xì)馊苣z對(duì)輻射具有極強(qiáng)的吸收作用,進(jìn)而對(duì)地球系統(tǒng)的能量收支和分布具有重要影響,是氣候環(huán)境變化不可忽視的影響因子[8-10]。首先,黑碳?xì)馊苣z懸浮在大氣中可吸收更多來(lái)自太陽(yáng)和地表的輻射能,對(duì)空氣柱產(chǎn)生加熱作用[11-12]。大氣環(huán)流模型模擬顯示,南亞黑碳?xì)馊苣z吸收輻射對(duì)大氣的加熱作用可使喜馬拉雅山脈南麓、印度恒河平原上空2~5 km大氣層升溫0.6 ℃,這可能是過(guò)去50年來(lái)喜馬拉雅地區(qū)比全球平均增溫快1倍的原因之一。另有研究發(fā)現(xiàn),青藏高原積雪變化的空間分布特征同大氣黑碳分布具有緊密的聯(lián)系,模擬結(jié)果顯示大氣黑碳可使青藏高原地區(qū)升溫1.3 ℃[13]。其次,黑碳?xì)馊苣z可作為云凝結(jié)核,改變?cè)频挝⑽锢硖匦訹14-15],降低云反照率,加熱云滴及其周?chē)h(huán)境,使云滴蒸發(fā),減少云中液態(tài)水含量[16],抑制有效降水[11,17]。另外,沉降在積雪和冰川表面的黑碳能夠顯著改變冰雪表面的反照率[18],在冰雪下墊面產(chǎn)生正輻射強(qiáng)迫,進(jìn)而導(dǎo)致近地表氣溫升高。但近期有研究指出,青藏高原某些地區(qū)沙塵對(duì)雪冰表面反照率及輻射強(qiáng)迫的影響顯著高于黑碳所產(chǎn)生的影響[19]。Hansen等的模擬結(jié)果顯示,在1880~2002年間,海冰和雪中的黑碳所產(chǎn)生的地表正輻射強(qiáng)迫可使全球地表平均升溫0.17 ℃[20]。Jacobson認(rèn)為燃燒排放的黑碳和有機(jī)碳在10年中可使近地表溫度上升0.27 ℃[21]。Flanner等使用SNICAR模型模擬的結(jié)果顯示,青藏高原雪冰黑碳所引起的瞬時(shí)強(qiáng)迫最大可達(dá)20 W·m-2[22]。由此可見(jiàn):黑碳可通過(guò)加熱大氣和降低雪冰表面反照率使區(qū)域氣候變暖,誘發(fā)冰川、積雪融化;同時(shí),黑碳可抑制季風(fēng)活動(dòng)和改變降水的時(shí)空分配[23-24],進(jìn)而造成冰川物質(zhì)平衡負(fù)增長(zhǎng)。因此,青藏高原黑碳?xì)馊苣z不但影響區(qū)域氣候和水循環(huán)過(guò)程,也會(huì)改變青藏高原冰川物質(zhì)平衡。
綜上所述,黑碳?xì)馊苣z的這些氣候環(huán)境效應(yīng)使其成為青藏高原冰川變化的重要影響因子。青藏高原大氣和雪冰黑碳的觀測(cè)及其空間分布特征對(duì)黑碳?xì)馊苣z在青藏高原區(qū)域氣候環(huán)境變化研究中具有非常重要的意義。本文重點(diǎn)對(duì)青藏高原大氣黑碳濃度和雪冰黑碳含量的空間分布特征進(jìn)行了系統(tǒng)分析和整理。
青藏高原地區(qū)海拔3 000 m以上區(qū)域大氣黑碳平均濃度為(0.49±0.88)μg·m-3[25-46],海拔4 000 m以上區(qū)域大氣黑碳平均濃度為(0.15±0.10)μg·m-3[25,30,33-34,38-40,42-44,46]。青藏高原大氣黑碳濃度高于南極(0.05~20 ng·m-3)[47-48],但低于北極(1~10 μg·m-3)[18],這表明青藏高原大氣受人為活動(dòng)影響較小。一般而言,青藏高原高海拔地區(qū)大氣黑碳濃度低于低海拔地區(qū),偏遠(yuǎn)區(qū)域低于人口密集的城市。此外,青藏高原大氣黑碳季節(jié)變化特征也表現(xiàn)出明顯的氣候區(qū)差異[49]。
1.1 由外圍向內(nèi)部
圖1匯總了青藏高原及周邊地區(qū)大氣黑碳濃度觀測(cè)結(jié)果。由圖1可以看出,大氣黑碳濃度由高原外部向高原內(nèi)部呈現(xiàn)出降低趨勢(shì)。在海拔3 000 m以下的南亞,受人為排放影響較大的城鎮(zhèn)、鄉(xiāng)村地區(qū)大氣黑碳平均濃度為(15.91±9.18)μg·m-3[40,48-54],受人為排放影響較小的偏遠(yuǎn)地區(qū)大氣黑碳平均濃度為(1.02±0.30)μg·m-3[37-39,50,55-62];中國(guó)中西部鄉(xiāng)村地區(qū)大氣黑碳平均濃度為(3.93±0.21)μg·m-3[27],而在中西部偏遠(yuǎn)地區(qū)則為(0.66±0.63)μg·m-3[27,29,63-64]。值得指出的是,南亞受人為排放較小的偏遠(yuǎn)地區(qū)通常也是位于喜馬拉雅山脈南側(cè)海拔較高的地區(qū)(約2 000 m)。在人口相對(duì)密集、排放較為強(qiáng)烈的城市(如拉薩),大氣黑碳濃度相對(duì)于青藏高原內(nèi)陸其他地區(qū)高出1到2個(gè)數(shù)量級(jí)[27-28]。雖然在旅游旺季來(lái)源于青藏高原本地的人類(lèi)活動(dòng)影響排放增加[30,65],但整體而言,由于青藏高原地勢(shì)高聳、人口稀薄,大氣黑碳濃度接近本底值。這也說(shuō)明盡管南亞排放的污染物可在印度季風(fēng)的作用下被傳輸至青藏高原內(nèi)陸區(qū)域[30,65-66],但喜馬拉雅高聳的山脈可以有效地阻擋大部分黑碳?xì)馊苣z向高原內(nèi)部輸入。
