葛一洪 邱 凌 羅時(shí)海 李?yuàn)櫳?于秀男 郭曉慧
(1.西北農(nóng)林科技大學(xué)農(nóng)學(xué)院, 陜西楊凌 712100;2.西北農(nóng)林科技大學(xué)農(nóng)業(yè)部農(nóng)村可再生能源開發(fā)利用西部科學(xué)觀測(cè)實(shí)驗(yàn)站, 陜西楊凌 712100;3.西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院, 陜西楊凌 712100)
離子液體預(yù)處理對(duì)馬鈴薯莖葉厭氧消化的影響
葛一洪1,2邱 凌2,3羅時(shí)海2,3李?yuàn)櫳?,3于秀男2,3郭曉慧2,3
(1.西北農(nóng)林科技大學(xué)農(nóng)學(xué)院, 陜西楊凌 712100;2.西北農(nóng)林科技大學(xué)農(nóng)業(yè)部農(nóng)村可再生能源開發(fā)利用西部科學(xué)觀測(cè)實(shí)驗(yàn)站, 陜西楊凌 712100;3.西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院, 陜西楊凌 712100)
馬鈴薯莖葉是一種豐富的木質(zhì)纖維素生物質(zhì)資源,但其高結(jié)晶度、穩(wěn)定的剛性結(jié)構(gòu)使其不易水解酸化,微生物在短時(shí)間內(nèi)難以直接高效利用。研究了離子液體和助溶劑對(duì)馬鈴薯莖葉進(jìn)行預(yù)處理后其木質(zhì)纖維素結(jié)構(gòu)組分變化及厭氧消化產(chǎn)沼氣的變化。結(jié)果表明,預(yù)處理后的馬鈴薯莖葉木質(zhì)素質(zhì)量分?jǐn)?shù)降低31.8%~43.9%,離子液體脫除馬鈴薯莖葉木質(zhì)素能力由高到低依次為[C2mim]Ac、[C2mim]Ac/DMSO、[C4mim]Cl/DMSO、DMSO、[C4mim]Cl。離子液體中陰離子可與纖維素羥基上的氫質(zhì)子形成氫鍵作用,降低其結(jié)晶度,長(zhǎng)鏈分子斷裂成短鏈分子,使厭氧消化的啟動(dòng)滯后期較未處理馬鈴薯莖葉提前9 d,累積產(chǎn)沼氣量提高3.2%~76.3%,最高產(chǎn)甲烷體積分?jǐn)?shù)提高14.3%~25.1%。各處理組累積產(chǎn)沼氣量和最高產(chǎn)甲烷體積分?jǐn)?shù)分別為:T5(7.21 L,69.2%)、T4(5.12 L,64.5%)、T2(5.07 L,65.7%)、T3(4.35 L,64.3%)、T1(4.22 L,63.2%)。經(jīng)無(wú)機(jī)鹽-離子液體雙水相體系回收DMSO、[C2mim]Ac和[C4mim]Cl,回收率分別為95.1%、91.8%和89.6%。
馬鈴薯莖葉; 離子液體; 木質(zhì)纖維素; 厭氧消化
馬鈴薯莖葉屬于一種木質(zhì)纖維素生物質(zhì)資源,主要由10%~30%的木質(zhì)素、20%~45%的纖維素和20%~40%的半纖維素組成,而纖維素和半纖維素都是大分子多糖聚合物,發(fā)生水解反應(yīng)時(shí),氧橋斷裂可轉(zhuǎn)化成葡萄糖[1-2]。但馬鈴薯莖葉的細(xì)胞壁在進(jìn)化的過程中形成了以纖維素為骨架物質(zhì),半纖維素附著在纖維素微纖絲表面,彼此通過氫鍵相連,木質(zhì)素與半纖維素共價(jià)連接,填滿細(xì)胞壁中纖維素和半纖維素之間的空隙形成結(jié)晶度高的疏水穩(wěn)定結(jié)構(gòu)[3-5]。該結(jié)構(gòu)使得微生物不能在短時(shí)間內(nèi)將馬鈴薯莖葉的細(xì)胞壁進(jìn)行降解,這意味著木質(zhì)纖維素?zé)o法被微生物直接高效利用[6-9]。因此需要先將馬鈴薯莖葉進(jìn)行預(yù)處理,打散其緊密結(jié)構(gòu),增加表面多孔性,使微生物能迅速接觸其中的大分子多糖聚合物,生產(chǎn)甲烷[10-12]。馬鈴薯莖葉的資源量、分布情況和資源化利用途徑見文獻(xiàn)[13]。
