国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

淋巴細(xì)胞特有重組激活基因蛋白載體構(gòu)建及功能鑒定

2017-11-13 05:43:21趙小惠鄭銘喆季延紅西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病原生物學(xué)和免疫學(xué)系陜西西安710061
關(guān)鍵詞:克隆淋巴細(xì)胞載體

趙小惠,李 琛,張 華,鄭銘喆,季延紅 (西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病原生物學(xué)和免疫學(xué)系,陜西西安710061)

淋巴細(xì)胞特有重組激活基因蛋白載體構(gòu)建及功能鑒定

趙小惠,李 琛,張 華,鄭銘喆,季延紅 (西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病原生物學(xué)和免疫學(xué)系,陜西西安710061)

目的:淋巴細(xì)胞特異性重組激活基因(RAG)蛋白1和2共同組成的RAG重組酶是造成淋巴細(xì)胞發(fā)育及產(chǎn)生抗體多樣性的關(guān)鍵性蛋白.本研究構(gòu)建并優(yōu)化同時(shí)表達(dá)RAG1和RAG2的慢病毒載體,為研究RAG1和RAG2的結(jié)構(gòu)和功能奠定基礎(chǔ).方法:構(gòu)建同時(shí)表達(dá)RAG1、RAG2和綠色熒光蛋白(GFP)的載體;Western Blotting驗(yàn)證該載體RAG1和RAG2蛋白表達(dá);體外重組實(shí)驗(yàn)證實(shí)該載體表達(dá)的RAG蛋白具有催化斷裂DNA的功能.結(jié)果:構(gòu)建了表達(dá)RAG重組酶的載體pWPI?RAG2?P2A?RAG1?IRES?GFP;Western Blotting驗(yàn)證了該載體表達(dá)RAG1和RAG2蛋白,并顯示該載體RAG1和RAG2蛋白的表達(dá)量具有較高的一致性.體外重組實(shí)驗(yàn)證實(shí)該載體表達(dá)的RAG1和RAG2組成的重組酶具有更好的催化斷裂DNA的活性.結(jié)論:優(yōu)化后的pWPI?RAG2?P2A?RAG1?IRES?GFP載體可以保證RAG1和RAG2同時(shí)有效表達(dá),GFP可作為熒光標(biāo)記,為后續(xù)細(xì)胞以及動(dòng)物實(shí)驗(yàn)奠定基礎(chǔ).

載體優(yōu)化;重組激活基因蛋白;P2A序列;綠色熒光蛋白(GFP)

0 引言

哺乳動(dòng)物免疫應(yīng)答主要依賴(lài)于B或T淋巴細(xì)胞在發(fā)育過(guò)程中通過(guò)基因重排產(chǎn)生多樣性的免疫球蛋白(immunoglobulins,Igs)或T細(xì)胞受體(T?cell receptors,Tcrs)分子.Igs和Tcrs分別包括Igh、Igκ、Igλ和Tcrβ、Tcrα、Tcrδ、Tcrγ7個(gè)抗原受體基因位點(diǎn).每個(gè)抗原受體基因在淋巴前體細(xì)胞或非淋巴細(xì)胞中以無(wú)翻譯表達(dá)蛋白功能的胚系基因片段簇形式存在,表現(xiàn)為每個(gè)基因位點(diǎn)的5'端含有多個(gè)可變區(qū)(varia?ble,V)和連接區(qū)(joining,J)基因片段,3'端含有數(shù)個(gè)恒定區(qū)(constant,C)基因片段.此外,Igh、Tcrβ和Tcrδ在V和J基因片段中間還含有多樣區(qū)(diversity,D)基因片段,V、D和J基因片段的重排過(guò)程稱(chēng)為V(D)J重組[1].這些特異性基因片段的V(D)J重組是由淋巴細(xì)胞特有的重組激活基因(recombination activating gene,RAG1和RAG2)編碼的重組激活基因蛋白(RAG1和RAG2)組成的RAG重組酶(后簡(jiǎn)稱(chēng)RAG),結(jié)合于V、D、J基因片段旁的重組信號(hào)序列(recombination signal sequence,RSS),催化基因片段和RSS之間的DNA斷裂.然后通過(guò)傳統(tǒng)的非同源末端連接途徑(non?ho?mologous end joining,NHEJ)將斷裂的基因片段組合在一起,形成編碼抗原受體可變區(qū)的基因,與編碼恒定區(qū)基因共同轉(zhuǎn)錄翻譯形成完整的Igs或Tcrs分子[2].RSS是由5'端高度保守的回文結(jié)構(gòu)——七聚體Heptamer(5'?CACAGTG?3'),3'端富含A/T堿基的九聚體Nonamer(5'?ACAAAAACC?3')組成,和它們之間序列相對(duì)不保守,但長(zhǎng)度固定在12 bp或23 bp空間間隔序列,把間隔序列長(zhǎng)度為12 bp或23 bp的RSS分別稱(chēng)為12RSS或23RSS.正常的V(D)J重組只發(fā)生在一個(gè)12RSS和一個(gè)23RSS之間,這種限制特點(diǎn)稱(chēng)為12/23規(guī)則[3-4].淋巴細(xì)胞特有的重排機(jī)制不僅對(duì)其發(fā)育和產(chǎn)生獲得性免疫應(yīng)答起著決定性作用,而且V(D)J重組過(guò)程出現(xiàn)錯(cuò)誤也可以促進(jìn)淋巴系統(tǒng)惡性腫瘤的發(fā)生[2].