大氣黑碳濃度單位為μg·m-3;數(shù)據(jù)引自文獻(xiàn)[25]~[65]圖1 青藏高原及周邊地區(qū)大氣黑碳濃度空間分布Fig.1 Spatial Distribution of Concentration of Atmosphere Black Carbon over Qinghai-Tibet Plateau and Surrounding Area
1.2 海拔變化
青藏高原大氣黑碳主要來(lái)源于高原外部低海拔區(qū)域的排放。研究表明,在西風(fēng)和印度季風(fēng)作用下,青藏高原黑碳主要來(lái)源于中亞—東歐和南亞[5,67-68]。在大氣黑碳傳輸過(guò)程中,受青藏高原的機(jī)械抬升作用,大氣黑碳濃度由低海拔向高海拔呈現(xiàn)出指數(shù)降低的變化趨勢(shì)(圖2)。此外,由圖2可以看出,盡管拉薩海拔較高,但受當(dāng)?shù)厝藶榕欧庞绊?,大氣黑碳濃度顯著高于青藏高原其他地區(qū)。
數(shù)據(jù)引自文獻(xiàn)[25]~[65]圖2 大氣黑碳濃度隨海拔高度的變化Fig.2 Variations of Concentration of Atmosphere Black Carbon Corresponding to Elevation
1.3 季節(jié)變化
青藏高原大氣黑碳濃度的季節(jié)變化受排放源、大氣環(huán)流和當(dāng)?shù)爻两禇l件等因素影響。在受人為活動(dòng)影響較大的城市,大氣黑碳濃度在冬、春季出現(xiàn)最高值,這主要來(lái)源于當(dāng)?shù)鼐用袢紵?、牲畜糞便等致使黑碳排放量增加,同時(shí)干燥的區(qū)域氣候條件不利于大氣顆粒物沉降;在較為偏遠(yuǎn)的地區(qū),大氣黑碳濃度季節(jié)變化主要取決于大氣環(huán)流和當(dāng)?shù)爻两禇l件。本文僅討論受人為活動(dòng)影響較小的觀測(cè)點(diǎn)大氣黑碳濃度的季節(jié)變化。
青藏高原南部至東南部區(qū)域,受季風(fēng)影響顯著,氣候濕潤(rùn)、季風(fēng)盛行的夏季降水量高,在此稱(chēng)之為季風(fēng)氣候區(qū);青藏高原西北部和內(nèi)陸北部地區(qū),常年受西風(fēng)急流影響,降水少,氣候干燥,在此稱(chēng)之為西風(fēng)氣候區(qū)。已有研究顯示:西風(fēng)氣候區(qū)大氣黑碳濃度呈現(xiàn)出夏季較高的趨勢(shì)(如慕士塔格、塔克拉瑪干、祁連山和北麓河);季風(fēng)氣候區(qū)則呈現(xiàn)夏季較低的季節(jié)變化特征(如薩拉斯瓦蒂、庫(kù)魯、馬諾拉峰、穆格代斯沃爾、NCO-P、林芝、然烏和瓦里關(guān))[25-64](圖3、4)。西風(fēng)氣候區(qū)大氣黑碳濃度的高值主要同大氣邊界層活動(dòng)活躍、地表污染物傳輸增強(qiáng)相關(guān)聯(lián);季風(fēng)氣候區(qū)則主要與區(qū)域季節(jié)性降水增強(qiáng)、大氣污染物濕沉降增加相關(guān)。
數(shù)據(jù)引自文獻(xiàn)[25]~[64]圖3 大氣黑碳月平均濃度季節(jié)變化Fig.3 Seasonal Variations of Monthly Mean Concentrations of Atmosphere Black Carbon
圖4 觀測(cè)點(diǎn)地理位置Fig.4 Locations of Observation Sites
同兩極相比,青藏高原雪冰黑碳含量(質(zhì)量分?jǐn)?shù),下同)略高((45~50)×10-9)。北極地區(qū)雪冰黑碳含量為30×10-9[69],格陵蘭地區(qū)為3.0×10-9[20],而南極雪冰黑碳僅為0.2×10-9[18]。在水平方向上,青藏高原雪冰黑碳含量由南向北呈現(xiàn)微弱增加趨勢(shì);在垂直方向上則呈現(xiàn)出隨海拔升高而降低的趨勢(shì)。
2.1 區(qū)域分布
雪冰黑碳含量單位為10-9;數(shù)據(jù)引自文獻(xiàn)[3]、[5]、 [63]、[68]、[72]~[79]圖5 雪冰黑碳含量空間分布Fig.5 Spatial Distribution of Contents of Snow Black Carbon
