鹿保鑫,張東杰
?
基于礦物元素指紋圖譜的黑龍江黃豆產(chǎn)地溯源
鹿保鑫,張東杰※
(黑龍江八一農(nóng)墾大學(xué)食品學(xué)院,大慶163319)
該研究探討了礦物元素指紋分析技術(shù)對黑龍江黃豆產(chǎn)地溯源的可行性,篩選出判別黑龍江黃豆產(chǎn)地溯源的有效指標(biāo)。利用電感耦合等離子體質(zhì)譜儀(inductively coupled plasma mass spectrometry,ICP-MS)測定來自齊齊哈爾和北安2個地域50份黃豆樣品中52種礦物元素的含量,并對數(shù)據(jù)進行了方差分析、主成分分析和判別分析。研究表明,46種礦物元素含量在地域間存在顯著差異,通過逐步判別分析篩選出8項元素指標(biāo)建立黃豆產(chǎn)地判別模型,所建立的模型對黃豆產(chǎn)地整體交叉檢驗判別率為95.7%。As、Ru、Gd含量在黃豆與土壤間呈顯著正相關(guān)(<0.05),Tb含量在黃豆與土壤間呈極顯著正相關(guān)(<0.01),由4種元素建立的判別模型對產(chǎn)地判別準(zhǔn)確。因此,上述元素是黃豆礦物元素產(chǎn)地鑒別較可靠的指紋信息指標(biāo)。
農(nóng)產(chǎn)品;礦物質(zhì);土壤;黃豆;產(chǎn)地溯源;指紋圖譜
世界各個國家的人民自古以來就廣泛食用和種植豆類作物,豆類中各種營養(yǎng)成分對人類的生命健康極為有益,是重要的糧食和經(jīng)濟作物[1]。黃豆具有較高的營養(yǎng)價值,其富含的蛋白質(zhì)、微量元素和碳水化合物等成分可以減少人體脂肪含量,具有增強免疫力的作用[2]。當(dāng)今的藥理研究表明微量元素與人體的生理活動、延緩衰老、生長發(fā)育等有著密切的關(guān)系[3]。而中國是黃豆的生產(chǎn)大國,在長期的氣候環(huán)境和特定地理位置下形成許多地理標(biāo)志產(chǎn)品(如齊齊哈爾地區(qū)的黃豆和北安地區(qū)的黃豆),具有特定的地理特征和產(chǎn)品品質(zhì),因此要對黃豆原產(chǎn)地進行監(jiān)管與保護。建立黃豆產(chǎn)地溯源技術(shù)可為具有地理標(biāo)志的黃豆產(chǎn)品的安全提供技術(shù)支撐,為增強國內(nèi)加工企業(yè)市場綜合競爭力及品種選擇、原料地源確定提供理論依據(jù)[4]。黃豆中的礦物元素含量與栽培土壤地質(zhì)、澆灌條件、環(huán)境變化等因素有關(guān),而食品加工不會對礦物元素產(chǎn)生顯著影響[5],貯藏穩(wěn)定性相對較高,并且礦物元素分析技術(shù)的樣品的前處理較簡單,檢測速度快,檢測成本低于其他檢測方式,對于產(chǎn)地地源的判別準(zhǔn)確度較高,因此是一類快速高效的溯源分析技術(shù)[6-9]。借助ICP-MS測試技術(shù)結(jié)合支持向量機、隨機森林等數(shù)據(jù)精煉技術(shù),礦物元素指紋分析技術(shù)已經(jīng)廣泛的應(yīng)用于蜂蜜[10]、茶葉[11-14]、大麥[12]、羊肉[15]、黃豆[16]、胡蘿卜[17]、大米[18-19]、橄欖油[20]、牛肉[21]、水產(chǎn)品[22]等的產(chǎn)地溯源。盡管礦物元素指紋分析技術(shù)已經(jīng)廣泛地應(yīng)用于多種作物的產(chǎn)地溯源研究中,但在中國廣泛種植的黃豆產(chǎn)地溯源研究中,礦物元素指紋分析技術(shù)僅部分被加以應(yīng)用研究[16]。作為地標(biāo)性農(nóng)作物,黑龍江優(yōu)質(zhì)黃豆地緣鑒定研究尚屬空白,黑龍江優(yōu)質(zhì)黃豆產(chǎn)地鑒別對于優(yōu)勢品種推廣及企業(yè)應(yīng)用具有重要現(xiàn)實意義。因此本研究擬以礦物元素指紋分析技術(shù)對黑龍江黃豆產(chǎn)地進行溯源研究。