木質(zhì)纖維素類生物質(zhì)資源的預(yù)處理方法有很多,酸處理、堿處理、氧化處理、離子液體處理等均屬于化學(xué)預(yù)處理方法。CHANDRA等[14]在37℃下,用4% NaOH對(duì)小麥秸稈進(jìn)行預(yù)處理120 h,使沼氣產(chǎn)量提高了87.5%,甲烷產(chǎn)量提高了111.6%。MONLAU等[15]用4% HCl(pH值2.3)在170℃條件下對(duì)向日葵稈進(jìn)行預(yù)處理1 h,使產(chǎn)甲烷潛力提高了21%~29%。各種方法均能增加原料的可觸面積,溶解半纖維素和木質(zhì)素,但只有離子液體預(yù)處理方法能降低纖維素的結(jié)晶度[16],且其他方法都存在處理周期長(zhǎng)、回收難或處理效果差等問題。
離子液體(Ionic liquids, ILs)是一種在室溫范圍(20~25℃)內(nèi)均呈液態(tài)的熔融鹽,由有機(jī)陽(yáng)離子和無(wú)機(jī)(有機(jī))陰離子構(gòu)成,具有對(duì)無(wú)機(jī)和有機(jī)化合物良好的溶解性、導(dǎo)電性好、強(qiáng)極性、不易揮發(fā)、易合成、易回收、可循環(huán)使用、對(duì)水和空氣穩(wěn)定、無(wú)毒環(huán)保等優(yōu)點(diǎn)[17-20]。SWATLOSKI等[21]發(fā)現(xiàn)離子液體1-丁基-3-甲基咪唑氯鹽能直接溶解纖維素,LI等[22]發(fā)現(xiàn)離子液體預(yù)處理柳枝稷可降低其中纖維素的結(jié)晶度并促進(jìn)其水解過程。離子液體預(yù)處理馬鈴薯莖葉進(jìn)行厭氧消化的研究未見報(bào)道,為此本文選用離子液體對(duì)馬鈴薯莖葉進(jìn)行預(yù)處理,研究其對(duì)馬鈴薯莖葉厭氧消化產(chǎn)沼氣的促進(jìn)效果及產(chǎn)氣特性,以期為離子液體在馬鈴薯莖葉這一生物質(zhì)資源中的開發(fā)和利用研究提供理論依據(jù)與實(shí)驗(yàn)數(shù)據(jù)參考,從而更好地為工業(yè)應(yīng)用提供科學(xué)依據(jù)。
1.1 試驗(yàn)材料
(1)馬鈴薯莖葉取自陜西省楊凌國(guó)家農(nóng)業(yè)高新技術(shù)產(chǎn)業(yè)區(qū)現(xiàn)代農(nóng)業(yè)示范園,取回后自然曬干、粉碎至2~3 mm備用。
(2)1-乙基-3-甲基咪唑乙酸鹽([C2mim]Ac,W131887),1-丁基-3-甲基咪唑氯鹽([C4mim]Cl,B110177),助溶劑二甲基亞砜(Dimethyl sulfoxide, DMSO,D103277)均購(gòu)于上海某試劑公司。試驗(yàn)中其他化學(xué)試劑均購(gòu)于廣州市某化學(xué)試劑有限公司,均為分析純。
(3)接種污泥源于西北農(nóng)林科技大學(xué)農(nóng)業(yè)部農(nóng)村可再生能源開發(fā)利用西部科學(xué)觀測(cè)實(shí)驗(yàn)站長(zhǎng)期馴化的厭氧污泥。試驗(yàn)原料的成分含量如表1所示。
表1 試驗(yàn)材料成分含量Tab.1 Components and contents of experimental materials
1.2 試驗(yàn)方法
1.2.1預(yù)處理方法