青藏高原雪冰黑碳含量具有較大的空間分布差異(圖5)。納木那尼冰川表雪的雪冰黑碳含量?jī)H為4.3×10-9,而在烏魯木齊1號(hào)冰川表雪的雪冰黑碳含量達(dá)155.5×10-9,二者相差2個(gè)數(shù)量級(jí)。從表1可以看出:各區(qū)域平均雪冰黑碳含量從小到大依次為藏東南地區(qū)、喜馬拉雅山地區(qū)、祁連山地區(qū)、帕米爾高原地區(qū)、青藏高原中部地區(qū)、天山山脈地區(qū);青藏高原雪冰黑碳含量在緯度梯度上呈現(xiàn)出由南向北升高的趨勢(shì)(圖6)。南亞密集的人類(lèi)活動(dòng)排放是青藏高原大氣和雪冰黑碳的重要來(lái)源,而雪冰黑碳含量在緯度上的這種變化趨勢(shì)表明,雪冰黑碳含量不但同大氣環(huán)流和排放源相關(guān),同時(shí)也與當(dāng)?shù)氐慕邓烤o密相關(guān)。在青藏高原季風(fēng)氣候區(qū)年降雪量比西風(fēng)氣候區(qū)高,特別典型的是在藏東南地區(qū)年降雪量可達(dá)3.5 m[70],而在帕米爾高原地區(qū)年降雪量約為0.6 m[71]。在青藏高原緯度相對(duì)較低、受季風(fēng)降水影響較大的區(qū)域,降水量顯著高于青藏高原內(nèi)陸和北部區(qū)域,這對(duì)雪冰黑碳具有“稀釋作用”,使得雪冰黑碳含量呈現(xiàn)較低值。隨著緯度升高,季風(fēng)帶來(lái)的降水所產(chǎn)生的“稀釋作用”逐漸減弱,雪冰黑碳含量隨之升高。從本文調(diào)查數(shù)據(jù)來(lái)看,在北緯30.42°以南區(qū)域,雪冰黑碳含量隨緯度增加而升高;而在北緯30.45°以北區(qū)域,隨南亞季風(fēng)輸送能力減弱,雪冰黑碳含量呈現(xiàn)出下降趨勢(shì);天山山脈雪冰黑碳同青藏高原其他地區(qū)相比具有更高的含量,這很可能緣于其四周為地表干旱的荒漠,地表對(duì)底層大氣的加熱作用使得大氣對(duì)流活動(dòng)加強(qiáng),可更有效地將地表黑碳傳輸至高空大氣,進(jìn)而形成天山山脈雪冰黑碳含量高值區(qū)(圖6)。
表1 青藏高原各區(qū)域雪冰黑碳平均含量Tab.1 Mean Contents of Snow Black Carbon inDifferent Regions of Qinghai-Tibet Plateau
天山山脈緯度范圍較窄,觀測(cè)數(shù)據(jù)較少,未標(biāo)出擬合線; 數(shù)據(jù)引自文獻(xiàn)[3]、[5]、[70]、[73]~[77]圖6 雪冰黑碳含量緯度變化Fig.6 Variations of Contents of Snow Black Carbon Corresponding to Latitude
此外,青藏高原典型氣候區(qū)的雪冰黑碳含量具有同大氣黑碳濃度相一致的季節(jié)性變化特征。在典型的季風(fēng)氣候區(qū)(藏東南)冰芯記錄中,黑碳呈現(xiàn)出顯著的冬、春季高,夏季低的季節(jié)變化特征[5,70];而在典型的西風(fēng)氣候區(qū)(東帕米爾高原)冰芯記錄中,黑碳呈現(xiàn)出夏季高、冬季低的季節(jié)變化特征[76]。在藏東南地區(qū),冰芯黑碳冬、春季高值反映了南亞大氣棕色云的爆發(fā)以及西風(fēng)帶南支和南亞季風(fēng)的輸送,而夏季黑碳低值則反映了充沛的季風(fēng)降水對(duì)區(qū)域大氣環(huán)境的清潔作用以及對(duì)雪冰黑碳的“稀釋作用”;在東帕米爾高原地區(qū),冰芯黑碳夏季高值反映了夏季中亞地區(qū)頻繁的大氣對(duì)流活動(dòng)對(duì)地表黑碳更有效的輸送[43,72],而冬季低值則反映了較弱的大氣對(duì)流活動(dòng)。
2.2 沿海拔梯度的變化
青藏高原雪冰黑碳含量在海拔高度3 500~6 500 m范圍內(nèi)表現(xiàn)出顯著地隨海拔升高而降低的趨勢(shì)[圖7(a)]。對(duì)于同一條冰川,表雪的雪冰黑碳含量同樣具有隨海拔升高而降低的變化特征[圖7(b)]。雪冰黑碳含量的這種沿海拔梯度分布特征主要由排放源的空間距離和污染物大氣動(dòng)力學(xué)傳輸高度決定。另外,在冰川低海拔區(qū),隨著積雪消融增強(qiáng),融水流失,具有憎水特性的黑碳被保留在殘留的雪中,由此形成富集。黑碳沉積后在表雪中的富集作用可使雪冰黑碳含量增長(zhǎng)約20倍,極值可達(dá)90倍[5,75]。雪冰黑碳的這種沉積后作用可顯著加強(qiáng)雪冰黑碳含量沿海拔增高而降低的空間分布特征。
數(shù)據(jù)引自文獻(xiàn)[3]、[5]、[70]、[73]~[77]圖7 不同海拔高度雪冰黑碳含量變化Fig.7 Variations of Contents of Snow Black Carbon Corresponding to Elevation
(1)青藏高原大氣黑碳濃度呈現(xiàn)出由外向內(nèi)降低的趨勢(shì),體現(xiàn)出青藏高原周邊低海拔地區(qū)人為活動(dòng)排放向高原內(nèi)陸傳輸?shù)慕Y(jié)果;另外,在青藏高原地勢(shì)機(jī)械阻擋和抬升作用下,大氣黑碳濃度呈現(xiàn)出由低海拔向高海拔指數(shù)降低的趨勢(shì)。
