吳菊英,單麗梅,湯愛濤,潘復(fù)生,楊明波,吳 璐
?
含鍶Mg-Al系鎂合金中第二相研究述評(píng)
吳菊英1,單麗梅1,湯愛濤2,潘復(fù)生2,楊明波3,吳 璐4
(1. 四川工程職業(yè)技術(shù)學(xué)院材料工程系,德陽618000;2. 重慶大學(xué)國(guó)家鎂合金材料工程技術(shù)研究中心,重慶400044;3. 重慶理工大學(xué)材料科學(xué)與工程學(xué)院,重慶400054;4. 中國(guó)核動(dòng)力研究設(shè)計(jì)院核燃料及材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610041)
鍶元素加入到鎂合金中能夠起到變質(zhì)第二相,顯著細(xì)化晶粒以及提高其高溫力學(xué)性能的效果,已被廣泛應(yīng)用于Mg-Al系鎂合金中。綜述了國(guó)內(nèi)外在含鍶Mg-Al系合金中的第二相研究現(xiàn)狀,實(shí)驗(yàn)研究結(jié)果和第一性原理計(jì)算結(jié)果均表明,隨著Sr含量的增加,Mg-Al系合金中將首先出現(xiàn)Al-Sr相(Al4Sr相和/或Al2Sr相),然后再出現(xiàn)Mg-Sr相((Mg,Al)17Sr2相)和/或Mg-Al-Sr三元相。但是,其中Mg-Al-Sr三元相的結(jié)構(gòu)和類型尚存在爭(zhēng)議。綜述相圖熱力學(xué)計(jì)算以及第一性原理計(jì)算方法在含鍶Mg-Al系合金中第二相研究方面的結(jié)果,將第一性原理計(jì)算與相圖熱力學(xué)模擬有機(jī)結(jié)合起來,可以獲得更為準(zhǔn)確的含鍶鎂合金二元或三元系相圖。
鎂合金;鍶;第二相;第一性原理;相圖計(jì)算
鎂合金作為最輕質(zhì)的商用金屬結(jié)構(gòu)材料,具有比強(qiáng)度、比剛度高、阻尼減震降噪能力強(qiáng)、能屏蔽電磁輻射和易于再生等優(yōu)點(diǎn),在汽車、航空航天及其他領(lǐng)域的應(yīng)用潛力巨大[1?3]。Al是鎂合金中最常用的合金元素[4],通過固溶強(qiáng)化和形成沉淀析出相,提高鎂合金的強(qiáng)度和耐蝕性;通常在Mg中添加1%~9%(質(zhì)量分?jǐn)?shù))的Al元素就能起到良好的提高硬度和抗拉強(qiáng)度效果[5?6]。事實(shí)上,由于中子吸收截面低,中子經(jīng)濟(jì)性好,含Al鎂合金早在20世紀(jì)50年代就已在核工業(yè)領(lǐng)域得到應(yīng)用[7]。一種被稱為AL80(Mg-0.8Al-0.005Be)的鎂合金被用作英國(guó)鎂諾克斯堆(Magnox,CO2作為冷卻劑的氣冷堆)燃料元件的包殼材料[8]。然而,由于其高溫力學(xué)性能不滿足提高冷卻劑溫度的要求,后期被不銹鋼材料所替代[9]。不難看出,盡管Mg-Al系鎂合金已在工業(yè)上得到了初步的應(yīng)用,但其力學(xué)性能和加工性能仍不能滿足工業(yè)快速發(fā)展的需要。因此,微合金化和/或合金化等方法正被用來進(jìn)一步改善和提高這些鎂合金系的力學(xué)性能和/或加工性能。
早期Zn和Mn等合金元素通常會(huì)與Al元素一起加入Mg中,形成Mg-Al-Zn(如Mg-3Al-1Zn、AZ31[10]和Mg-9Al-1Zn、AZ91[11])、Mg-Zn-Al(如Mg-8Zn-4Al、ZA84[12?14])和Mg-Al-Mn(如Mg-5Al-0.3Mn、AM50[15]、Mg-6Al-0.3Mn、AM60[16?17]和Mg-8Al-0.3Mn,AM80[18])系鎂合金,以期達(dá)到進(jìn)一步提升Al元素的固溶強(qiáng)化作用、細(xì)化晶粒以及改善Mg-Al系合金的耐腐蝕性能等效果,目前這些牌號(hào)的鎂合金已經(jīng)得到了較為廣泛的應(yīng)用。后來,研究者們發(fā)現(xiàn)在Mg-Al系合金中添加稀土元素(Rare earth, RE)能夠顯著提高其室溫/高溫力學(xué)性能及抗腐蝕性能[19?24];但不足之處是稀土元素價(jià)格較為昂貴,會(huì)較大程度地提高鎂合金生產(chǎn)成本,從而限制了其應(yīng)用[25]。
由于發(fā)現(xiàn)微量堿土金屬(Ca、Sr等)加入到Al-Si系鋁合金中能夠起到變質(zhì)第二相[26],顯著細(xì)化晶粒[27]以及提高其顯微硬度、抗拉強(qiáng)度和沖擊韌性[28?29]等效果,因此,采用價(jià)格較為低廉的堿土金屬作為主要合金元素加入Mg-Al系合金中逐漸成為研究趨勢(shì)[30?33],以期達(dá)到替代稀土元素、節(jié)約成本的目的。大量研究表明,Sr元素加入到Mg-Al系合金中能夠起到如同加入鋁合金中類似的效果[1, 3, 34?35]。后來,研究者們基于此進(jìn)一步開發(fā)了具有良好抗蠕變性能的Mg-Al-Sr系新型耐熱鎂合金,指出AJ52x(Mg-5Al-2Sr)和AJ62x(Mg-6Al-2Sr)合金。由于降低了合金組織中Al的固溶度、消除了Mg17Al12相以及形成了諸如Al4Sr和Mg13Al3Sr等高熔點(diǎn)相而具有優(yōu)良的綜合力學(xué)性能,并將其成功應(yīng)用到汽車工業(yè)領(lǐng)域[32, 36?38]。不僅如此,除了提升力學(xué)性能之外,由于能夠較好地增強(qiáng)成骨前體細(xì)胞的復(fù)制和刺激骨形成,Sr還是鎂合金植入體的主要合金化元素之一,其顯微組織、第二相、耐腐蝕性能等一直是近年來的研究熱點(diǎn)[39?41]。
眾所周知,合金的力學(xué)性能、物理性能及耐腐蝕性能等強(qiáng)烈依賴于其顯微組織(晶粒尺寸[10]及第二 相[42]等)。含Sr鎂合金由于具有良好的綜合性能,其晶粒細(xì)化現(xiàn)象以及第二相的研究一直吸引著各國(guó)研究者的注意。本文作者對(duì)近幾十年來,國(guó)內(nèi)外在含Sr鎂鋁系合金中的第二相類型及形成機(jī)制方面的研究成果進(jìn)行了較為全面的介紹。尤其重點(diǎn)探討近年來相圖熱力學(xué)計(jì)算以及第一性原理計(jì)算在含Sr鎂鋁系合金第二相研究方面的研究結(jié)果,并與實(shí)驗(yàn)研究結(jié)果進(jìn)行了比較,以期從顯微組織的角度為含Sr鎂合金的設(shè)計(jì)及優(yōu)化改進(jìn)研究提供指導(dǎo)。
到目前為止,國(guó)內(nèi)外研究者們已經(jīng)就含Sr鎂鋁系合金中的第二相類型、分布、形成機(jī)制方面做了大量的研究。目前的研究報(bào)道主要集中在兩個(gè)方面:一是Sr元素改性Mg-Al系合金中原有第二相;另一個(gè)是形成新的Mg-Sr、Al-Sr或Mg-Al-Sr等第二相。Sr添加到Mg-Al基合金中主要會(huì)形成Al4Sr相和/或Mg-Al-Sr三元相,Mg-Al-Sr三元相在熱處理過程中或者低溫長(zhǎng)時(shí)間使用過程中會(huì)有向更加穩(wěn)定的Al4Sr相轉(zhuǎn)化的 趨勢(shì)。