于500 mL高筒燒杯中按質(zhì)量分?jǐn)?shù)5%加入馬鈴薯莖葉樣品5 g和100 g ILs,添加助溶劑的處理組分別加入20 g DMSO。在130℃硅油浴加熱下磁力攪拌進(jìn)行溶解,處理時(shí)間為120 min。樣品加熱溶解后于高筒燒杯中加入100 mL抗溶劑(去離子水與丙酮體積比1∶1),隨即形成沉淀物,即預(yù)處理樣品再生成富纖維材料。再將樣品置于離心管,10 000 r/min離心5 min后過濾上清,并用去離子水反復(fù)沖洗沉淀物3次,置于90℃干燥箱中加熱干燥24 h后備發(fā)酵使用。
1.2.2回收ILs方法
離子液體回收采用無(wú)機(jī)鹽-離子液體雙水相體系,加入20 g K3PO4于含有ILs的溶液中,振蕩混勻后在室溫下靜置12 h,靜置分層后上層為富離子液體相,下層為富無(wú)機(jī)鹽相[23]。
1.2.3厭氧消化方法
厭氧消化器采用500 mL發(fā)酵瓶,發(fā)酵體積為400 mL,處理組裝100 mL接種物、15 g未處理馬鈴薯莖葉、5 g經(jīng)ILs預(yù)處理的再生馬鈴薯莖葉;對(duì)照組裝100 mL接種物和20 g未處理馬鈴薯莖葉,填料密封后向厭氧消化器中吹入氮?dú)? min以排凈厭氧消化器內(nèi)的氧氣,每個(gè)厭氧消化器連接一個(gè)集氣瓶和收集瓶,相互之間用乳膠管連接密封,厭氧消化器置于往復(fù)式恒溫震蕩水浴搖床進(jìn)行序批式中溫厭氧消化(35℃)至產(chǎn)氣結(jié)束。試驗(yàn)共計(jì)6個(gè)處理,每個(gè)處理設(shè)置3個(gè)重復(fù),試驗(yàn)裝置如圖1所示。
圖1 試驗(yàn)裝置示意圖Fig.1 Test unit schematic diagram1.取液樣閥門 2.取樣管 3.厭氧消化瓶 4.導(dǎo)氣管 5.可控恒溫水浴搖床 6.取氣樣三通閥門 7.集氣瓶 8.排水管 9.集水量筒
每天08:00和20:00打開搖床,100 r/min振蕩20 min,使反應(yīng)器內(nèi)的料液混合均勻。每天09:00測(cè)定一次氣體產(chǎn)量和氣體成分。
1.2.4指標(biāo)檢測(cè)方法
每日氣體產(chǎn)量采用排水集氣法測(cè)定;氣體成分采用GC2014C型氣相色譜儀(日本島津公司)測(cè)定,TCD檢測(cè)器,檢測(cè)器和進(jìn)樣口溫度為100℃,柱溫箱溫度為90℃,載氣為氬氣,流速為30 mL/min;總固體采用105℃干燥箱加熱干燥24 h至質(zhì)量恒定,差重法測(cè)定;揮發(fā)性固體采用550℃馬弗爐灼燒6 h,差重法測(cè)定;馬鈴薯莖葉纖維素、半纖維素、木質(zhì)素采用范氏法換算[24],中性洗滌纖維和酸性洗滌纖維采用A220型半自動(dòng)纖維素測(cè)定儀(美國(guó)ANKOM公司)測(cè)定。
2.1 ILs對(duì)馬鈴薯莖葉木質(zhì)纖維素結(jié)構(gòu)組成的影響
試驗(yàn)結(jié)果表明,通過DMSO、[C2mim]Ac、[C2mim]Ac/DMSO、[C4mim]Cl、[C4mim]Cl/DMSO處理后,馬鈴薯莖葉再生纖維素質(zhì)量分?jǐn)?shù)分別提高19.5%、27.5%、22.7%、17.3%、20.8%,在試驗(yàn)過程中可觀察到馬鈴薯莖葉的外形結(jié)構(gòu)逐漸發(fā)生膨脹,隨后伴有大量的團(tuán)狀微粒出現(xiàn)。BRANDT等[25]研究松木片中木質(zhì)纖維素降解時(shí)也出現(xiàn)膨脹及團(tuán)聚現(xiàn)象,XU等[26]研究認(rèn)為膨脹和團(tuán)狀微粒的出現(xiàn)是由纖維素的羥基質(zhì)子與ILs中陰離子形成大量氫鍵導(dǎo)致。這也就表明ILs破壞了馬鈴薯莖葉的木質(zhì)纖維素結(jié)構(gòu),增加了其表面的多孔性使其結(jié)晶度降低而結(jié)構(gòu)變得松散。