(2)在青藏高原受人為活動(dòng)較小的偏遠(yuǎn)地區(qū),大氣黑碳濃度的季節(jié)性變化主要取決于大氣環(huán)流和區(qū)域降水條件。季風(fēng)氣候區(qū)由于夏季降水顯著增強(qiáng),大氣黑碳濃度呈現(xiàn)出冬、春季高,夏季較低的季節(jié)變化特征;西風(fēng)氣候區(qū)則由于春、夏季近地表垂直對(duì)流活動(dòng)加強(qiáng),大氣傳輸效率增加,大氣黑碳濃度呈現(xiàn)出春、夏季較高,冬季較低的季節(jié)變化特征。
(3)青藏高原雪冰黑碳含量在緯度梯度上主要受降水條件影響,表現(xiàn)出由南至北含量升高的空間變化特征;而在海拔梯度上則主要受控于傳輸距離和傳輸高度,雪冰黑碳含量表現(xiàn)出隨海拔升高而降低的特征,同時(shí)低海拔地區(qū)黑碳沉積后的富集作用可顯著加強(qiáng)這種雪冰黑碳含量沿海拔增高而降低的分布特征。
(4)冰芯和表雪中雪冰黑碳含量具有與大氣黑碳濃度相一致的季節(jié)變化特征,即季風(fēng)氣候區(qū)雪冰黑碳含量在冬、春季出現(xiàn)高值,西風(fēng)氣候區(qū)則在春、夏季出現(xiàn)高值。
[1] YAO T D,THOMPSON L,YANG W,et al.Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings[J].Nature Climate Change,2012,2(9):663-667.
[2] AUFFHAMMER M,RAMANATHAN V,VINCENT J R.Integrated Model Shows that Atmospheric Brown Clouds and Greenhouse Gases Have Reduced Rice Harvests in India[J].PNAS,2006,103(52):19668-19672.
[3] MING J,CACHIER H,XIAO C,et al.Black Carbon Record Based on a Shallow Himalayan Ice Core and Its Climatic Implications[J].Atmospheric Chemistry and Physics,2008,8(5):1343-1352.
[4] RAMANATHAN V,RAMANA M V,ROBERTS G,et al.Warming Trends in Asia Amplified by Brown Cloud Solar Absorption[J].Nature,2007,448:575-578.
[5] XU B Q,CAO J J,HANSEN J,et al.Black Soot and the Survival of Tibetan Glaciers[J].PNAS,2009,106(52):22114-22118.
[6] 黃 觀,劉 偉,劉志紅,等.黑碳?xì)馊苣z研究概況[J].災(zāi)害學(xué),2015,30(2):205-214.
HUANG Guan,LIU Wei,LIU Zhi-hong,et al.A Research Overview of Black Carbon Aerosols[J].Journal of Catastrophology,2015,30(2):205-214.
[7] 支國(guó)瑞,蔡 竟,楊俊超,等.棕色碳?xì)馊苣z來(lái)源、性質(zhì)、測(cè)量與排放估算[J].環(huán)境科學(xué)研究,2015,28(12):1797-1814.
ZHI Guo-rui,CAI Jing,YANG Jun-chao,et al.Origin,Properties,Measurement and Emission Estimation of Brown Carbon Aerosols[J].Research of Environmental Sciences,2015,28(12):1797-1814.
[8] BOND T C,DOHERTY S J,FAHEY D W,et al.Bounding the Role of Black Carbon in the Climate System:A Scientific Assessment[J].Journal of Geophysical Research:Atmospheres,2013,118(11):5380-5552.
[9] 張 驍,湯 潔,武云飛,等.2006~2012年北京及周邊地區(qū)黑碳?xì)馊苣z變化特征[J].中國(guó)粉體技術(shù),2015,21(4):24-35.
ZHANG Xiao,TANG Jie,WU Yun-fei,et al.Variations of Black Carbon Aerosol Observed in Beijing and Surrounding Area During 2006-2012[J].China Powder Science and Technology,2015,21(4):24-35.
[10] 徐金秀,譚麗靜,白 華,等.黑炭氣溶膠對(duì)丹東地區(qū)溫度影響的模擬研究[J].吉林農(nóng)業(yè),2017(10):99-101.