小鼠全長(zhǎng)RAG1(full length RAG1,fRAG1)含有1040個(gè)氨基酸,是重組酶必需的催化活性單位[5].fRAG1從功能上分為兩部分,羧基端384?1008氨基酸為核心區(qū)(core RAG1,cRAG1),氨基端的1?383氨基酸為非核心區(qū)(non?core RAG1)[6-7].390?448氨基酸區(qū)域稱(chēng)為九聚體結(jié)合域(nonamer binding domain,NBD),能夠結(jié)合RSS的nonamer;528?760氨基酸區(qū)域能夠與RAG2相互作用并執(zhí)行RAG催化斷裂DNA的功能[8-9].小鼠全長(zhǎng)RAG2(full length RAG2,fRAG2)包括527個(gè)氨基酸,是RAG重組酶必需的輔助單位[10-13].fRAG2在功能上也分為核心區(qū)和非核心區(qū),氨基端的1?383氨基酸為核心區(qū)(core RAG2,cRAG2),羧基端384?527氨基酸為非核心區(qū)(non?core RAG2)[5].盡管RAG2本身沒(méi)有直接結(jié)合DNA的活性,但可以與RAG1相互作用,增強(qiáng)RAG1結(jié)合DNA的親和力,是RAG催化斷裂DNA必不可少的單位[14].RAG2的非核心區(qū)包含多個(gè)調(diào)控功能,非核心區(qū)的414?487氨基酸稱(chēng)為植物同源結(jié)構(gòu)域(plant homeodomain?finger,PHD?finger),能夠特異性地識(shí)別三甲基化修飾的組蛋白H3K4(H3K4me3),引導(dǎo)RAG2結(jié)合到活化的染色質(zhì)區(qū)增強(qiáng)RAG的催化斷裂活性[15-18].RAG2氨基酸序列的第490位的蘇氨酸(threonine,T)位點(diǎn)對(duì)于調(diào)節(jié)RAG2的穩(wěn)定性起著重要的作用.RAG2非核心區(qū)360?408富含酸性氨基酸,稱(chēng)為酸性鉸鏈區(qū)(acidic hinge region),可以調(diào)控RAG介導(dǎo)的V(D)J重組DSB以c?NHEJ進(jìn)行修復(fù),起著維持基因組穩(wěn)定性的作用[19-21].本研究通過(guò)構(gòu)建同時(shí)表達(dá)RAG1和RAG2的慢病毒載體,并對(duì)其進(jìn)行優(yōu)化,驗(yàn)證它們的表達(dá)及功能,為進(jìn)一步深入研究RAG1和RAG2的結(jié)構(gòu)和功能奠定基礎(chǔ).