通過試驗(yàn)觀察可知,助溶劑DMSO的加入可明顯降低離子液體的粘稠度,并增加預(yù)處理系統(tǒng)的流動(dòng)性。結(jié)果表明,在[C2mim]Ac、[C4mim]Cl中加入DMSO后,馬鈴薯莖葉木質(zhì)素質(zhì)量分?jǐn)?shù)分別為11.8%、12.3%,T5處理組(表2)較T3處理組脫除木質(zhì)素效果提高了8.9%,但DMSO對(duì)[C2mim]Ac的影響效果不顯著。由表2可知,馬鈴薯莖葉經(jīng)離子液體在130℃下預(yù)處理120 min后,其再生纖維素質(zhì)量分?jǐn)?shù)可提高17.3%~27.5%,木質(zhì)素質(zhì)量分?jǐn)?shù)可降低31.8%~43.9%,各處理中所用離子液體溶解和脫除木質(zhì)纖維素能力由高到低依次為[C2mim]Ac、[C2mim]Ac/DMSO、[C4mim]Cl/DMSO、DMSO、[C4mim]Cl。
2.2 ILs對(duì)馬鈴薯莖葉厭氧消化產(chǎn)氣特性的影響
離子液體對(duì)馬鈴薯莖葉厭氧消化的日產(chǎn)氣變化影響如圖2所示,未經(jīng)處理的馬鈴薯莖葉直到厭氧消化第10天才開始正式產(chǎn)氣,單日產(chǎn)氣量0.09 L。而經(jīng)過離子液體處理的馬鈴薯莖葉則在厭氧消化第1天就開始正常產(chǎn)氣,單日產(chǎn)氣量分別為T1處理組0.07 L、T2處理組0.13 L、T3處理組0.16 L、T4處理組0.10 L、T5處理組0.09 L。結(jié)果表明ILs中Ac-、Cl-離子和馬鈴薯莖葉纖維素長(zhǎng)鏈分子中—OH上的氫質(zhì)子形成氫鍵作用,導(dǎo)致纖維素的結(jié)晶度降低,長(zhǎng)鏈上的氧橋更易斷裂變成短鏈分子[27],使馬鈴薯莖葉在厭氧消化水解酸化階段的啟動(dòng)遲滯期縮短了9 d。
表2 不同離子液體預(yù)處理馬鈴薯莖葉木質(zhì)纖維素結(jié)構(gòu)組成變化Tab.2 Lignocellulosic composition of untreated and pretreated potato stem leaves by ILs
圖2 不同ILs預(yù)處理馬鈴薯莖葉厭氧消化日產(chǎn)氣量變化Fig.2 Changes of daily biogas production from potato stem leaves untreated and pretreated by ILs
厭氧消化前15 d,各ILs處理組均出現(xiàn)1或2次產(chǎn)氣高峰。在所有處理中第1個(gè)產(chǎn)氣高峰出現(xiàn)在第5天的T2處理組,單日產(chǎn)氣量為0.27 L。T5處理組第12天的單日產(chǎn)氣量最高,達(dá)到整個(gè)厭氧消化周期的峰值0.55 L,而對(duì)照組的產(chǎn)氣最高峰出現(xiàn)在第21天,單日產(chǎn)氣量為0.26 L,比T5處理組單日產(chǎn)氣量低52.7%。T2和T4處理組在發(fā)酵過程中同時(shí)在第14和26天出現(xiàn)2次產(chǎn)氣高峰,T2處理組單日產(chǎn)氣量分別為0.52 L和0.43 L,T4處理組單日產(chǎn)氣量分別為0.45 L和0.30 L,較對(duì)照組平均高出108.4%。T3處理組在發(fā)酵前10 d的日產(chǎn)氣量均高于T5處理組,平均每日產(chǎn)氣量高出0.08 L,但發(fā)酵第13天,T3處理組日產(chǎn)氣量開始驟降,到第21天產(chǎn)氣已基本停止,而T5處理組日產(chǎn)氣量仍有0.15 L。在厭氧消化第40天,其它處理組均已基本停止產(chǎn)氣時(shí)(小于0.09 L),T5處理組仍能保持日產(chǎn)氣量0.14 L。