圖1 AZ91和AZ91-0.5Sr合金的金相照片[36]
在形成新的含Sr第二相研究方面,除了上述Al4Sr相以外,普遍認(rèn)為還會(huì)在Mg-Al系合金中形成Mg17Sr2相和/或Mg-Al-Sr三元相。有些研究者認(rèn)為還可能會(huì)出現(xiàn)Al2Sr[51?52]、Mg2Sr[53]等其它二元含Sr相,但是其分布狀態(tài)和形成機(jī)制均有待進(jìn)一步探討。DARGUSCH等[54]研究了含1%Sr的模鑄AE42(Mg-4Al-2RE)鎂合金的顯微組織,發(fā)現(xiàn)Sr的加入導(dǎo)致了一種化學(xué)式接近Mg8Al4Sr相的形成。L'ESPéRANCE等[55]研究了高低含Sr量(2.3%和2.8%(質(zhì)量分?jǐn)?shù)))的兩種AJ62鎂合金的第二相特征,發(fā)現(xiàn)其中都含有Al4Sr共晶相;此外,高Sr含量的AJ62鎂合金中還含存在一種化學(xué)成分滿足化學(xué)式Mg9Al3Sr的三元相。與此同時(shí),PEKGULERYUZ等[36]認(rèn)為該三元相為Mg13Al3Sr,而NAYERI等[52]認(rèn)為是MgAl6Sr10??赡?,Mg-Al-Sr系合金中的三元相并不只有一種。另外,前期研究表明[56?57],Sr/Al的比值對(duì)Mg-Al-Sr耐熱鎂合金的組織及第二相的影響較大。根據(jù)PEKGULERYUZ等[36]的研究結(jié)果:當(dāng)(Sr)/(Al)< 0.3時(shí),合金中含有Al4Sr相和/或Mg17Al12相。當(dāng)(Sr)/(Al)>0.3時(shí),合金中就會(huì)形成如前所述的Mg13Al3Sr三元相。當(dāng)時(shí),對(duì)于這些含Sr相的類型,是存在一些爭(zhēng)議的。由于大部分研究均采用掃描電鏡或者透射電鏡的能譜儀(EDS)附件對(duì)第二相進(jìn)行鑒別;而EDS采用的原理是分析電子激發(fā)的元素特征X射線,在試樣內(nèi)部存在較大的激發(fā)空間,空間分辨能力有限,因此,被認(rèn)為是半定量的研究手段。故而采用EDS獲得的含Sr第二相的化學(xué)式千差萬別。
后來,研究者們改進(jìn)了第二相的鑒別手段。本文作者及所在研究團(tuán)隊(duì)成員采用SEM-EDS、TEM和XRD相結(jié)合的方式,在Sr元素對(duì)Mg-Al系合金中第二相的影響機(jī)制方面做了大量研究工作,發(fā)表了一些相關(guān)研究成果[47, 58?65]。研究表明[61],較低Sr含量 (<0.5%)的鑄態(tài)AZ31合金中主要存在的第二相為-Mg17Al12相和Al4Sr新相;較高Sr含量(>2%)的鑄態(tài)AZ31合金中主要的第二相是一種固溶了Al原子的Mg17Sr2相(被稱為(Mg,Al)17Sr2相)。此外,還采用TEM的選區(qū)電子衍射結(jié)果(見圖2)和XRD結(jié)果進(jìn)行了佐證,證實(shí)了AZ31-2.0Sr合金中主要的第二相并非一種新的三元相,而是(Mg,Al)17Sr2相。
綜上所述可知,添加少量Sr元素后,Mg-Al系合金中將首先出現(xiàn)Al4Sr相;隨著Sr含量的增加,Al4Sr相的數(shù)量增加并伴隨著-Mg17Al12相的數(shù)量減少;當(dāng)Sr含量增加到某一閾值后,將出現(xiàn)(Mg,Al)17Sr2相和Mg-Al-Sr三元相。
L'ESPéRANCE等[55]在研究AJ62(Mg-6Al-2Sr)合金時(shí)提出了一種關(guān)于Mg9Al3Sr三元相在熱處理過程中微觀結(jié)構(gòu)演變機(jī)制,圖3所示為AJ62合金中Mg-6Al-2Sr三元相在熱處理過程中的微觀組織演變示意圖??梢哉J(rèn)為,在熱處理過程中,通過Mg原子從第二相向基體擴(kuò)散以及Al原子從基體向第二相擴(kuò)散過程,可以提升第二相中的(Al)/(Sr),從而導(dǎo)致相對(duì)更為穩(wěn)定的Al4Sr相的形成。用透射電鏡電子衍射對(duì)三元相的晶體結(jié)構(gòu)進(jìn)行了分析,得知其為正方晶系,晶格常數(shù)=1012 pm,=1169 pm。研究者們認(rèn) 為[32, 36?37],正是由于該相可以在熱處理過程中分解為-Mg和具有更高熱穩(wěn)定性的Al4Sr相,因此,在AJ系合金使用過程中可能產(chǎn)生熱處理強(qiáng)化作用,從而進(jìn)一步提升其高溫力學(xué)性能。已有的研究結(jié)果表明,AJ52x耐熱鎂合金的最高工作溫度可達(dá)175 ℃,且在高溫條件下,其拉伸強(qiáng)度和蠕變強(qiáng)度均比傳統(tǒng)壓鑄鎂合金好,因此,已經(jīng)被成功用于生產(chǎn)油盤以及閥門蓋等薄壁鎂合金零部件[66]。
圖2 AZ31-5.0Sr鑄態(tài)合金中(Mg,Al)17Sr2相的透射電鏡照片及選區(qū)電子衍射花樣[61]
本文作者在前期研究中也發(fā)現(xiàn)[67],經(jīng)過400 ℃、15 h(爐冷)的均勻化退火處理以后,Mg-3Al-1Zn- 2.2/5Sr合金鑄態(tài)組織中原本存在的(Mg,Al)17Sr2相中Al元素的濃度均有所降低;且均能在均勻化態(tài)組織中觀察到沿(Mg,Al)17Sr2相邊緣分布的白亮顆粒狀A(yù)l4Sr相,Al4Sr相的數(shù)量隨著Sr含量的增加而顯著降低。說明(Mg,Al)17Sr2相的轉(zhuǎn)化過程不僅受溫度影響,而且受到化學(xué)成分的控制。不難看出,由于影響因素較多,Mg-Al-Sr三元相的熱穩(wěn)定性還有待進(jìn)一步深入探討。
圖3 AJ62合金中的Mg-Al-Sr三元相在熱處理過程中的微觀結(jié)構(gòu)演變示意圖[55]
事實(shí)上,目前在鑄態(tài)含鍶Mg-Al系合金中發(fā)現(xiàn)的Al4Sr相、(Mg,Al)17Sr2相和Mg-Al-Sr三元相(Mg9Al3Sr、Mg13Al3Sr或Mg58Al38Sr4)等基本都是穩(wěn)定相。但是由于鑄造過程中的冷卻速度較快,屬于非平衡凝固過程,一些含Sr相在該合金成分下可能是亞穩(wěn)的,會(huì)向相對(duì)更加穩(wěn)定的Al4Sr相轉(zhuǎn)變。
相圖所提供的相平衡信息對(duì)研究物質(zhì)世界具有重要意義,它可以為合理選擇材料成分,制定熱處理工藝等提供必要的物理化學(xué)資料。近年來,隨著計(jì)算機(jī)技術(shù)的發(fā)展,尤其是計(jì)算機(jī)處理數(shù)據(jù)能力的提升,計(jì)算相圖以其高效、快速等優(yōu)勢(shì)迅速發(fā)展起來?;贛g-Al、Mg-Sr、Al-Sr等基礎(chǔ)二元相圖,較完善的Mg-Al-Sr三元計(jì)算相圖已經(jīng)基本建立起來。