1 材料和方法

1.1 材料pWPI?fRAG1、pWPI?fRAG2、pMSCV?P2A?Thy1.1、pWPI?IRES?GFP、pWPI?RAG1?IRES?RAG2質(zhì)粒和重組載體pMX?Thy1.1均由本實(shí)驗(yàn)室提供.293T細(xì)胞儲(chǔ)存于液氮中.RAG1、RAG2抗體由Schatz lab提供.FuGENE?6(Cat#1814443,Roche)、抗hCD4抗體(Cat#555347,abcam)、抗Thy1.1抗體(Cat#561409,abcam).PCR擴(kuò)增引物見(jiàn)表1.

表1 引物序列

1.2 方法

1.2.1 構(gòu)建pMSCV?RAG2?P2A?Thy1.1載體 設(shè)計(jì)末端帶有BglII、NotI限制性酶切位點(diǎn)和能夠擴(kuò)增全長(zhǎng)RAG2的引物,以pWPI?fRAG2為模板,利用表1引物R2?BglII?L和R2?NotI?R按94℃、30 s,58℃、30 s,72℃、1 min,30 cycles的步驟PCR擴(kuò)增并獲得全長(zhǎng)RAG2,并利用BglII、NotI限制性核酸內(nèi)切酶消化全長(zhǎng)RAG2片段及pMSCV?P2A?Thy1.1載體,通過(guò)T4連接酶將全長(zhǎng)RAG2連接到pMSCV?P2A?Thy1.1上,利用表1引物R2?BglII?L、R2?NotI?R進(jìn)一步進(jìn)行菌液PCR、酶切鑒定陽(yáng)性克隆并測(cè)序,獲得序列正確的pMSCV?RAG2?P2A?Thy1.1載體.

1.2.2 構(gòu)建pMSCV?RAG2?P2A?RAG1?Thy1.1載體

設(shè)計(jì)末端帶有SalI、ClaI限制性酶切位點(diǎn)和能夠擴(kuò)增全長(zhǎng)RAG1的引物,以pWPI?fRAG1為模板,利用表1引物R1?SalI?L和R1?ClaI?R按照94℃、30 s,58℃、1 min,72℃、1 min,30 cycles的步驟進(jìn)行PCR擴(kuò)增并獲得全長(zhǎng)RAG1,并利用SalI、ClaI限制性核酸內(nèi)切酶消化全長(zhǎng)RAG1片段及pMSCV?RAG2?P2A?Thy1.1載體,通過(guò)T4連接酶將全長(zhǎng)RAG1連接到pMSCV?RAG2?P2A?Thy1.1上,利用表1引物pMSCV?R1?R、R1?M?L,按照94℃、30 s,60℃、30 s,72℃、1 min,30 cycles的步驟進(jìn)一步進(jìn)行菌液PCR、酶切鑒定陽(yáng)性克隆并測(cè)序,獲得序列正確的pMSCV?RAG2?P2A?RAG1?Thy1.1載體.

1.2.3 構(gòu)建pWPI?RAG2?P2A?RAG1?IRES?GFP載體

設(shè)計(jì)末端帶有PacI、PmeI限制性酶切位點(diǎn)和能夠擴(kuò)增全長(zhǎng)RAG2?P2A?RAG1的引物,以pMSCV?RAG2?P2A?RAG1?Thy1.1為模板,利用表1引物pWPI?PacI?L、pWPI?PmeI?R,按照94℃、1 min,60℃、1 min,72℃、2 min,30 cycles的步驟PCR擴(kuò)增并獲得全長(zhǎng)RAG1,利用PacI、PmeI限制性核酸內(nèi)切酶消化全長(zhǎng)RAG2?P2A?RAG1片段及pWPI?IRES?GFP載體,通過(guò)T4連接酶將全長(zhǎng)RAG2?P2A?RAG1連接到pWPI?IRES?GFP上,利用表1引物R2?BglII?L、R2?M?R、按照94℃、30 s,58℃、30 s,72℃、1 min,30 cycles的步驟進(jìn)一步進(jìn)行菌液PCR、酶切鑒定陽(yáng)性克隆并測(cè)序,獲得序列正確的pWPI?RAG2?P2A?RAG1?IRES?GFP載體.