各處理組累積產(chǎn)氣量如圖3所示。由圖可知,厭氧消化前14 d,T3處理組累積產(chǎn)氣量最高(3.27 L),但從第15天被T5處理組超越,并且最終所有處理中T5的累積產(chǎn)氣量最高(7.21 L),較T3處理組高出65.7%。厭氧消化周期內(nèi)T4和T2處理組的累積產(chǎn)氣量最終并沒有明顯差距,分別為5.12 L和5.07 L。這說明助溶劑DMSO對(duì)[C4mim]Cl影響較大,對(duì)[C2mim]Ac幾乎沒有影響。ILs預(yù)處理馬鈴薯莖葉厭氧消化累積產(chǎn)氣量由高到低依次為T5(7.21 L)、T4(5.12 L)、T2(5.07 L)、T3(4.35 L)、T1(4.22 L),比對(duì)照組(4.09 L)高出3.2%~76.3%。
圖3 不同ILs預(yù)處理馬鈴薯莖葉厭氧消化的累積產(chǎn)氣量變化Fig.3 Cumulative biogas production changes from potato stem leaves untreated and pretreated by ILs
圖4 不同ILs預(yù)處理馬鈴薯莖葉厭氧消化產(chǎn)甲烷體積分?jǐn)?shù)變化Fig.4 Methane concentration changes of biogas from potato stem leaves untreated and pretreated by ILs
不同離子液體預(yù)處理馬鈴薯莖葉厭氧消化產(chǎn)甲烷體積分?jǐn)?shù)變化如圖4所示。試驗(yàn)表明,馬鈴薯莖葉經(jīng)[C4mim]Cl、[C4mim]Cl/DMSO、[C2mim]Ac、[C2mim]Ac/DMSO預(yù)處理后,明顯提高了沼氣中甲烷體積分?jǐn)?shù)。厭氧消化第5天,各ILs處理組甲烷體積分?jǐn)?shù)較對(duì)照組高出155.8%~223.9%(甲烷產(chǎn)量高出18.8~58.67 mL);第13天,各ILs處理組甲烷體積分?jǐn)?shù)均已超過50%;第15天,T5處理組甲烷體積分?jǐn)?shù)達(dá)到64.6%(甲烷產(chǎn)量為226.75 mL),而對(duì)照組甲烷體積分?jǐn)?shù)僅為42.5%(甲烷產(chǎn)量為60.35 mL)。馬鈴薯莖葉經(jīng)ILs預(yù)處理后,得到大量纖維素分解后的短鏈分子,加速了產(chǎn)甲烷階段的進(jìn)程,使產(chǎn)甲烷菌在厭氧消化初期就可以進(jìn)行富集,成為優(yōu)勢(shì)菌種。整個(gè)厭氧消化周期內(nèi),對(duì)照組產(chǎn)甲烷體積分?jǐn)?shù)最高為55.3%(甲烷產(chǎn)量為142.67 mL),各ILs處理組最高產(chǎn)甲烷體積分?jǐn)?shù)由高到低依次為T5(69.2%)、T2(65.7%)、T4(64.5%)、T3(64.3%)、T1(63.2%),較對(duì)照組高出14.3%~25.1%。
2.3 ILs的回收
通過觀察加入磷酸鉀鹽的無(wú)機(jī)鹽-離子液體雙水相體系分離ILs過程,按分離速率由快到慢依次為DMSO、[C4mim]Cl/DMSO、[C2mim]Ac/DMSO、[C2mim]Ac、[C4mim]Cl。DMSO、[C2mim]Ac和[C4mim]Cl的回收率分別為95.1%、91.8%和89.6%。結(jié)果表明,離子液體分離速率的快慢與其回收率的大小呈正相關(guān),也就說明分離速率能夠間接反映出雙水相體系對(duì)離子液體的分離回收能力。