BARIL等[37]、JAN等[68]、RAGHAVAN等[69]和RAGHAVAN等[70]給出了400 ℃(見圖4)的Al-Mg-Sr三元等溫截面圖??梢钥闯觯河捎贏J系合金具有較高的Al含量(5%~6%),導(dǎo)致合金成分點(diǎn)落入形成Mg-Al-Sr三元相的相區(qū),因而可能形成Mg58Al38Sr4三元相。此外,JANZ等[68]還認(rèn)為Al-Mg-Sr系中會(huì)出現(xiàn)(Mg,Al)17Sr2、(Mg,Al)38Sr9、(Mg,Al)23Sr6、(Al,Mg)4Sr、(Al,Mg)2Sr、(Mg,Al)2Sr等6種三元固溶相。RAGHAVAN等[71]和PARVEZ等[72]通過對(duì)Mg-Al-Sr三元實(shí)驗(yàn)相圖的研究也發(fā)現(xiàn)Al原子可以固溶到Mg17Sr2相中,其最大固溶度可以達(dá)到21.3%(摩爾分?jǐn)?shù)),與本文作者前期工作的結(jié)果是較為一致 的[61]。
本文作者前期[67]也采用Pandat熱力學(xué)計(jì)算軟件的PanMg數(shù)據(jù)庫計(jì)算了Al含量為3%的Mg-Al-Sr三元系富Mg角垂直截面圖(見圖5),可以結(jié)合熱力學(xué)計(jì)算結(jié)果揭示前文中提到的含Sr相的熱穩(wěn)定性。將試樣在400 ℃下進(jìn)行長(zhǎng)時(shí)間保溫后,Sr含量為2.2%的合金成分點(diǎn)會(huì)進(jìn)入-Mg+Al4Sr+Mg17Sr2相區(qū),而Sr含量為5%的合金成分點(diǎn)會(huì)進(jìn)入-Mg+Mg17Sr2相區(qū)。因此,Sr含量為2.2%的合金成分點(diǎn)進(jìn)入-Mg+Al4Sr+ Mg17Sr2相區(qū)以后,鑄態(tài)組織中存在的(Mg,Al)17Sr2相大量轉(zhuǎn)變?yōu)锳l4Sr相。由于Mg-3Al-1Zn-5Sr合金均勻化過程中成分點(diǎn)進(jìn)入了-Mg+Mg17Sr2相區(qū),原本鑄態(tài)組織中可能由于非平衡凝固而形成的Al4Sr相也轉(zhuǎn)化為了(Mg,Al)17Sr2固溶相。
不難看出,采用熱力學(xué)計(jì)算獲得的相圖一方面可以用來揭示含Sr鎂鋁合金中第二相的形成機(jī)制,另一方面也為新型含Sr合金的設(shè)計(jì)提供了便利。雖然Mg-Al-Sr三元計(jì)算相圖已經(jīng)基本建立,且部分?jǐn)?shù)據(jù)與實(shí)驗(yàn)結(jié)果是較為吻合的,但是其準(zhǔn)確性還有待大量的實(shí)驗(yàn)數(shù)據(jù)對(duì)其進(jìn)行驗(yàn)證。Mg-Al-Sr三元系中一些關(guān)鍵的第二相的類型也暫時(shí)存在較大爭(zhēng)議,亟待更為細(xì)致、系統(tǒng)的研究。
圖4 400 ℃的Mg-Al-Sr計(jì)算等溫截面圖[70]
圖5 Al含量為3%的富Mg角Mg-Al-Sr三元垂直截面圖[67]
隨著Sr對(duì)鎂合金的影響的實(shí)驗(yàn)研究的不斷進(jìn)行,含Sr鎂合金中第二相的理論計(jì)算研究也得到了一定的發(fā)展。目前,在鎂合金中應(yīng)用較為廣泛的計(jì)算模擬方法有第一性原理計(jì)算、Miedema理論、固體經(jīng)驗(yàn)電子理論和有限元法等。基于密度泛函理論的第一性原理計(jì)算[73]是基于量子力學(xué)的電子層次的理論,這類理論考慮了電子之間的相互作用,能對(duì)電子行為進(jìn)行描述,如電子的雜化、能帶和電荷的轉(zhuǎn)移等,因此是目前鎂合金中微觀組織結(jié)構(gòu)研究中應(yīng)用最為廣泛的理論模擬計(jì)算方法。但是目前國(guó)內(nèi)外針對(duì)含鍶Mg-Al系合金的第一性原理計(jì)算方面的研究還并不是很多,國(guó)內(nèi)主要是重慶大學(xué)[74]和湖南大學(xué)[75?76]等單位。
ZHOU等[75?76]采用基于密度泛函理論的第一性原理計(jì)算,計(jì)算了合金相Mg17Al12、Mg17Sr2、MgSr、Mg2Sr、Al4Sr、Al2Sr和Mg23Sr6等化合物的形成熱、結(jié)合能以及電荷密度等,研究了這些化合物的結(jié)構(gòu)穩(wěn)定性;并進(jìn)一步為含Sr鎂合金中是否會(huì)形成含Sr相、形成何種含Sr的實(shí)驗(yàn)研究提供了理論指導(dǎo)。早期結(jié)果[75]認(rèn)為Al4Sr相的結(jié)合能比Mg-Sr相更高,相對(duì)更加穩(wěn)定。但最近的研究結(jié)果表明[76]:Al2Sr相的結(jié)合能比Al4Sr相更高(如圖6所示,Al2Sr的結(jié)合能最高),更加穩(wěn)定且更加容易在Mg-Al-Sr系鎂合金中形成。但是,這與目前大量的實(shí)驗(yàn)研究結(jié)果略有不同,可能是由于第一性原理計(jì)算僅考慮了電子之間的相互作用,不考慮化學(xué)條件所導(dǎo)致的。此外,WU等[76]認(rèn)為,在152℃(425K)溫度下,Al2Sr和Mg17Sr2相比Mg17Al12相更加穩(wěn)定;且MgSr、Mg2Sr和Al4Sr為韌性相,Mg17Al12、Mg17Sr2和Al2Sr為脆性相。
圖6 Mg-Al-Sr合金中第二相的結(jié)合能[76]
本文作者前期[74]同樣采用第一性原理計(jì)算了添加合金元素Sr后AZ31系鎂合金組織中合金相Al4Sr、Al2Sr、Al9Sr5、Mg2Sr和Mg17Sr2的結(jié)構(gòu)參數(shù)和構(gòu)型、形成焓、結(jié)合能、彈性常數(shù)以及理論強(qiáng)度等,獲得了這些相的結(jié)構(gòu)穩(wěn)定性和力學(xué)性質(zhì)的數(shù)據(jù)。結(jié)果表明:結(jié)構(gòu)參數(shù)和構(gòu)型的計(jì)算值和實(shí)驗(yàn)值相符;形成焓和結(jié)合能的計(jì)算結(jié)果顯示這些合金相均為穩(wěn)定相,其中Al4Sr的結(jié)構(gòu)穩(wěn)定性最好;體積模量和剪切模量之比/值顯示:Al2Sr和Al9Sr5呈脆性,Al4Sr和Mg2Sr呈延性。