1.2.4 載體轉(zhuǎn)染293T細(xì)胞 用FuGENE?6轉(zhuǎn)染法將pWPI?RAG2?P2A?RAG1?IRES?GFP載體轉(zhuǎn)染293T細(xì)胞,37℃培養(yǎng)72 h.

1.2.5 Western Blotting實(shí)驗(yàn) 收集轉(zhuǎn)染后的293T細(xì)胞并提取蛋白,測(cè)定蛋白濃度,加入3×SDS,100℃變性10 min;配制分離膠(8%)和濃縮膠(4%),每孔上樣20 μg,電泳結(jié)束以后采用濕轉(zhuǎn)的方法進(jìn)行轉(zhuǎn)膜,100 V恒壓轉(zhuǎn)PVDF膜,電流差達(dá)到250 mA停止轉(zhuǎn)膜.將膜置于5%牛奶封閉液中封閉,室溫下在搖床上孵育2 h.按照1∶1000稀釋RAG1、RAG2抗體,置于4℃搖床上孵育過(guò)夜;第二天用TBST洗膜3次,15 min/次;用5%牛奶稀釋二抗(1∶5000稀釋?zhuān)?,室溫下在搖床上避光孵育45 min;用TBST洗膜3次,20 min/次;用ECL發(fā)光液進(jìn)行顯影.

1.2.6 體外重組實(shí)驗(yàn) pWPI?RAG1?IRES?RAG2或pWPI?RAG2?P2A?RAG1?IRES?GFP載體分別跟pMX?Thy1.1重組載體一起轉(zhuǎn)染293T細(xì)胞,72 h熒光顯微鏡下觀(guān)察GFP表達(dá),隨后收集細(xì)胞.取1×106上述轉(zhuǎn)染的293T細(xì)胞,4℃,1500 rpm,離心5 min,棄上清,預(yù)冷1×PBS洗2次,100 μL預(yù)冷1×PBS重懸.每管加入5 μL hCD4抗體,2 μL Thy1.1抗體,4℃,避光,20 min,預(yù)冷1×PBS洗2次,500 μL預(yù)冷1×PBS重懸細(xì)胞,過(guò)濾,流式細(xì)胞儀檢測(cè).

2 結(jié)果

2.1 構(gòu)建pWPI-RAG2-P2A-RAG1-IRES-GFPPCR擴(kuò)增帶有BglII,NotI限制性酶切位點(diǎn)的全長(zhǎng)RAG2序列(圖1A).用BglII,NotI限制性?xún)?nèi)切酶消化全長(zhǎng)RAG2的DNA以及pMSCV?P2A?Thy1.1載體,克隆形成pMSCV?RAG2?P2A?Thy1.1載體,利用引物R2?BglII?L和R2?NotI?R進(jìn)行菌液PCR鑒定陽(yáng)性克?。▓D1B),將陽(yáng)性克隆提質(zhì)粒后酶切并測(cè)序(圖1C).PCR擴(kuò)增帶有SalI,ClaI酶切位點(diǎn)的全長(zhǎng)RAG1序列(圖1D),克隆形成pMSCV?RAG2?P2A?RAG1?Thy1.1載體,利用引物pMSCV?R1?R、R1?M?L進(jìn)行菌液PCR鑒定陽(yáng)性克?。▓D1E),將陽(yáng)性克隆提質(zhì)粒后酶切并測(cè)序(圖1F).PCR擴(kuò)增帶有PacI,PmeI限制性酶切位點(diǎn)的全長(zhǎng)RAG2?P2A?RAG1序列(圖1G),用PacI,PmeI限制性?xún)?nèi)切酶消化全長(zhǎng)RAG2?P2A?RAG1的DNA以及pWPI?IRES?GFP載體,形成pW?PI?RAG2?P2A?RAG1?IRES?GFP載體,利用引物R2?BglII?L、R2?M?R進(jìn)行菌液PCR,將陽(yáng)性克隆提質(zhì)粒后酶切并測(cè)序(圖1H、I).