(1)離子液體[C4mim]Cl、[C2mim]Ac和助溶劑DMSO對(duì)馬鈴薯莖葉進(jìn)行預(yù)處理,木質(zhì)素質(zhì)量分?jǐn)?shù)較對(duì)照組降低31.8%~43.9%,各處理組溶解和脫除木質(zhì)纖維素能力由高到低依次為T2、T4、T5、T1、T3。
(2)預(yù)處理后的馬鈴薯莖葉可使厭氧消化啟動(dòng)滯后期提前9 d,各處理組厭氧消化的累積產(chǎn)沼氣量較對(duì)照組提高3.2%~76.3%,各處理組累積產(chǎn)沼氣量由高到低依次為T5(7.21 L)、T4(5.12 L)、T2(5.07 L)、T3(4.35 L)、T1(4.22 L)、對(duì)照組(4.09 L)。各處理組最高產(chǎn)甲烷體積分?jǐn)?shù)分別為T5(69.2%)、T2(65.7%)、T4(64.5%)、T3(64.3%)、T1(63.2%),較對(duì)照組(55.3%)高出14.3%~25.1%。
(3)經(jīng)無(wú)機(jī)鹽-離子液體雙水相體系回收DMSO、[C2mim]Ac和[C4mim]Cl,回收率分別為95.1%、91.8%和89.6%。另外離子液體預(yù)處理樣品后的化學(xué)殘留極少,對(duì)樣品的后續(xù)處理影響較低。
1 HA M A, APPERLEY D C, EVANS B W, et al.Fine structure in cellulose microfibrils: NMR evidence from onion and quince [J].Plant, 1998, 16(2):183-190.
2 ATALLA R H, VANDERHART D L.Native cellulose.A composite of two distinct crystalline forms [J].Science, 1984, 223:283-285.
3 翟蔚, 陳洪章, 馬潤(rùn)宇.離子液體中纖維素的溶解及再生特性[J].北京化工大學(xué)學(xué)報(bào):自然科學(xué)版, 2007, 34(2): 140-143.
ZHAI Wei, CHEN Hongzhang, MA Runyu.Structural characteristics of cellulose after dissolution and regeneration from the ionic liquid [Bmim]Cl [J].Journal of Beijing University of Chemical Technology: Natural Science Edition, 2007, 34(2): 140-143.(in Chinese)
4 ADEMARK P, VARGA A, MEDVE J, et al.Softwood hemicellulose-degrading enzymes fromAspergillusniger: purification and properties of a beta-mannanase [J].Journal of Biotechnology, 1998, 63(3):199-210.
5 MOROHOSHI N.Chemical characterization of wood and its components [M]∥HON D N N, SHIRAISHI N.Wood and cellulosic chemistry.New York: Marcel Dekker, Inc., 1991: 331-392.