事實(shí)上,近年來研究者們嘗試將第一性原理計(jì)算與相圖熱力學(xué)模擬有機(jī)結(jié)合起來,以期獲得更為準(zhǔn)確的含Sr鎂合金二元或三元系相圖[77]。如2004年,ZHONG等[78]就結(jié)合第一性原理和相圖計(jì)算方法改進(jìn)了Al-Sr二元相圖,通過第一性原理方法預(yù)測(cè)了一些包括C15型和CeCu2型Al2Sr相、Al5Sr4相和Al3Sr8相在內(nèi)的Al-Sr相圖中可能存在卻當(dāng)時(shí)暫未通過實(shí)驗(yàn)發(fā)現(xiàn)的新相的存在;并將第一性原理計(jì)算獲得的形成焓與實(shí)驗(yàn)熱力學(xué)和相穩(wěn)定性信息一起,建立了一個(gè)新的、更為與實(shí)驗(yàn)數(shù)據(jù)相吻合的相圖計(jì)算模型。最近,ZHOU等[79]同樣結(jié)合這兩種方法改進(jìn)了Sn-Sr二元系和Mg-Sn-Sr三元系相圖。該方法的優(yōu)勢(shì)是結(jié)合聲子和德拜模型能夠獲得第二相給定溫度下的熱力學(xué)性質(zhì);將這些熱力學(xué)數(shù)據(jù)作為相圖熱力學(xué)計(jì)算的初始輸入,可以避免人工輸入熱容近似值而帶來的計(jì)算不準(zhǔn)確問題[77]。
綜上所述,第一性原理計(jì)算方法能夠揭示含Sr鎂鋁系合金中第二相的結(jié)構(gòu)穩(wěn)定性及力學(xué)性質(zhì),對(duì)于闡明第二相的形成機(jī)制及其對(duì)顯微組織和力學(xué)性能的影響規(guī)律是十分有效的。由于Al-Sr相的結(jié)合能普遍高于Mg-Sr相,因此,隨著Sr含量的增加,Mg-Al系合金中將首先出現(xiàn)Al-Sr相(Al4Sr或Al2Sr),然后再出現(xiàn)Mg-Sr相(Mg17Sr2或Mg2Sr);這也與采用電負(fù)性差值方法分析[18, 65]所獲得的結(jié)論是一致的,能夠合理解釋實(shí)驗(yàn)現(xiàn)象。然而,如何將多尺度數(shù)值模擬方法(時(shí)間尺度和空間尺度),如第一性原理計(jì)算、分子動(dòng)力學(xué)、速率理論、相場(chǎng)模擬和有限元分析等方法有機(jī)結(jié)合起來,揭示凝固及熱處理過程中含Sr鎂鋁系合金中第二相的演變機(jī)制,是一個(gè)十分具有挑戰(zhàn)且有利于促進(jìn)含Sr耐熱鎂合金開發(fā)的方法和工具。此外,如何將數(shù)值模擬與相圖熱力學(xué)計(jì)算方法相結(jié)合,確定尚在爭(zhēng)議之中的Mg-Al-Sr三元相的結(jié)構(gòu)、類型及穩(wěn)定性,并開展實(shí)驗(yàn)驗(yàn)證和分析也十分關(guān)鍵。
Sr作為一種有效的晶粒細(xì)化用微合金化元素,目前在鎂合金中已得到了初步的應(yīng)用。同時(shí),除了細(xì)化晶粒外,Sr微合金化對(duì)鎂合金中的第二相也存在明顯的變質(zhì)和/或細(xì)化作用。此外,作為主體合金元素,Sr還被用于Mg-Al-Sr、Mg-Sn-Sr和Mg-Zn-Sr等新型鎂合金的研制開發(fā)。也正是看到Sr在鎂合金應(yīng)用中的優(yōu)勢(shì)及潛力,國(guó)內(nèi)外對(duì)于含Sr鎂合金的組織性能及含Sr新型鎂合金的開發(fā)給予了廣泛的關(guān)注和高度的重視。迄今為止,各國(guó)專家對(duì)含鍶Mg-Al系合金中第二相的類型、分布及形成機(jī)制展開了大量的實(shí)驗(yàn)研究,重點(diǎn)關(guān)注了其中的含Sr新相。熱力學(xué)計(jì)算、第一性原理計(jì)算等數(shù)值模擬計(jì)算方法也初步引入到了含鍶Mg-Al系合金中第二相的穩(wěn)定性及形成機(jī)制的研究領(lǐng)域之中。
大量的研究結(jié)果表明,添加少量Sr元素后,Mg-Al系合金中將出現(xiàn)Al4Sr相,并細(xì)化原始組織中枝晶界粗大-Mg17Al12相;隨著Sr含量的增加,Al4Sr相的數(shù)量增加并伴隨著-Mg17Al12相的數(shù)量減少;隨著Sr含量進(jìn)一步增加,將出現(xiàn)(Mg,Al)17Sr2相和/或Mg-Al-Sr三元相。熱處理過程中,這些(Mg,Al)17Sr2相和Mg-Al-Sr三元相可能向更加穩(wěn)定的Al4Sr相轉(zhuǎn)變。此外,第一性原理計(jì)算結(jié)果表明Al-Sr相的結(jié)合能普遍高于Mg-Sr相,能夠合理解釋實(shí)驗(yàn)現(xiàn)象。然而,到目前為止,研究者們對(duì)于含鍶Mg-Al系合金中Mg-Al-Sr三元相的類型仍存在一些不同意見;此外,隨著含鍶Mg-Al系合金成分的調(diào)整,其中的第二相類型可能更多、結(jié)構(gòu)可能更加復(fù)雜。因此,在現(xiàn)有研究方法的基礎(chǔ)上,引入更加有效的微觀表征手段,與熱力學(xué)計(jì)算、第一性原理等數(shù)值模擬方法相結(jié)合,將更加有利于揭示現(xiàn)有含鍶Mg-Al系合金顯微組織和力學(xué)性能演變規(guī)律及機(jī)制,并將極大地促進(jìn)新型含Sr耐熱鎂合金的設(shè)計(jì)研發(fā)進(jìn)展。
[1] 潘復(fù)生, 楊明波. 含鍶鎂合金組織和性能的最新研究進(jìn)展[J]. 中國(guó)有色金屬學(xué)報(bào), 2011, 21(10): 2382?2393. PAN Fu-sheng, YANG Ming-bo. Research status on microstructure and mechanical properties of magnesium alloys containing strontium[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2382?2393.
[2] PAN Fu-sheng, ZHANG Jing, WANG Jing-feng, YANG Ming-bo, HAN En-hou, CHEN Rong-shi. Key R&D activities for development of new types of wrought magnesium alloys in China[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(7): 1249?1258.
[3] KULEKCI M K. Magnesium and its alloys applications in automotive industry[J]. The International Journal of Advanced Manufacturing Technology, 2007, 39(9/10): 851?865.
[4] DULY D, SIMON J P, BRECHET Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys[J]. Acta Metallurgica et Materialia, 1995, 43(1): 101?106.