XU Jin-xiu,TAN Li-jing,BAI Hua,et al.Simulation Study on the Influence of Black Carbon Aerosol in Dandong Area Temperature[J].Agriculture of Jilin,2017(10):99-101.
[11] RAMANATHAN V,CRUTZEN P J,KIEHL J T,et al.Aerosols,Climate,and the Hydrological Cycle[J].Science,2001,294:2119-2124.
[12] 衣娜娜,張 鐳,曹賢潔,等.SACOL黑碳和沙塵氣溶膠輻射強(qiáng)迫分析[J].蘭州大學(xué)學(xué)報(bào):自然科學(xué)版,2015,51(3):381-387.
YI Na-na,ZHANG Lei,CAO Xian-jie,et al.Analysis of Radiative Forcing of Black Carbon and Dust Aerosol over SACOL[J].Journal of Lanzhou University:Natural Sciences,2015,51(3):381-387.
[13] XU J Z,SHI J S,ZHANG Q,et al.Wintertime Organic and Inorganic Aerosols in Lanzhou,China:Sources,Processes,and Comparison with the Results During Summer[J].Atmospheric Chemistry and Physics,2016,16(23):14937-14957.
[14] 馬慶鑫,馬金珠,楚碧武,等.礦質(zhì)和黑碳顆粒物表面大氣非均相反應(yīng)研究進(jìn)展[J].科學(xué)通報(bào),2015,60(2):122-136.
MA Qing-xin,MA Jin-zhu,CHU Bi-wu,et al.Current Progress Towards the Heterogeneous Reactions on Mineral Dust and Soot[J].Chinese Science Bulletin,2015,60(2):122-136.
[15] 倪 敏,鄭 軍,馬 嫣,等.氣溶膠的輻射強(qiáng)迫作用研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2016,39(10):73-78.
NI Min,ZHENG Jun,MA Yan,et al.Research Progress in Radiative Forcing of Aerosol[J].Environmental Science and Technology,2016,39(10):73-78.
[16] HANSEN J.Can We Defuse the Global Warming Time Bomb?[J].Natural Science,2003,1:1-32.
[17] 吳國(guó)雄,李占清,符淙斌,等.氣溶膠與東亞季風(fēng)相互影響的研究進(jìn)展[J].中國(guó)科學(xué):D輯,地球科學(xué),2015,45(11):1609-1627.
WU Guo-xiong,LI Zhan-qing,FU Cong-bin,et al.Advances in Studying Interactions Between Aerosols and Monsoon in China[J].Science in China:Series D,Earth Sciences,2015,45(11):1609-1627.
[18] WARREN S G,CLARKE A D.Soot in the Atmosphere and Snow Surface of Antarctica[J].Journal of Geophysical Research:Atmospheres,1990,95(D2):1811-1816.
[19] NIU H W,KANG S C,SHI X F,et al.In-situ Measurements of Light-absorbing Impurities in Snow of Glacier on Mt.Yulong and Implications for Radiative Forcing Estimates[J].Science of the Total Environment,2017,581/582:848-856.
[20] HANSEN J,NAZARENKO L.Soot Climate Forcing via Snow and Ice Albedos[J].PNAS,2004,101(2):423-428.
[21] JACOBSON M Z.Climate Response of Fossil Fuel and Biofuel Soot,Accounting for Soot’s Feedback to Snow and Sea Ice Albedo and Emissivity[J].Journal of Geophysical Research:Atmospheres,2004,DOI:10.1029/2004JD004945.
[22] FLANNER M G,ZENDER C S,RANDERSON J T,et al.Present-day Climate Forcing and Response from Black Carbon in Snow[J].Journal of Geophysical Research:Atmospheres,2007,DOI:10.1029/2006JD-008003.
[23] MENON S,HANSEN J,NAZARENKO L,et al.Climate Effects of Black Carbon Aerosols in China and India[J].Science,2002,297:2250-2253.
[24] RAMANATHAN V,CHUNG C,KIM D,et al.Atm-ospheric Brown Clouds:Impacts on South Asian Climate and Hydrological Cycle[J].PNAS,2005,102(15):5326-5333.
[25] ZHAO S Y,MING J,XIAO C D,et al.A Preliminary Study on Measurements of Black Carbon in the Atmosphere of Northwest Qilian Shan[J].Journal of Environmental Sciences,2012,24(1):152-159.
[26] CAO J,TIE X,XU B,et al.Measuring and Modeling Black Carbon (BC) Contamination in the SE Tibetan Plateau[J].Journal of Atmospheric Chemistry,2010,67(1):45-60.
[27] ZHANG X Y,WANG Y Q,ZHANG X C,et al.Carbonaceous Aerosol Composition over Various Regions of China During 2006[J].Journal of Geophysical Research:Atmospheres,2008,DOI:10.1029/2007JD-009525.
[28] GAO R X,NIU S J,ZHANG H,et al.A Comparative Study on Black Carbon Aerosol Observations in Regions of Beijing and Lhasa in 2006[C]∥GAO W,USTIN S L.Remote Sensing and Modeling of Ecosystems for Sustainability IV.Bellingham:SPIE,2007:21-28.
[29] QU W J,ZHANG X Y,ARIMOTO R,et al.Chemical Composition of the Background Aerosol at Two Sites in Southwestern and Northwestern China:Potential Influences of Regional Transport[J].Tellus B:Chemical and Physical Meteorology,2008,60(4):657-673.