6 張?jiān)? 魏剛, 張小冬, 等.木質(zhì)纖維素生物質(zhì)預(yù)處理技術(shù)研究現(xiàn)狀[J].中國(guó)農(nóng)學(xué)通報(bào), 2012, 28(11): 272-277.
ZHANG Yuanjing, WEI Gang, ZHANG Xiaodong, et al.Status in pretreatment technologies of lignocellulosic biomass [J].Chinese Agricultural Science Bulletin, 2012, 28(11): 272-277.(in Chinese)
7 HSU T A.Pretreatment of biomass [M]∥WYMAN C E.Handbook on bioethanol: production and utilization.Washington, DC: Taylor & Francis, 1996: 179-212.
8 KIM S, HOLTZAPPLE M T.Lime pretreatment and enzymatic hydrolysis of corn stover [J].Bioresource Technology, 2005, 96(18):1994-2006.
9 ZHENG Y.Lignocellulosic biomass pretreatment for bioethanol production [M]∥ERBAUM J B.Bioethanol: production, benefits and economics.New York: Nova Science Publishers, 2009:1-48.
10 FERNANDES T V, KLAASSE BOS G J, ZEEMAN G, et al.Effects of thermo-chemical pretreatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass [J].Bioresource Technology, 2009, 100(9): 2575-2579.
11 LIEW L N, SHI J, LI Y.Methane production from solid-state anaerobic digestion of lignocellulosic biomass [J].Biomass and Bioenergy, 2012, 46: 125-132.
12 XIAO W P, CLARKSON W W.Acid solubilization of lignin and bioconversion of treated newsprint to methane [J].Biodegradation, 1997, 8(1): 61-66.
13 葛一洪, 邱凌, HASSANEIN A A M, 等.馬鈴薯莖葉與玉米秸稈混合厭氧消化工藝參數(shù)優(yōu)化[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016, 47(4): 173-179.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160423&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2016.04.023.
GE Yihong, QIU Ling, HASSANEIN A A M, et al.Optimization of anaerobic digestion parameters with mixed material of potato stem leaf and corn straw [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 173-179.(in Chinese)
14 CHANDRA R, TAKEUCHI H, HASEGAWA T, et al.Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments [J].Energy, 2012, 43: 273-282.
15 MONLAU F, BARAKAT A, STEYER J P, et al.Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks [J].Bioresource Technology, 2012, 120: 241-247.
16 ZHENG Yi, ZHAO Jia, XU Fuqing, et al.Pretreatment of lignocellulosic biomass for enhanced biogas production [J].Progress in Energy and Combustion Science.2014, 42:35-53.
17 HAYKIR N I, BAHCEGUL E, BICAK N, et al.Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility [J].Industrial Crops and Products, 2013, 41: 430-436.
18 QIU Z, AITA G M, WALKER M S.Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse [J].Bioresource Technology, 2012, 117: 251-256.
19 GAO J, CHEN L, YAN Z, et al.Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhorniacrassipes) [J].Bioresource Technology, 2013, 132: 361-364.
20 WEERACHANCHAI P, LEE J M.Effect of organic solvent in ionic liquid on biomass pretreatment [J].ACS Sustainable Chemistry and Engineering, 2013, 1(8): 894-902.
21 SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al.Dissolution of cellulose with ionic liquids [J].Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
22 LI C, KNIERIM B, MANISSERI C, et al.Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification [J].Bioresource Technology, 2010, 101(13): 4900-4906.
23 LI S H, HE C Y, LIU H W, et al.Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids [J].Journal of Chromatography B, 2005, 826(1-2): 58-62.
24 VAN SOEST P J, ROBERTSON J B, LEWIS B A.Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition [J].Journal of Dairy Science, 1991, 74(10): 3583-3597.
25 BRANDT A, HALLETT J P, LEAK D J, et al.The effect of the ionic liquid anion in the pretreatment of pine wood chips [J].Green Chemistry, 2010, 12(4): 672-679.
26 XU A, WANG J, WANG H.Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems [J].Green Chemistry, 2010, 12(2): 268-275.