[5] CáCERES C H, ROVERA D M. Solid solution strengthening in concentrated Mg-Al alloys[J]. Journal of Light Metals, 2001, 1(3): 151?156.
[6] KLEINER S, BEFFORT O, WAHLEN A, UGGOWITZER P J. Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys[J]. Journal of Light Metals, 2002, 2(4): 277?280.
[7] JACKSON S F, MONK S D, RIAZ Z. An investigation towards real time dose rate monitoring, and fuel rod detection in a First Generation Magnox Storage Pond (FGMSP)[J]. Applied Radiation and Isotopes, 2014, 94: 254?259.
[8] GIBBS G B,HARRIS J E. Irradiation-induced embrittlement of magnox cans[J]. Radiation Effects, 1972, 16(3/4): 267?270.
[9] AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943?1962.
[10] WANG J T, YIN D L, LIU J Q, TAO J, SU Y L, ZHAO X. Effect of grain size on mechanical property of Mg-3Al-1Zn alloy[J]. Scripta Materialia, 2008, 59(1): 63?66.
[11] MALTAIS A, DUBé D, FISET M, LAROCHE G, TURGEON S. Improvements in the metallography of as-cast AZ91 alloy[J]. Materials Characterization, 2004, 52(2): 103?119.
[12] 楊明波, 潘復(fù)生, 湯愛濤, 唐麗文, 楊 慧. Mg-Zn-Al(ZA)系耐熱鎂合金的研究現(xiàn)狀[J]. 熱加工工藝, 2007, 36(8): 73?77. YANG Ming-bo, PAN Fu-sheng, TANG Ai-tao, TANG Li-wen, YANG Hui. Research status of Mg-Zn-Al(ZA)based elevated temperature magnesium alloy[J]. Hot Working Technology, 2007, 36(8): 73?77.
[13] BALASUBRAMANI N,PILLAI U T S,PAI B C. Optimization of heat treatment parameters in ZA84 magnesium alloy[J]. Journal of Alloys and Compounds, 2008, 457(1/2): 118?123.
[14] 趙瑋霖, 楊明波, 潘復(fù)生, 白 亮, 唐麗文. 合金元素對(duì)Mg-Zn-Al(ZA)系耐熱鎂合金組織及性能的影響[J]. 材料導(dǎo)報(bào), 2007, 21(7): 70?73. ZHAO Wei-lin, YANG Ming-bo, PAN Fu-sheng, BAI Liang, TANG Li-wen. Effects of alloy elements on the microstructure and mechanical properties of Mg-Zn-Al(ZA) based magnesium alloys[J]. Materials Review, 2007, 21(7): 70?73.
[15] MIRKOVI? D,SCHMID-FETZER R. Directional solidification of Mg-Al alloys and microsegregation study of Mg alloys AZ31 and AM50: Part I. Methodology[J]. Metallurgical and Materials Transactions A, 2009, 40(4): 958?973.
[16] GARIBOLDI E,CONTE A L. Evaluation of toughness characteristics of a die-cast Mg-Al-Mn alloy AM60B under different microstructural conditions[J]. Materials Science and Engineering A, 2004, 387/389: 34?40.
[17] LEE C D. Dependence of tensile properties of AM60 magnesium alloy on microporosity and grain size[J]. Materials Science and Engineering A, 2007, 454/455: 575?580.
[18] 許春香, 鞠 輝, 張志瑋. Sr含量對(duì)AM80鎂合金顯微組織和力學(xué)性能的影響[J]. 中國(guó)有色金屬學(xué)報(bào), 2013, 23(2): 349?355. XU Chun-xiang, JU Hui, ZHANG Zhi-wei. Effect of Sr content on microstructure and mechanical properties of AM80 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(2): 349?355.
[19] 杜文博, 吳玉鋒, 聶祚仁, 蘇學(xué)寬, 左鐵鏞. 稀(堿)土在鎂合金中的作用及應(yīng)用現(xiàn)狀[J]. 稀有金屬材料與工程, 2006, 35(9): 1345?1349. DU Wen-bo, WU Yu-feng, Nie Zuo-ren, SHU Xue-kuan, ZUO Tie-yong. Effects of rare earth and alkaline earth on magnesium alloys and their applications status[J]. Rare Metal Materials and Engineering, 2006, 35(9): 1345?1349.