[30] MING J,XIAO C D,SUN J Y,et al.Carbonaceous Particles in the Atmosphere and Precipitation of the Nam Co Region,Central Tibet[J].Journal of Environmental Sciences,2010,22(11):1748-1756.
[31] 湯 潔,溫玉璞,周凌晞,等.中國(guó)西部大氣清潔地區(qū)黑碳?xì)馊苣z的觀測(cè)研究[J].應(yīng)用氣象學(xué)報(bào),1999,10(2):160-170.
TANG Jie,WEN Yu-pu,ZHOU Ling-xi,et al.Observational Study of Black Carbon in Clean Air of Western China[J].Quarterly Journal of Applied Meteorology,1999,10(2):160-170.
[32] 趙玉成,德力格爾,蔡永祥,等.西寧地區(qū)大氣中黑碳?xì)馊苣z濃度的觀測(cè)研究[J].冰川凍土,2008,30(5):789-794.
ZHAO Yu-cheng,DELI Ge-er,CAI Yong-xiang,et al.Variation of Black-carbon Aerosol Concentration Observed in Xining[J].Journal of Glaciology and Geocryology,2008,30(5):789-794.
[33] MARINONI A,CRISTOFANELLI P,LAJ P,et al.Aerosol Mass and Black Carbon Concentrations,a Two Year Record at NCO-P (5 079 m,Southern Himalayas)[J].Atmospheric Chemistry and Physics,2010,10(17):8551-8562.
[34] BONASONI P,LAJ P,MARINONI A,et al.Atmospheric Brown Clouds in the Himalayas:First Two Years of Continuous Observations at the Nepal-climate Observatory at Pyramid (5 079 m)[J].Atmospheric Chemistry and Physics,2010,10(15):7515-7531.
[35] 溫玉璞,徐曉斌,湯 潔,等.青海瓦里關(guān)大氣氣溶膠元素富集特征及其來(lái)源[J].應(yīng)用氣象學(xué)報(bào),2001,12(4):400-408.
WEN Yu-pu,XU Xiao-bin,TANG Jie,et al.Enrichment Characteristics and Origin of Atmospheric Aerosol Elements at Mt. Waliguan[J].Quarterly Journal of Applied Meteorology,2001,12(4):400-408.
[36] MA J I,TANG J,LI S M,et al.Size Distributions of Ionic Aerosols Measured at Waliguan Observatory:Implication for Nitrate Gas-to-particle Transfer Processes in the Free Troposphere[J].Journal of Geophysical Research:Atmospheres,2003,DOI:10.1029/2002JD003356.
[37] CARRICO C M,BERGIN M H,SHRESTHA A B,et al.The Importance of Carbon and Mineral Dust to Seasonal Aerosol Properties in the Nepal Himalaya[J].Atmospheric Environment,2003,37(20):2811-2824.
[38] DECESARI S,FACCHINI M C,CARBONE C,et al.Chemical Composition of PM10and PM1at the High-altitude Himalayan Station Nepal Climate Observatory-pyramid (NCO-P)(5 079 m Asl)[J].Atmospheric Chemistry and Physics,2010,10(10):4583-4596.
[39] NAIR V S,BABU S S,MOORTHY K K,et al.Black Carbon Aerosols Over the Himalayas:Direct and Surface Albedo Forcing[J].Tellus B:Chemical and Physical Meteorology,2013,DOI:10.3402/tellusb.v65io.19738.
[40] BABU S S,CHAUBEY J P,MOORTHY K K,et al.High Altitude (~4 520 m Amsl) Measurements of Black Carbon Aerosols over Western Trans-Himalayas:Seasonal Heterogeneity and Source Apportionment[J].Journal of Geophysical Research:Atmospheres,2011,DOI:10.1029/2011JD016722.
[41] CHAUBEY J P,BABU S S,GOGOI M M,et al.Black Carbon Aerosol over a High Altitude (~ 4.52 km) Station in Western Indian Himalayas[J].Journal of the Institute of Engineering,2011,8(3):42-51.
[42] BONASONI P,LAJ P,ANGELINI F,et al.The ABC-pyramid Atmospheric Research Observatory in Himalaya for Aerosol,Ozone and Halocarbon Measurements[J].Science of the Total Environment,2008,391(2/3):252-261.
[43] CAO J J,XU B Q,HE J Q,et al.Concentrations,Seasonal Variations,and Transport of Carbonaceous Aerosols at a Remote Mountainous Region in Western China[J].Atmospheric Environment,2009,43(29):4444-4452.
[44] WANG X P,GONG P,WANG C F,et al.A Review of Current Knowledge and Future Prospects Regarding Persistent Organic Pollutants over the Tibetan Plateau[J].Science of the Total Environment,2016,573:139-154.
[45] ZHAO Z Z,CAO J J,SHEN Z X,et al.Aerosol Particles at a High-altitude Site on the Southeast Tibetan Plateau,China:Implications for Pollution Transport from South Asia[J].Journal of Geophysical Research:Atmospheres,2013,118(19):11360-11375.
[46] ZHU C S,CAO J J,XU B Q,et al.Black Carbon Aerosols at Mt.Muztagh Ata,a High-altitude Location in the Western Tibetan Plateau[J].Aerosol and Air Quality Research,2016,16(3):752-763.