圖1 pWPI?RAG2?P2A?RAG1?IRES?GFP載體構(gòu)建過(guò)程

2.2 pWPI-RAG2-P2A-RAG1-IRES-GFP載體表達(dá)RAG1、RAG2和GFP成功構(gòu)建pWPI?RAG2?P2A?RAG1?IRES?GFP載體(圖2A),將其和實(shí)驗(yàn)室原有的pWPI?RAG1?IRES?RAG2載體分別轉(zhuǎn)染293T細(xì)胞,72 h后收集細(xì)胞.流式細(xì)胞術(shù)顯示pWPI?RAG2?P2A?RAG1?IRES?GFP表達(dá)GFP,效率為93%(圖2B).提取細(xì)胞蛋白,蛋白定量后Western Blotting檢測(cè)RAG1和RAG2蛋白表達(dá),顯示pWPI?RAG2?P2A?RAG1?IRES?GFP載體兩種蛋白的表達(dá)量一致性高于PWPI?RAG1?IRES?RAG2載體(圖2C).

圖2 pWPI?RAG2?P2A?RAG1?IRES?GFP載體表達(dá)RAG1和RAG2

2.3 pWPI-RAG2-P2A-RAG1-IRES-GFP載體具有催化斷裂RSS的功能重組pMX?Thy1.1載體含有hCD4序列為標(biāo)記基因,反義的Thy1.1的序列為報(bào)告基因,其兩端分別為12RSS和23RSS.RAG結(jié)合并斷裂pMX?Thy1.1載體12RSS和23RSS,通過(guò)NHEJ途徑把斷裂的DNA連接在一起,反義的Thy1.1序列倒置成正義序列,斷端被修復(fù),載體即可表達(dá)Thy1.1(圖3A).pWPI?RAG1?IRES?RAG2和pWPI?RAG2?P2A?RAG1?IRES?GFP轉(zhuǎn)染293T細(xì)胞,pWPI?RAG2?P2A?RAG1?IRES?GFP轉(zhuǎn)染后的細(xì)胞熒光顯微鏡下可觀(guān)察到GFP綠色熒光(圖3B).驗(yàn)證RAG重酶組的功能驗(yàn)證時(shí),流式結(jié)果顯示轉(zhuǎn)染pWPI?RAG2?P2A?RAG1?IRES?GFP載體的293T細(xì)胞表達(dá)12.9%,pWPI?RAG1?IRES?RAG2載體表達(dá)7.9%.說(shuō)明pWPI?RAG2?P2A?RAG1?IRES?GFP載體表達(dá)重組酶的活性高于pWPI?RAG1?IRES?RAG2載體表達(dá)重組酶的活性(圖3C).

3 討論

目前,慢病毒載體已經(jīng)被作為一種常用的基因表達(dá)工具,廣泛應(yīng)用于基因治療等其他研究領(lǐng)域[22].對(duì)于基礎(chǔ)研究者來(lái)說(shuō),設(shè)計(jì)并構(gòu)建功能完整的慢病毒載體是進(jìn)行后續(xù)基礎(chǔ)研究的基石.淋巴細(xì)胞發(fā)育過(guò)程中經(jīng)歷的基因重排對(duì)其發(fā)育和產(chǎn)生獲得性免疫起決定性作用,反之,這種基因的重排過(guò)程出現(xiàn)錯(cuò)誤將導(dǎo)致淋巴系統(tǒng)惡性腫瘤的發(fā)生.介導(dǎo)重組的蛋白為RAG重組酶,由RAG1和RAG2共同組成.因此,建立RAG1和RAG2同時(shí)有效表達(dá)的載體對(duì)研究淋巴細(xì)胞發(fā)育和RAG異常表達(dá)造成淋巴系統(tǒng)惡性增殖性疾病至關(guān)重要.