[20] 張丁非, 諶 夏, 潘復(fù)生, 蔣璐瑤, 胡光山, 余大亮. 稀土元素對(duì)鎂合金力學(xué)性能影響的研究進(jìn)展[J]. 功能材料, 2014, 45(5): 1?7. ZHANG Ding-fei, SHEN Xia, PAN Fu-sheng, JIANG Lu-yao, HU Guang-shan, YU Da-liang. Research status of effect of rare earth element on mechanical properties of magnesium alloys[J]. Journal of Functional Materials, 2014, 45(5): 1?7.
[21] 胡文鑫, 楊正華, 陳國(guó)華, 曹永存. 稀土元素對(duì)鎂合金組織結(jié)構(gòu)與性能影響的研究進(jìn)展[J]. 稀土, 2014, 35(5): 89?95. HU Wen-xin, YANG Zheng-hua CHEN Guo-hua, CAO Yong-cun. Research progress in influence of rare earth on microstructure and mechanical properties of magnesium alloy[J]. Chinese Rare Earths, 2014, 35(5): 89?95.
[22] SüDHOLZ A D, BIRBILIS N, BETTLES C J, GIBSON M A. Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 109?115.
[23] 王 琳, 張治民, 薛 勇, 曹春虎, 黃有旺. 鑄態(tài)稀土鎂合金熱拉伸變形斷裂機(jī)理[J]. 材料導(dǎo)報(bào), 2015, 29(20): 110?113. WANG Lin, ZHANG Zhi-min, XUE Yong, CAO Chun-hu, HUANG You-wang. Study of hot-stretched fracture mechanism of magnesium alloy[J]. Materials Review, 2015, 29(20): 110?113.
[24] BRASZCZY?SKA-MALIK K N,GRZYBOWSKA A. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-RE (=0, 3 and 5wt.%) alloys[J]. Materials Characterization, 2016, 115: 14?22.
[25] PAN Hu-cheng, REN Yu-ping, Fu He, ZHAO Hong, WANG Li-qing, MENG Xiang-ying, QIN Gao-wu. Recent developments in rare-earth free wrought magnesium alloys having high strength: A review[J]. Journal of Alloys and Compounds, 2016, 663: 321?331.
[26] SAMUEL F H, SAMUEL A M, OUELLET P, DOTY H W. Effect of Mg and Sr additions on the formation of intermetallics in Al-6 wt pct Si-3.5 wt pct Cu-(0.45) to (0.8) wt pct Fe 319-type alloys[J]. Metallurgical and Materials Transactions A, 1998, 29(12): 2871?2884.
[27] KORI S A, MURTY B S, CHAKRABORTY M. Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium[J]. Materials Science and Engineering A, 2000, 283(1/2): 94?104.
[28] TAVITAS-MEDRANO F J, GRUZLESKI J E, SAMUEL F H, VALTIERRA S, DOTY H W. Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging[J]. Materials Science and Engineering A, 2008, 480(1/2): 356?364.
[29] 王志偉, 閆 洪, 熊俊杰. Sr變質(zhì)對(duì)ADC12合金摩擦磨損性能的影響[J]. 中國(guó)有色金屬學(xué)報(bào), 2016, 26(5): 1075?1083. WANG Zhi-wei, YAN Hong, XIONG Jun-jie. Effect of Sr modification on friction and wear properties of ADC12 alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1075?1083.
[30] 鈕潔欣, 徐乃欣, 張承典, 陳秋榮. 堿土金屬鈣和鍶對(duì)鎂合金耐蝕性的影響[J]. 腐蝕與防護(hù), 2008, 29(1): 1?6. NIU Jie-xin, XU Nai-xin, ZHANG Cheng-dian, CHEN Qiu-rong. Effect of alkaine-earth metals Ca and Sr on corrosion resistance of magnesium alloys[J]. Corrosion & Protection, 2008, 29(1): 1?6.
[31] 白 晶, 孫揚(yáng)善, 強(qiáng)立峰, 諸天柏. 鍶和鈣在鎂-鋁系合金中的應(yīng)用及研究進(jìn)展[J]. 鑄造, 2006, 55(1): 1?5. BAI Jing, SHUN Yang-shan, QIANG Li-feng, ZHU Tian-bai. Application and process of research of strontium and calcium in Mg-Al based alloys[J]. Foundry, 2006, 55(1): 1?5.
[32] PEKGULERYUZ M O,BARIL E. Creep resistant magnesium diecasting alloys based on alkaline earth elements[J]. Materials Transactions, 2001, 42(7): 1258?1267.
[33] 吳 璐, 潘復(fù)生, 楊明波, 程仁菊, 湯愛濤. Mg-9Al- 1Zn(0-0.6)Sr鎂合金鑄態(tài)組織及晶粒細(xì)化研究[J]. 功能材料, 2014, 45(2): 63?67. WU Lu, PAN Fu-sheng, YANG Ming-bo, CHENG Ren-ju, TANG Ai-tao. An investigation of as-cast mirostructure and grain refinement in Mg-9Al-1Zn-(0-0.6)Sr magnesium alloys[J]. Journal of Functional Materials, 2014, 45(2): 63?67.
[34] TANG Ai-tao, PAN Fu-sheng, YANG Ming-bo, CHENG Ren-ju. Mechanical properties and microstructure of magnesium- aluminum based alloys containing strontium[J]. Materials Transactions, 2008, 49(6): 1203?1211.
[35] 程仁菊, 潘復(fù)生, 楊明波, 湯愛濤. 鍶在鎂合金中的應(yīng)用及其研究新進(jìn)展[J]. 材料導(dǎo)報(bào), 2008, 22(5): 63?67. CHENG Ren-ju, PAN Fu-sheng, YANG Ming-bo, TANG Ai-tao. Application and new developments of strontium in magnesium alloys[J]. Materials Review, 2008, 22(5): 63?67.
[36] PEKGULERYUZ M O, KAYA A. Creep Resistant Magnesium Alloys for Powertrain Applications[J]. Advanced Engineering Materials, 2003, 12: 866?878.
[37] BARIL E, LABELLE P,PEKGULERYUZ M O. Elevated temperature Mg-Al-Sr creep resistance, mechanical properties, and microstructure[J]. JOM, 2003, 55(11): 34?39.
[38] LUO A A. Recent magnesium alloy development for automotive powertrain applications[J]. Materials Science Forum, 2003, 419/422: 57?66.
[39] DING Yun-fei, LI Yun-cang, LIN Ji-xing, WEN Cui-e. Effects of zirconium and strontium on the biocorrosion of Mg-Zr-Sr alloys for biodegradable implant applications[J]. Journal of Materials Chemistry B, 2015, 3(18): 3714?3729.
[40] DING Yun-fei, LI Yun-cang, WEN Cui-e. Effects of Mg17Sr2phase on the bio-corrosion behavior of Mg-Zr-Sr alloys[J]. Advanced Engineering Materials, 2016, 18(2): 259?268.