[47] HANSEN J E,SATO M.Trends of Measured Climate Forcing Agents[J].PNAS,2001,98(26):14778-14783.
[48] WOLFF E W,CACHIER H.Concentrations and Seasonal Cycle of Black Carbon in Aerosol at a Coastal Antarctic Station[J].Journal of Geophysical Research:Atmospheres,1998,103(D9):11033-11041.
[49] 韓永翔,孫海波,劉建慧,等.青藏高原黑碳?xì)馊苣z傳輸及沉降的季節(jié)特征模擬分析[J].干旱氣象,2014,32(3):319-325.
HAN Yong-xiang,SUN Hai-bo,LIU Jian-hui,et al.Study on Simulated Seasonal Variations of Black Carbon Aerosol Transport and Depositions over the Tibetan Plateau[J].Journal of Arid Meteorology,2014,32(3):319-325.
[50] BEEGUM S N,MOORTHY K K,BABU S S,et al.Spatial Distribution of Aerosol Black Carbon over India During Pre-monsoon Season[J].Atmospheric Environment,2009,43(5):1071-1078.
[51] CHAKRABARTY R K,GARRO M A,WILCOX E M,et al.Strong Radiative Heating Due to Wintertime Black Carbon Aerosols in the Brahmaputra River Valley[J].Geophysical Research Letters,2012,DOI:10.1029/2012GL051148.
[52] NIRANJAN K,SREEKANTH V,MADHAVAN B L,et al.Wintertime Aerosol Characteristics at a North Indian Site Kharagpur in the Indo-Gangetic Plains Located at the Outflow Region into Bay of Bengal[J].Journal of Geophysical Research:Atmospheres,2006,DOI:10.1029/2006JD007635.
[53] PATHAK B,KALITA G,BHUYAN K,et al.Aerosol Temporal Characteristics and Its Impact on Shortwave Radiative Forcing at a Location in the Northeast of India[J].Journal of Geophysical Research:Atmospheres,2010,DOI:10.1029/2009JD013462.
[54] TIWARI S,SRIVASTAVA A K,BISHT D S,et al.Black Carbon and Chemical Characteristics of PM10and PM2.5at an Urban Site of North India[J].Journal of Atmospheric Chemistry,2009,62(3):193-209.
[55] TRIPATHI S N,DEY S,TARE V,et al.Enhanced Layer of Black Carbon in a North Indian Industrial City[J].Geophysical Research Letters,2005,DOI:10.1029/2005GL022564.
[56] DUMKA U C,MOORTHY K K,KUMAR R,et al.Characteristics of Aerosol Black Carbon Mass Concentration over a High Altitude Location in the Central Himalayas from Multi-year Measurements[J].Atmospheric Research,2010,96(4):510-521.
[57] ENGLING G,ZHANG Y N,CHAN C Y,et al.Characterization and Sources of Aerosol Particles over the Southeastern Tibetan Plateau During the Southeast Asia Biomass-burning Season[J].Tellus B:Chemical and Physical Meteorology,2011,63(1):117-128.
[58] HYVARINEN A P,LIHAVAINEN H,KOMPPULA M,et al.Continuous Measurements of Optical Properties of Atmospheric Aerosols in Mukteshwar,Northern India[J].Journal of Geophysical Research:Atmospheres,2009,DOI:10.1029/2008JD011489.
[59] PANT P,HEGDE P,DUMKA U C,et al.Aerosol Characteristics at a High-altitude Location in Central Himalayas:Optical Properties and Radiative Forcing[J].Journal of Geophysical Research:Atmospheres,2006,DOI:10.1029/2005JD006768.
[60] RAM K,SARIN M M,HEGDE P.Atmospheric Abundances of Primary and Secondary Carbonaceous Species at Two High-altitude Sites in India:Sources and Temporal Variability[J].Atmospheric Environment,2008,42(28):6785-6796.
[61] RAM K,SARIN M M,HEGDE P.Long-term Record of Aerosol Optical Properties and Chemical Composition from a High-altitude Site (Manora Peak) in Central Himalaya[J].Atmospheric Chemistry and Physics,2010,10(23):11791-11803.
[62] RENGARAJAN R,SARIN M M,SUDHEER A K.Carbonaceous and Inorganic Species in Atmospheric Aerosols During Wintertime over Urban and High-altitude Sites in North India[J].Journal of Geophysical Research:Atmospheres,2007,DOI:10.1029/2006JD-008150.
[63] WANG H Q,HE Q,LIU T,et al.Characteristics and Source of Black Carbon Aerosols at Akedala Station,Central Asia[J].Meteorology and Atmospheric Physics,2012,118(3/4):189-197.
[64] 薛福民,李 娟,黃 侃,等.塔克拉瑪干沙漠黑碳?xì)馊苣z的特性及來(lái)源[J].中國(guó)科學(xué):化學(xué),2010,40(5):556-566.
XUE Fu-min,LI Juan,HUANG Kan,et al.Characteristics and Source of Black Carbon Aerosol over Taklimakan Desert[J].Science China:Chemistry,2010,40(5):556-566.
[65] CONG Z Y,KANG S C,QIN D H.Seasonal Features of Aerosol Particles Recorded in Snow from Mt.Qomolangma (Everest) and Their Environmental Implications[J].Journal of Environmental Sciences,2009,21(7):914-919.