內(nèi)部核糖體進(jìn)入位點(diǎn)(internal ribosome entry site,IRES)序列來(lái)源于腦心肌炎病毒,其被廣泛應(yīng)用的原因如下.①位于IRES上下游基因可以同時(shí)表達(dá);②促進(jìn)核糖體結(jié)合在mRNA上,并促使不同位點(diǎn)的mRNA進(jìn)行翻譯[23].因此,IRES連接的兩個(gè)基因可以被同時(shí)轉(zhuǎn)錄并翻譯,使兩種蛋白同時(shí)表達(dá).但研究發(fā)現(xiàn)含有IRES序列的載體其上下游基因表達(dá)水平不一致[24].小RNA病毒如手足口病病毒和馬鼻炎病毒等含有特定的2A序列,研究證實(shí)2A肽段由18~22個(gè)氨基酸組成,其C末端序列高度保守,為?AspxGluxAsnProGlyPro?,這種肽段能在其C末端介導(dǎo)多聚蛋白的剪切,而剪切斷裂常發(fā)生在Gly?Pro殘基之間[25].但2A肽剪切蛋白的功能并不通過(guò)蛋白水解酶作用,而是經(jīng)“核糖體跳躍”實(shí)現(xiàn)的[26],研究認(rèn)為2A肽改變了核糖體的活性,促進(jìn)2A肽殘基Gly與tRNAGly之間的酯鏈水解,所以從轉(zhuǎn)錄復(fù)合物上釋放上游多肽的同時(shí)又推進(jìn)了下游蛋白的翻譯,從而可以保證2A肽上下游蛋白同時(shí)表達(dá).研究[27]表明2A肽上下游蛋白的同時(shí)有效表達(dá)可以避免IRES上下游蛋白表達(dá)不一致的缺點(diǎn),所以本研究通過(guò)應(yīng)用P2A這種2A肽構(gòu)建表達(dá)重組激活基因蛋白的載體,并證實(shí)了P2A序列連接的RAG1與RAG2蛋白表達(dá)量一致性高于由IRES序列連接的RAG1與RAG2蛋白;在功能方面,含有P2A序列載體表達(dá)的RAG蛋白結(jié)合與斷裂DNA的活性也高于含有IRES序列的載體;而且pWPI?RAG2?P2A?RAG1?IRES?GFP載體具有綠色熒光蛋白標(biāo)記,對(duì)后期載體轉(zhuǎn)染細(xì)胞檢測(cè)轉(zhuǎn)染效率、分選等都提供了便利.

圖3 流式檢測(cè)Thy1.1表達(dá)量

本研究結(jié)果表明,優(yōu)化后的重組激活基因蛋白載體的兩種蛋白R(shí)AG1與RAG2表達(dá)效率高于實(shí)驗(yàn)室原有的表達(dá)RAG重組酶的載體,同時(shí)也增強(qiáng)了RAG蛋白的功能,其帶有的綠色熒光蛋白也為載體提供了熒光標(biāo)記,這為研究RAG重組酶對(duì)淋巴細(xì)胞發(fā)育及淋巴細(xì)胞惡性腫瘤的作用提供了更好的實(shí)驗(yàn)基礎(chǔ).

[1] Helmink BA,Sleckman BP.The response to and repair of RAG?mediatedDNA double?strand breaks[J].Annu Rev Immunol,2012,30:175-202.

[2] Schatz DG,Ji Y.Recombination centres and the orchestration of V(D)J recombination[J].Nat Rev Immunol,2011,11(4):251-263.

[3] Schatz DG,Swanson PC.V(D)J recombination:mechanisms of initiation[J].Annu Rev Genet,2011,45:167-202.

[4] Pulivarthy SR,Lion M,Kuzu G,et al.Regulated large?scale nucleosome density patterns and precise nucleosome positioning correlate with V(D)J recombination[J].Proc Natl Acad Sci USA,2016,113(42):E6427-E6436.

[5] De P,Rodgers KK.Putting the pieces together:identification and characterization of structural domains in the V(D)J recombination protein RAG1[J].Immunol Rev,2004,200:70-82.

[6] Kumar A,Bhandari A,Sarde SJ,et al.Data on the evolutionary history of the V(D)J recombination?activating protein 1?RAG1 coupled with sequence and variant analyses[J].Data Brief,2016,8:87-92.