土壤是黃豆賴以生存的基礎(chǔ),黃豆要從土壤中不斷地吸收水分、養(yǎng)分,以完成自身的代謝過程,并生成和積累所需的有效成分。因此土壤質(zhì)地、理化性質(zhì)及所含礦質(zhì)元素的優(yōu)劣直接影響黃豆的生長發(fā)育及質(zhì)量。已有研究發(fā)現(xiàn)礦物元素指紋分析技術(shù)受地域因素影響顯著[23-24],因此,系統(tǒng)判別土壤礦物元素組成對黃豆礦物元素指紋信息的影響機制,對黑龍江黃豆產(chǎn)地進行溯源研究具有重要的科學(xué)意義。
在國內(nèi)礦物元素溯源方法還屬于初步研究階段,目前尚未建立不同地域黃豆的特征礦物元素數(shù)據(jù)庫或提供系統(tǒng)礦物元素溯源方法研究理論依據(jù),影響溯源指標(biāo)的因素很復(fù)雜,本研究在黑龍江省內(nèi)黃豆礦物元素含量在地域間存在顯著差異的研究基礎(chǔ)上,重點研究黃豆特征礦物元素溯源指紋的穩(wěn)定成因,從本質(zhì)上認(rèn)識不同地域黃豆礦物元素組成特征及形成規(guī)律,解析礦物元素指標(biāo)穩(wěn)定機制及成因,為基于礦物元素的黃豆產(chǎn)地溯源提供新的理論依據(jù),從而推動黃豆產(chǎn)地溯源體系的創(chuàng)新研究。
本研究采集了2015年黑龍江省齊齊哈爾市黃豆產(chǎn)區(qū)1-8場和北安黃豆產(chǎn)區(qū)10個農(nóng)場的黃豆樣品共計50份。其中齊齊哈爾20份,北安30份。具體采樣情況見表1。
表1 黃豆和土壤地域來源
MARS高通量密閉微波消解儀(CEM 公司);1093旋風(fēng)磨(丹麥Foss Tecator公司);7500a ICP-MS(美國Agilent 公司);JJ-1精密增力電動攪拌器(常州丹瑞實驗儀器設(shè)備有限公司)。
1.3.1 黃豆采樣及樣品預(yù)處理
在齊齊哈爾、北安主產(chǎn)農(nóng)場采集黃豆樣品,采樣量為1 kg,篩選完整、顆粒飽滿的黃豆,用蒸餾水及去離子水清洗待測樣品3~5次,60 ℃烘干處理8 h,脫水樣品碾磨成粉后過100目篩,用于后續(xù)研究。
1.3.2 黃豆產(chǎn)區(qū)土壤樣品采樣及樣品預(yù)處理
黑龍江省齊齊哈爾市及北安市主產(chǎn)農(nóng)場選擇黃豆種植面積大的區(qū)域進行樣品采集。以收割黃豆的地點中心作為土壤樣品采樣點采集土壤。去除土樣中的雜質(zhì),風(fēng)干碾磨后過100目篩備用。
1.3.3 黃豆礦物質(zhì)元素含量測定
黃豆樣品消解方法及土壤樣品消解方法參考趙海燕等[25]的微波消解工藝進行操作,以外標(biāo)法利用7500a ICP-MS對黃豆樣品中的Na、Mg、Al、K、Ca、Sc等52種礦物元素含量進行分析,具體分析參考李平惠等[26]的方法。
以獨立樣品T檢驗法進行方差分析,基于逐步判別分析法進行判別分析,上述2種數(shù)據(jù)分析處理及主成分分析、聚類分析均借助SPSS 20.0軟件完成。
通過對齊齊哈爾和北安2個地域不同產(chǎn)區(qū)黃豆和土壤樣品的礦物元素含量進行T檢驗可知,黃豆和土壤樣品Na、AI、K、Ca、Sc、V等46種元素含量在地域間均存在顯著性差異(<0.05)(表2,表3),說明可以利用礦物元素建立黃豆地域來源的判別分析模型。
表2 不同地域黃豆中的較大量礦物元素含量
注: 不同小寫字母表示黃豆樣品中礦物質(zhì)元素間存在顯著性差異(<0.05);不同大寫字母表示土壤樣品中礦物質(zhì)元素間存在顯著性差異(<0.05)。下同。
Note: Different lowercase letters indicate significant differences in mineral elements between soybean samples (<0.05). Different capital letters indicate significant differences in mineral elements between soil samples (<0.05). The same below.