[66] CONG Z Y,KANG S C,LIU X D,et al.Elemental Composition of Aerosol in the Nam Co Region,Tibetan Plateau,During Summer Monsoon Season[J].Atmospheric Environment,2007,41(6):1180-1187.
[67] LU Z F,STREETS D G,ZHANG Q,et al.A Novel Back-trajectory Analysis of the Origin of Black Carbon Transported to the Himalayas and Tibetan Plateau During 1996-2010[J].Geophysical Research Letters,2012,DOI:10.1029/2011GL049903.
[68] WANG M,XU B,CAO J,et al.Carbonaceous Aerosols Recorded in a Southeastern Tibetan Glacier:Analysis of Temporal Variations and Model Estimates of Sources and Radiative Forcing[J].Atmospheric Chemistry and Physics,2015,15(3):1191-1204.
[69] CLARKE A D,NOONE K J.Soot in the Arctic Snowpack:A Cause for Perturbations in Radiative Transfer[J].Atmospheric Environment(1967),1985,19(12):2045-2053.
[70] XU B Q,WANG M,JOSWIAK D R,et al.Deposition of Anthropogenic Aerosols in a Southeastern Tibetan Glacier[J].Journal of Geophysical Research:Atmospheres,2009,DOI:10.1029/2008JD011510.
[71] DUAN K Q,XU B Q,WU G J.Snow Accumulation Variability at Altitude of 7 010 m Asl in Muztag Ata Mountain in Pamir Plateau During 1958-2002[J].Journal of Hydrology,2015,531:912-918.
[72] WANG M,XU B Q,KASPARI S D,et al.Century-long Record of Black Carbon in an Ice Core from the Eastern Pamirs:Estimated Contributions from Biomass Burning[J].Atmospheric Environment,2015,115:79-88.
[72] XU B Q,YAO T D,LIU X Q,et al.Elemental and Organic Carbon Measurements with a Two-step Heating-gas Chromatography System in Snow Samples from the Tibetan Plateau[J].Annals of Glaciology,2006,43(1):257-262.
[74] XU B Q,CAO J J,JOSWIAK D R,et al.Post-depositional Enrichment of Black Soot in Snow-pack and Accelerated Melting of Tibetan Glaciers[J].Environmental Research Letters,2012,DOI:10.1088/1748-9326/7/1/014022.
[75] MING J,XIAO C D,CACHIER H,et al.Black Carbon (BC) in the Snow of Glaciers in West China and Its Potential Effects on Albedos[J].Atmospheric Research,2009,92(1):114-123.
[76] MING J,DU Z C,XIAO C D,et al.Darkening of the Mid-Himalaya Glaciers Since 2000 and the Potential Causes[J].Environmental Research Letters,2012,7(1):14021-14033.
[77] MING J,XIAO C D,DU Z C,et al.An Overview of Black Carbon Deposition in High Asia Glaciers and Its Impacts on Radiation Balance[J].Advances in Water Resources,2013,55(3):80-87.
[78] WANG M,XU B Q,ZHAO H B,et al.The Influence of Dust on Quantitative Measurements of Black Carbon in Ice and Snow When Using a Thermal Optical Method[J].Aerosol Science and Technology,2012,46(1):60-69.
[79] WANG X,XU B Q,MING J.An Overview of the Studies on Black Carbon and Mineral Dust Deposition in Snow and Ice Cores in East Asia[J].Journal of Meteorological Research,2014,28(3):354-370.
SpatialDistributionCharacteristicsofAtmosphereandSnowBlackCarbonsinQinghai-TibetPlateau
TANG Xiang-xiang1,2, WANG Mo1, XU Bai-qing1,3
(1. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China)
Qinghai-Tibet Plateau is the source of major rivers in Asia. Black carbon (BC) aerosol emits from surrounding regions can be transported to the inner Qinghai-Tibet Plateau by atmospheric circulation and consequently deposited in snow, which can significantly influence precipitation and mass balance of glaciers. Spatial distribution of atmosphere and snow black carbons in Qinghai-Tibet Plateau was reviewed. The results show that the concentrations of atmosphere black carbon gradually decrease from the outside to the inner of Qinghai-Tibet Plateau, and exponentially decrease with the increase of elevation; the concentrations of atmosphere black carbon in the westerly region of Qinghai-Tibet Plateau show high values in summer and low values in winter, whereas those in the monsoon region present high values in winter and spring seasons, and low values in summer; the contents of snow black carbon have the same seasonal characteristics of the concentrations of atmosphere black carbon, and decrease from the southern to the northern part of Qinghai-Tibet Plateau, and linearly decrease with the increase of elevation.
black carbon; spatial distribution; seasonal variation; atmosphere; snow; aerosol; emission; Qinghai-Tibet Plateau
X131.1;P427.2
A
1672-6561(2017)05-0695-09
2017-05-05
唐祥祥(1989-),男,安徽阜陽(yáng)人,中國(guó)科學(xué)院大學(xué)理學(xué)碩士研究生,E-mail:15321611017@163.com。
徐柏青(1969-),男,安徽冬至人,研究員,博士研究生導(dǎo)師,理學(xué)博士,E-mail:baiqing@itpcas.ac.cn。