[7] Callebaut I,Mornon JP.The V(D)J recombination activating protein RAG2 consists of a six?bladed propeller and a PHD fingerlike domain,as revealed by sequence analysis[J].Cell Mol Life Sci,1998,54(8):880-891.

[8] McMahan CJ,Sadofsky MJ,Schatz DG.Definition of a large region of RAG1 that is important for coimmunoprecipitation of RAG2[J].J Immunol,1997,158(5):2202-2210.

[9] Huye LE,Purugganan MM,Jiang MM,et al.Mutational analysis of all conserved basic amino acids in RAG?1 reveals catalytic,step arrest,and joining?deficient mutants in the V(D)J recombinase[J].Mol Cell Biol,2002,22(10):3460-3473.

[10] Rodgers KK,Bu Z,F(xiàn)leming KG,et al.A zinc?binding domain involved in the dimerization of RAG1[J].J Mol Biol,1996,260(1):70-84.

[11] Landree MA,Wibbenmeyer JA,Roth DB.Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination[J].Genes Dev,1999,13(23):3059-3069.

[12] Swanson PC.The bounty of RAGs:recombination signal complexes and reaction outcomes[J].Immunol Rev,2004,200:90-114.

[13] Fugmann SD,Lee AI,Shockett PE,et al.The RAG proteins and V(D)J recombination:complexes,ends,and transposition[J].Annu Rev Immunol,2000,18:495-527.

[14] Fugmann SD,Schatz DG.Identification of basic residues in RAG2 critical for DNA binding by the RAG1?RAG2 complex[J].Mol Cell,2001,8(4):899-910.

[15] Bettridge J,Na CH,Pandey A,et al.H3K4me3 induces allosteric conformational changes in the DNA?binding and catalytic regions of the V(D)J recombinase[J].Proc Natl Acad Sci U S A,2017,114(8):1904-1909.

[16] Elkin SK,Ivanov D,Ewalt M,et al.A PHD finger motif in the C terminus of RAG2 modulates recombination activity[J].J Biol Chem,2005,280(31):28701-28710.

[17] Shimazaki N,Tsai AG,Lieber MR.H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis:implications for translocations[J].Mol Cell,2009,34(5):535-544.

[18] Liu Y,Subrahmanyam R,Chakraborty T,et al.A plant homeodomain in RAG?2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen?receptor?gene rearrangement[J].Immunity,2007,27(4):561-571.

[19] Dong Y,Liu F,Wu C,et al.Illegitimate RAG?mediated recombination events are involved in IKZF1 Δ3?6 deletion in BCR?ABL1 lymphoblastic leukaemia[J].Clin Exp Immunol,2016,185(3):320-331.

[20] Coussens MA,Wendland RL,Deriano L,et al.RAG2's acidic hinge restricts repair?pathway choice and promotes genomic stability[J].Cell Rep,2013,4(5):870-878.

[21] Gigi V,Lewis S,Shestova O,et al.RAG2 mutants alter DSB repair path?way choice in vivo and illuminate the nature of‘a(chǎn)lternative NHEJ’[J].Nucleic Acids Res,2014,42(10):6352-6364.

[22] Suwanmanee T,F(xiàn)erris MT,Hu P,et al.Toward personalized gene therapy:characterizing the host genetic control of lentiviral?vector?mediated hepatic gene delivery[J].Mol Ther Methods Clin Dev,2017,5:83-92.

[23] Kim JH,Lee SR,Li LH,et al.High cleavage efficiency of a 2A peptide derived from porcine teschovirus?1 in human cell lines,zebrafish and mice[J].PLoS One,2011,6(4):e18556.

[24] Szymczak AL,Workman CJ,Wang Y,et al.Correction of multi?gene deficiency in vivo using a single‘self?cleaving’2A peptide?based retroviral vector[J].Nat Biotechnol,2004,22(5):589-594.

[25] Tang X,Liu X,Tao G,et al.“Self?cleaving”2A peptide from porcine teschovirus?1 mediates cleavage of dual fluorescent proteins in transgenic Eimeria tenella[J].Vet Res,2016,47(1):68.