[41] ZHAO Chao-yong, PAN Fu-sheng, ZHANG Lei, PAN Hu-cheng, SONG Kai, TANG Ai-tao. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys[J]. Materials Science and Engineering C, 2017, 70: 1081?1088.
[42] NIE Jian-feng. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(11): 3891?3939.
[43] LEE S, LEE S H, KIM D H. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-x magnesium alloys[J]. Metallurgical and Materials Transactions A, 1998, 29: 1221?1235.
[44] ZHAO P, WANG Q D, ZHAI C Q, ZHU Y. Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys[J]. Materials Science and Engineering A, 2007, 444(1/2): 318?326.
[45] 白 星, 胡文俊, 張立強(qiáng), 王 冠, 李落星. Sr對(duì)AZ91鎂合金組織及力學(xué)性能的影響[J]. 中國(guó)有色金屬學(xué)報(bào), 2008, 18(9): 1596?1601. BAI Xing, HU Wen-jun, ZHANG Li-qiang, WANG Guan, LI Luo-xing. Effect of Sr on microstructures and mechanical properties of AZ91 Mg alloys[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1596?1601.
[46] 楊明波, 潘復(fù)生, 李忠盛, 程仁菊. Sr對(duì)Mg-3Al-1Zn鎂合金鑄態(tài)組織的影響[J]. 重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版), 2007, 21(3): 10?12. YANG Ming-bo, PAN Fu-sheng, LI Zhong-sheng CHENG Ren-ju. Effects of Sr on the as-cast microstructure of Mg-3Al-1Zn magnesium alloy[J]. Journal of Chongqing Institute of Technology(Natural Science Edition), 2007, 21(3): 10?12.
[47] YANG Ming-bo, SHEN Jia, BAI Liang, PAN Fu-sheng. Effects of Sr on the microstructure, tensile and creep properties of AZ61-0.7Si magnesium alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 90?95.
[48] TANG S Q, ZHOU J X, TIAN C W, YANG Y S. Morphology modification of Mg2Si by Sr addition in Mg-4%Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1932?1936.
[49] QIN Q D, ZHAO Y G, LIU C, CONG P J, ZHOU W. Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite[J]. Journal of Alloys and Compounds, 2008, 454(1/2): 142?146.
[50] SUZUKI A,SADDOCK N D,RIESTER L,LARA-CURZIO E, JONES J W, POLLOCK T M. Effect of Sr additions on the microstructure and strength of a Mg-Al-Ca ternary alloy[J]. Metallurgical and Materials Transactions A, 2007, 38(2): 420?427.
[51] FAN Jin-ping, XU Bing-she, WANG She-bin, LIU Lu, FENG Zhi-yong. Effect of Sr/Al ratio on microstructure and properties of Mg-Al-Sr alloy[J]. Rare Metal Materials and Engineering, 2012, 41(10): 1721?1724.
[52] NAYERI T,YARI M,SADREDDINI S. Effect of Sr on the microstructure and properties of Mg-6Al alloy[J]. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52(2): 273?278.
[53] XU Tian-cai, PENG Xiao-dong, JIANG Jun-wei, XIE Wei-dong, CHEN Yuan-fang, WEI Guo-bing. Effect of Sr content on microstructure and mechanical properties of Mg-Li-Al-Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9): 2752?2760.
[54] DARGUSCH M S, ZHU S M, NIE J F, DUNLOP G L. Microstructural analysis of the improved creep resistance of a die-cast magnesium-aluminium-rare earth alloy by strontium additions[J]. Scripta Materialia, 2009, 60(2): 116?119.
[55] L'ESPéRANCE G, PLAMONDON P, KUNST M, FISCHERSWORRING-BUNK A. Characterization of inter- metallics in Mg-Al-Sr AJ62 alloys[J]. Intermetallics, 2010, 18(1): 1?7.
[56] PAN Fu-sheng,YANG Ming-bo,MA Yan-long. Development of new types of magnesium alloys containing Sr or Re elements[J]. Materials Science Forum, 2007, 561/565: 191?197.
[57] LUO A A. Recent magnesium alloy development for elevated temperature applications[J]. International Materials Reviews, 2004, 49(1): 13?30.
[58] WU Lu, PAN Fu-sheng, YANG Ming-bo, WU Ju-ying, LIU Ting-ting. As-cast microstructure and Sr-containing phases of AZ31 magnesium alloys with high Sr contents[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(4): 784?789.
[59] YANG Ming-bo, CHENG Liang, PAN Fu-sheng. Comparison about effects of Sr, Zr and Ce additions on as cast microstructure and mechanical properties of Mg-3.8Zn-2.2Ca (wt-%) magnesium alloy[J]. International Journal of Cast Metals Research, 2010, 23(2): 111?118.
[60] YANG Ming-bo, PAN Fu-sheng, CHENG Ren-ju, TANG Ai-tao. Effects of Al-10Sr master alloys on grain refinement of AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 52?58.
[61] WU Lu, PAN Fu-sheng, YANG Ming-bo, CHENG Ren-ju. An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents[J]. Journal of Materials Science, 2013, 48(16): 5456?5469.
[62] 楊明波, 程仁菊, 潘復(fù)生, 湯愛濤. Mg-9Sr中間合金的組織及其對(duì)AZ31鎂合金組織細(xì)化的影響[J]. 稀有金屬材料與工程, 2008, 37(3): 413?417. YANG Ming-bo, CHENG Ren-ju, PAN Fu-sheng, TANG Ai-tao. Microstructure of Mg-9Sr master alloys and its effects on microstructure refinement of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2008, 37(3): 413?417.
[63] 馮中學(xué), 潘復(fù)生, 史慶南, 起華榮, 陳亮維, 王效琪, 陳希亮. Sr、Ca 復(fù)合添加對(duì) AZ31鎂合金組織和性能的影響[J]. 功能材料, 2014, 45(7): 61?65. FENG Zhong-xue, PAN Fu-sheng, SHI Qing-nan, QI Hua-rong, CHEN Liang-wei, WANG Xiao-qi, CHEN Xi-liang. Effects of Sr and Ca compound alloying on the microstructure and property of the AZ31 magnesium alloy[J]. Journal of Functional Materials, 2014, 45(7): 61?65.
[64] 馮中學(xué), 潘復(fù)生, 史慶南, 張喜燕, 陳亮維, 王效琪. Sr、Ca復(fù)合添加對(duì)AZ31鎂合金中合金相的影響[J]. 稀有金屬材料與工程, 2015, 44(7): 1768?1771. FENG Zhong-xue, PAN Fu-sheng, SHI Qing-nan, ZHANG Xi-yan, CHEN Liang-wei, WANG Xiao-qi. Effect of Sr and Ca compound alloying on the phase of the AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44(7): 1768?1771.