對在地域間存在顯著差異的46種礦物元素進行主成分分析,結(jié)果如表4所示。合理優(yōu)化主成分?jǐn)?shù)對于識別模型建立具有重要意義,主成分?jǐn)?shù)選取少難以充分描述會降低模型的預(yù)測精準(zhǔn)度,而過多選取主成分會發(fā)生過擬合的情況,因此為合理的主成分?jǐn)?shù)選擇應(yīng)是建立于累計可信度增幅較低的情況下篩選少量核心主成分[27–30]?;诖?,結(jié)合表4結(jié)果可知前8個主成分特征值均大于1,特征值分別為8.74、6.76、5.82、3.53、2.09、2.01、1.98、1.81,累積方差貢獻率是72.42%。由此可知,72.42%的總方差可以由上述8個潛在因子解釋,綜合了黃豆品質(zhì)指標(biāo)的主要信息,可有效解釋變量差異,故提取此8個主成分可以清楚概況原始變量。
表3 不同地域黃豆中的微量礦物元素含量
由主成分抽提各礦物元素結(jié)果分析得知,礦物元素Ca、V、Fe、As、Sr、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、Pb在第一主成分上載荷較大,即與第一主成分的相關(guān)程度較高;K、Mn、Ni、Cu、Zn、Se、Ba、Tb在第二主成分上載荷較大,即與第二主成分的相關(guān)程度較高;Pd、Lu、Hf、Ir、Au在第三主成分上載荷較大,即相關(guān)程度較高;Ag、Cd、Te、Tm、Ti、Th、U在第四主成分上載荷較大,即與第四主成分相關(guān)系數(shù)較高;AI、Cs在第五主成分上載荷較大,其中Cs在第五主成分上的載荷絕對值較大,即負(fù)相關(guān)程度較高;Sc在第六主成分上載荷較大,即與第六主成分相關(guān)程度較高;Pt在第八主成分上載荷較大,即與第八主成分相關(guān)系數(shù)較高。
表4 主成分信息統(tǒng)計
為進一步了解各元素含量指標(biāo)對黃豆產(chǎn)地的判別效果,利用逐步判別分析篩選重要的變量,為了選擇那些對產(chǎn)地有足夠的鑒別力的變量因素,本研究考慮從抽提出的前八主成分中選取最具有判別能力的因子,根據(jù)0.05水平下的顯著性檢驗原則通過檢驗把判別能力最強的一個變量引入判別函數(shù)采用動態(tài)調(diào)節(jié)變量的方法,逐步剔除前八主成分歸納的判別能力低礦物質(zhì)元素,最終建立判別模型,并驗證模型的有效性。具體判別模型如下
北安=1.124×10–5AI+1.380V–0.173Ag+0.099Cd+0.002Ba+ 0.019Tb+3.441Pt+0.401Au–17.469
齊齊哈爾=+2.888V+2.305Ag+0.342Cd+0.003Ba–0.014Tb– 0.383Pt+1.065Au–33.410
由表5可知,該模型的交叉驗證結(jié)果顯示,齊齊哈爾和北安地區(qū)的整體判別的正確率為95.7%,其中齊齊哈爾有96.2%的樣品被正確識別,北安有95.2%的樣品被正確識別。該模型的交叉檢驗錯判率為4.3%,低于10%,具有實際應(yīng)用意義[30],由此可知,礦物元素對黃豆產(chǎn)地溯源具有應(yīng)用價值。證明礦物元素AI、V、Ag、Cd、Ba、Tb、Pt、和Au對齊齊哈爾和北安黃豆樣品具有有效的判別力。
表5 黃豆中礦物元素判別分析分類結(jié)果
植物中礦物元素獲取與土壤因素關(guān)系顯著,因此本部分研究重點考慮土壤對植物體內(nèi)礦物元素組成的影響規(guī)律,通過篩選黃豆籽粒中與土壤相關(guān)的主要礦物元素,可優(yōu)化提高基于礦物元素分析的產(chǎn)地溯源技術(shù)穩(wěn)定性及準(zhǔn)確性。結(jié)合表2及表3可知,不同地域來源的黃豆和土壤有其各自的礦物元素組成特征。為了進一步說明土壤礦物元素對黃豆礦物元素的影響,提高礦物元素對解黃豆產(chǎn)地來源的鑒別效果,分別對黃豆及土壤中礦物元素含量進行Pearson相關(guān)分析,結(jié)果如表6所示。由此可知,As、Ru、Gd含量在黃豆與土壤間呈顯著正相關(guān)(<0.05),Tb含量在黃豆與土壤間呈極顯著正相關(guān)(<0.01),說明黃豆籽粒中元素As、Ru、Gd、Tb含量與土壤中相應(yīng)元素含量呈正相關(guān),相關(guān)程度從大到小依次為:Tb>Ru>As>Gd。通過研究發(fā)現(xiàn)在52種礦物質(zhì)元素中僅有4種礦物質(zhì)元素含量在黃豆及土壤樣品間存在顯著相關(guān)性,這可能是因為基因型等因素也會影響黃豆礦物元素組成。
表6 黃豆和土壤樣品礦物元素含量的相關(guān)系數(shù)
注:“*”、“**”分別表示元素含量在樣品間顯著相關(guān)、極顯著相關(guān)(<0.05、<0.01)
Note: ‘*’ and ‘**’ mean the element content between different samples is significantly correlated at the level of<0.05 and<0.01, respectively.