27 ZHANG Y T, DU H B, QIAN X H, et al.Ionic liquid-water mixtures: enhancedKwfor efficient cellulosic biomass conversion [J].Energy Fuels, 2010, 24(4): 2410-2417.
EffectofIonicLiquidsPretreatmentonAnaerobicDigestionofPotatoStemLeaves
GE Yihong1,2QIU Ling2,3LUO Shihai2,3LI Shanshan2,3YU Xiunan2,3GUO Xiaohui2,3
(1.CollegeofAgronomy,NorthwestA&FUniversity,Yangling,Shaanxi712100,China2.WesternScientificObservingandExperimentalStationforDevelopmentandUtilizationofRuralRenewableEnergy,MinistryofAgriculture,NorthwestA&FUniversity,Yangling,Shaanxi712100,China3.CollegeofMechanicalandElectronicEngineering,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
With the fulfillment of China’s potato staple food strategy, potato stem leaves gradually become plentiful lignocellulosic biomass resources.However, its cell wall has high-crystalline structure and available surface area which were difficult to hydrolyze and produce biogas by microorganism.Therefore, the effect of lignocellulosic composition, structural and anaerobic digestion from the pretreated potato stem leaf by ionic liquids and dimethyl sulfoxide was evaluated.The potato stem leaf was pretreated with ionic liquids 1-N-butyl-3-methyimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methlyimidazolium acetate ([C2mim]Ac) and dimethyl sulfoxide (DMSO) under the condition of 130℃ for 120 min.Compared with untreated group (19.8% lignin content), the composition and structure of lignocellulosic from the regenerated potato stem leaf was changed and the lignin content was reduced by 31.8%~43.9%.The dissolving capability of the solvents followed the order: [C2mim]Ac, [C2mim]Ac/DMSO, [C4mim]Cl/DMSO, DMSO, [C4mim]Cl.The anaerobic digestion data demonstrated the lag phase of anaerobic digestion start-up period was shortened by 9 d.Because the solubility of cellulose was risen with the increase of the H-bonds accepting ability of the anions which would form more efficient H-bonds between the hydroxyl protons of cellulose and the anion, meanwhile, the crystalline structure of cellulose became lower and the surface became more porous.In other words, the hydrolytic acidification stage was almost accomplished after pretreatment.Plenty of the small molecular substances, which were easy to be used by methanogens, were dissolved out.The cumulative biogas production and the highest methane content were increased by 3.2%~76.3% and 14.3%~25.1%, respectively, compared with untreated potato stem leaf.The cumulative biogas production and the highest methane content of each pretreated groups were 7.21 L and 69.2% ([C4mim]Cl/DMSO), 5.12 L and 64.5% ([C2mim]Ac/DMSO), 5.07 L and 65.7% ([C2mim]Ac), 4.35 L and 64.3% ([C4mim]Cl), 4.22 L and 63.2% (DMSO), respectively.The ionic liquids were almost completely recovered by aqueous biphasic systems (ABSs) with tripotassium phosphate (K3PO4), the recovery rates of DMSO, [C2mim]Ac and [C4mim]Cl were 95.1%, 91.8% and 89.6%, respectively.There were still many issues in putting ionic liquids into practical applications, including the high cost of ILs, regeneration systems and requirements and mechanism of inhibitor generation.Further research was urgently required to dispose such challenges.
potato stem leaves; ionic liquid; lignocellulose; anaerobic digestion
10.6041/j.issn.1000-1298.2017.10.033
X71; S216.4
A
1000-1298(2017)10-0266-06
2017-01-10
2017-05-12
國(guó)家自然科學(xué)基金面上項(xiàng)目(51576167)
葛一洪(1984—),男,博士生,主要從事生物質(zhì)能源方面的研究,E-mail:cn.gyhong@qq.com
邱凌(1957—),男,教授,博士生導(dǎo)師,主要從事生物能源與環(huán)境工程方面的研究,E-mail:ql2871@126.com