[26] Donnelly ML,Luke G,Mehrotra A,et al.Analysis of the aphthovirus 2A/2B polyprotein‘cleavage’mechanism indicates not a proteolytic reaction,but a novel translational effect:a putative ribosomal‘skip’[J].J Gen Virol,2001,82(Pt 5):1013-1025.

[27] Subramanian V,Schuster LA,Moore KT,et al.A versatile 2A peptide?based bicistronic protein expressing platform for the industri?al cellulase producing fungus,Trichoderma reesei[J].Biotechnol Biofuels,2017,10:34.

Construction and functional identification of lymphocytes specific recombination activating gene protein vector

ZHAO Xiao-Hui,LI Chen,ZHANG Hua,ZHENG Ming-Zhe,JI Yan-Hong
Department of Pathogenic Biology and Immunology,School of Basic Medical Sciences,Xi'an Jiaotong University Health Science Center,Xi'an 710061,China

AIM:To construct and optimize the vector expressing recombination activating gene(RAG)protein 1 and RAG protein 2 simultaneously and lay a solid foundation for studying the structure and function of RAG recombinase.METHODS:Vector expressing RAG1,RAG2 and green fluorescent protein(GFP)simultane?ously were constructed;The expression of RAG1 and RAG2 protein were identified by Western Blotting,then the function of RAG protein was detected by in vitro recombinant experiment.RESULTS:A recombinant vector expressing RAG recombinase was successfully constructed,and Western Blotting indicated that the expression level of RAG1 had a good consistency with the expres?sion of RAG2 protein in this vector.Vitro recombinant experiment suggested that pWPI?RAG2?P2A?RAG1?IRES?GFP vector has a better DNA cleavage activity,and GFP reporter gene of the optimized pWPI?RAG2?P2A?RAG1?IRES?GFPvectorcould be used as cell labeling.CONCLUSION:After optimization,the RAG vector can ensure the expression of RAG1 and RAG2 at the same level effectively,and the reporter gene GFP can be used as a fluorescent marker and lays the foundation for further animal and cell experiments.

vector optimization;recombinant activated gene(RAG)protein;P2A sequence;GFP

R392.9

A

2017-08-11;接受日期:2017-08-26

國(guó)家自然科學(xué)基金面上項(xiàng)目(31170821,31370874,81670157)

趙小惠.碩士生.E?mail:18229016281@163.com

季延紅.博士,教授,博導(dǎo).研究方向:抗體多樣性機(jī)制.Tel:029?82655182 E?mail:jiyanhong@xjtu.edu.cn

2095?6894(2017)10?21?05

猜你喜歡
克隆淋巴細(xì)胞載體
克隆狼
創(chuàng)新舉措強(qiáng)載體 為僑服務(wù)加速跑
遺傳性T淋巴細(xì)胞免疫缺陷在百草枯所致肺纖維化中的作用
浙江:誕生首批體細(xì)胞克隆豬
堅(jiān)持以活動(dòng)為載體有效拓展港澳臺(tái)海外統(tǒng)戰(zhàn)工作
抗BP5-KLH多克隆抗體的制備及鑒定
TiO_2包覆Al_2O_3載體的制備及表征
Galectin-7多克隆抗體的制備與鑒定
探討CD4+CD25+Foxp3+調(diào)節(jié)性T淋巴細(xì)胞在HCV早期感染的作用
創(chuàng)新德育教育載體
徐汇区| 临安市| 肥东县| 嘉祥县| 漳平市| 元氏县| 高安市| 奉节县| 博爱县| 垣曲县| 都兰县| 永寿县| 象山县| 资中县| 葫芦岛市| 寿宁县| 罗江县| 江陵县| 革吉县| 兴山县| 华坪县| 芦山县| 绍兴县| 西乌珠穆沁旗| 海丰县| 大田县| 济宁市| 永福县| 海宁市| 和顺县| 广河县| 布尔津县| 麦盖提县| 资源县| 梨树县| 福泉市| 祁门县| 遂宁市| 雅安市| 望都县| 乌拉特前旗|