為了確定黃豆中與土壤密切相關(guān)的礦物元素對所有元素的總結(jié)概況性,并為探討土壤礦物質(zhì)元素對黃豆產(chǎn)地判別的影響,以此建立判別模型,鑒于此本研究對對采集黃豆樣品中與土壤密切相關(guān)的礦物質(zhì)元素進行主成分分析,通過主成分分析確定主成分1(47.25%)主要綜合了礦物質(zhì)元素As、Tb的信息;主成分2(24.01%)主要綜合了礦物質(zhì)元素Ru的信息;主成分3(17.96%)主要代表了礦物質(zhì)元素Gd的信息。利用黃豆與土壤密切相關(guān)的元素的第1、2個主成分得分作圖(圖1)可知,不同地域的樣品間雖然有交叉,但大多數(shù)可被較好地區(qū)分。
通過上述主成分分析及相關(guān)性可知,與土壤密切相關(guān)的礦物質(zhì)元素攜帶著不同地域黃豆樣品特征信息,可以用于鑒別黃豆的產(chǎn)地。因此,通過判別分析可為解析黃豆礦物元素指紋信息成因提供理論依據(jù)。在<0.05顯著水平下,將以上4項礦物元素指標(biāo)引入到判別模型中,樣本被隨機分為2組,57個樣本作為訓(xùn)練集,建立模型如下所示
北安=0.009As+4.36Ru–5.8×10–5Gd+0.011Tb–73.50
齊齊哈爾=0.01As+4.25Ru+0.001Gd+0.008Tb–74.512
圖1 主成分得分散點圖
由表7可知,利用此模型判別測試集樣品,57組樣品中僅有1組齊齊哈爾樣品被錯判,因此整體判別率為98.2%,對于齊齊哈爾及北安樣品產(chǎn)地的正確判別率分別為96.2%、100%,表明基于上述4種礦物元素構(gòu)建的判別分析模型對黃豆產(chǎn)地具有理想的判別效果。
表7 黃豆與土壤中密切相關(guān)礦物元素判別分析分類結(jié)果
本研究分析了黑龍江大豆主栽區(qū)齊齊哈爾及北安地區(qū)黃豆的礦物元素組成特征,明確了不同地域黃豆中46種存在差異的礦物元素,通過主成分分析及判別分析實現(xiàn)了對黃豆產(chǎn)地的溯源分析,確定了礦物元素AI、V、Ag、Cd、Ba、Tb、Pt和Au 8項有效指標(biāo),對黃豆產(chǎn)地的判別正確率高達95.7%,該結(jié)果為進一步分析地域因素對黃豆礦物元素指紋信息的影響提供了前提條件。
土壤是黃豆中礦物元素的主要來源,對黃豆產(chǎn)地礦物元素指紋信息的形成具有重要作用。通過研究發(fā)現(xiàn)As、Ru、Gd含量在黃豆與土壤間呈顯著正相關(guān)(<0.05),Tb含量在黃豆與土壤間呈極顯著正相關(guān)(<0.01),基于主成分分析及判別分析可以確定上述元素是黃豆礦物元素產(chǎn)地鑒別較為可靠的指紋信息指標(biāo)。
[1] 沈丹萍. 不同產(chǎn)地大豆中礦質(zhì)元素及異黃酮含量分析[D]. 蘇州大學(xué),2014. Shen Danping. Analysis of Mineral Elements and Isoflavones in Soybean from Different Producing Areas[D]. Suzhou University, 2014. (in Chinese with English abstract)
[2] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局. 化學(xué)試劑檸檬酸:GB 9855-2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2008. Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China. Chemical Reagents Citric Acid: GB 9855-2008[S]. Bei Jing: Standards Press of China, 2008. (in Chinese with English abstract)
[3] 趙玉英,孫福祥,張良,等. ICP-AES法對玉米和大麥中元素含量的比較研究[J]. 內(nèi)蒙古民族大學(xué)學(xué)報:自然科學(xué)版,2015(3):199-201 Zhao Yuying, Sun Fuxiang, Zhang Liang, et al. ICP-AESComparative study on the content of elements in corn and barley by the method of comparative analysis of elements in corn and barley[J]. Journal of Inner Mongolia University for Nationalities: Natural Sciences, 2015(3): 199-201. (in Chinese with English abstract)