[65] 吳璐, 潘復(fù)生, 楊明波, 宋鍇, 潘虎成. Mg-3Al-1Zn(0~0.5)Sr鎂合金鑄態(tài)組織中的第二相研究[J]. 重慶大學(xué)學(xué)報(bào), 2014, 37(3): 1?9. WU Lu, PAN Fu-sheng, YANG Ming-bo, SONG Kai, PAN Hu-cheng. An investigation on second phases in the as-cast Mg-3Al-1Zn-(0-0.5)Sr magnesium alloys[J]. Journal of Chongqing University, 2014, 37(3): 1?9.
[66] PEKGULERYUZ M, LABELLE P, ARGO D, BARIL E. Magnesium diecasting alloy AJ62x with superior creep resistance, ductility and diecastability[C]//TMS. New Jersey: TMS, 2003: 201?206.
[67] 吳菊英, 吳 璐, 潘復(fù)生, 楊明波, 湯愛濤, 唐 華. 均勻化退火對(duì)Mg-3Al-1Zn-2.2/5Sr鎂合金中第二相的影響[J]. 稀有金屬材料與工程, 2014, 43(7): 1638?1642. WU Ju-ying, WU Lu, PAN Fu-sheng, YANG Ming-bo, TANG Ai-tao, TANG Hua. Effect of homogenization annealing on second phases in Mg-3Al-1Zn-2.2/5Sr magnesium alloys[J]. Rare Metal Materials and Engineering, 2014, 43(7): 1638?1642.
[68] JANZ A, GR?BNER J, MIRKOVI? D, MEDRAJ M, ZHU J, CHANG Y A, SCHMID-FETZER R. Experimental study and thermodynamic calculation of Al-Mg-Sr phase equilibria[J]. Intermetallics, 2007, 15(4): 506?519.
[69] PARVEZ M A, MEDRAJ M, ESSADIQI E, MUNTASAR A, DéNèS G. Experimental study of the ternary magnesium- aluminium-strontium system[J]. Journal of Alloys and Compounds, 2005, 402(1/2): 170?185.
[70] RAGHAVAN V. Al-Mg-Sr (Aluminum-Magnesium-Strontium)[J]. Journal of Phase Equilibria and Diffusion, 2007, 28(5): 473?476.
[71] ALJARRAH M, PARVEZ M A, LI J, ESSADIQI E, MEDRAJ M. Microstructural characterization of Mg-Al-Sr alloys[J]. Science and Technology of Advanced Materials, 2007, 8(4): 237?248.
[72] MEDRAJ M, PARVEZ M A, ESSADIQI E, LI J. New phases in the Mg-Al-Sr system[J]. Materials Science Forum, 2007, 539/543: 1620?1625.
[73] ENGEL E, DREIZLER R M. Density functional theory[M]. Berlin Heidelberg: Springer, 2011.
[74] 吳菊英, 湯愛濤, 潘復(fù)生. 第一性原理在鎂合金研究中的應(yīng)用現(xiàn)狀[J]. 材料導(dǎo)報(bào), 2012, 26(11): 119?123. WU Ju-ying, TANG Ai-tao, PAN Fu-sheng. The application of the first-principles calculation in magnesium alloys[J]. Materials Review, 2012, 26(11): 119?123.
[75] ZHOU D W, LIU J S, XU S H, PENG P. First-principles investigation of the binary intermetallics in Mg-Al-Sr alloy: Stability, elastic properties and electronic structure[J]. Computational Materials Science, 2014, 86: 24?29.
[76] ZHOU D W, LIU J S, PENG P. A first-principles study on electronic structure and elastic properties of Al4Sr, Mg2Sr and Mg23Sr6phases[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2677?2683.
[77] LIU Z K. First-principles calculations and CALPHAD modeling of thermodynamics[J]. Journal of Phase Equilibria and Diffusion, 2009, 30(5): 517?534.
[78] ZHONG Y,WOLVERTON C,CHANG Y A, LIU Z K. A combined CALPHAD/first-principles remodeling of the thermodynamics of Al-Sr: Unsuspected ground state energies by “rounding up the (un)usual suspects”[J]. Acta Materialia, 2004, 52(9): 2739?2754.
[79] ZHOU Bi-cheng,SHANG Shun-li,LIU Zi-kui. First-principles calculations and thermodynamic modeling of the Sn-Sr and Mg-Sn-Sr systems[J]. Calphad, 2014, 46: 237?248.
(編輯 李艷紅)
Review of secondary phases in strontium-contained Mg-Al series magnesium alloys
WU Ju-ying1, SHAN Li-mei1, TANG Ai-tao2, PAN Fu-sheng2, YANG Ming-bo3, WU Lu4
(1. Department of Materials Engineering, Sichuan Engineering Technical College, Deyang 618000, China;2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;3. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;4. National Key Laboratory for Nuclear Fuel and Material, Nuclear Power Institute of China, Chengduo 610041, China)
In recent years, Sr alloying/micro-alloying was widely used in Mg-Al-based magnesium alloys due to the benefits on modification of secondary phases, grain size refinement and improvement of elevated temperature properties. The recent research works on secondary phases in strontium-contained Mg-Al series magnesium alloys were summarized. With the Sr contents increasing, Al-Sr phases, such as Al4Sr and Al2Sr, form at first, and then Mg-Sr phases, such as (Mg,Al)17Sr2and Mg-Al-Sr ternary phases form, which are confirmed by both of the experimental and modelling results. However, the structure and stoichiometry of the Mg-Al-Sr ternary phase are still controversial. At the same time, the results on mechanical properties and stability of the Sr-containing secondary phases, which were calculated by using CALPHAD thermodynamic modeling and first-principles calculations methods, respectively, also were reviewed. In addition, it is considered that combining these two simulation methods, more accurate binary or ternary phase diagrams of Mg-Al-Sr series could be obtained.
magnesium alloys; strontium; secondary phases; first-principles; calphad calculation
Project (51474043) supported by National Nature Science Foundation of China; Project (2014DFG52810) supported by Ministry of Science and Technology of China; Project (2015M582575) supported by China Postdoctoral Science Foundation; Project (2016HH0014) supported by Sichuan Province International Science and Technology Cooperation and Exchanges Research Program, China
2016-07-21; Accepted date: 2017-04-03
WU Lu; Tel: +86-28-85904547; E-mail: wulu@cqu.edu.cn
10.19476/j.ysxb.1004.0609.2017.09.01
1004-0609(2017)-09-1757-11
TG146.2+2
A
國(guó)家自然科學(xué)基金資助項(xiàng)目(51474043);科技部國(guó)際合作資助項(xiàng)目(2014DFG52810);中國(guó)博士后科學(xué)基金資助項(xiàng)目(2015M582575);四川省國(guó)際科技合作與交流計(jì)劃資助項(xiàng)目(2016HH0014)
2016-07-21;
2017-04-03
吳璐,副研究員,博士;電話:028-85904547;E-mail:wulu@cqu.edu.cn