[4] 李平惠,錢麗麗,楊義杰,等.基于礦物元素指紋圖譜技術(shù)的蕓豆產(chǎn)地溯源研究[J]. 中國糧油學(xué)報,2016(6):134-139. Li Pinghui, Qian Lili, Yang Yijie, et al. Kidney bean origin traceability of mineral elements based on Fingerprint Technology[J]. Journal of the Chinese Cereals and Oils Association, 2016(6): 134-139. (in Chinese with English abstract)
[5] 魏益民,郭波莉,魏帥,等. 食品產(chǎn)地溯源及確證技術(shù)研究和應(yīng)用方法探析[J]. 中國農(nóng)業(yè)科學(xué),2012,45(24):5073-5081. Wei Yimin, Guo Boli, Wei Shuai, et al. Study on the technology of tracing and confirming food origin and its application [J]. Scientia Agricultura Sinica, 2012, 45(24): 5073-5081. (in Chinese with English abstract)
[6] Eleraky A W, Rambeck W. Study on performance enhancing effect of rare earth elements as alternatives to antibiotic feed additives for Japanese Quails[J]. Journal of American Science, 2011, 7(12): 211-215.
[7] 才讓卓瑪,趙云濤,章超樺,等.基于無機元素分析的香港牡蠣產(chǎn)地溯源技術(shù)初探[J]. 廣東海洋大學(xué)學(xué)報,2015(3):94-99 Cai Rangzhuoma, Zhao Yuantao, Zhang Chaohua, et al. Origin tracing technology of Hongkong oyster based on inorganic element analysis[J]. Journal of Guangdong Ocean University, 2015(3): 94-99. (in Chinese with English abstract)
[8] 錢麗麗,李平惠,楊義杰,等. 不同產(chǎn)地蕓豆中礦物元素的因子分析與聚類分析[J]. 食品科學(xué),2015,36(14):102-106.Qian Lili, Li Pinghui, Yang Yijie, et al. Factor analysis and cluster analysis of mineral elements in different habitats in beans[J]. Food Science, 2015, 36(14): 102-106. (in Chinese with English abstract)
[9] Rodushkin I, Ruth T, ?sa Huhtasaari. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques[J]. Analytica Chimica Acta, 1999, 378(1/3): 191-200.
[10] Batista B L, Silva L R S D, Rocha B A, et al. Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques[J]. Food Research International, 2012, 49(1): 209-215.
[11] Pilgrima T S, Watling R J, Grice K. Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples[J]. Food Chemistry, 2010, 118: 921-926.
[12] Husted S, Mikkelsen B F, Jensen J, et al. Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics[J]. Anal Bioanal Chem, 2004, 378: 171-182.
[13] Moreda Pi?eiro A, Fisher A, Hill S J. The classification of tea according to region of origin using pattern recognition techniques and trace metal data[J]. Journal of Food Composition & Analysis, 2003, 16(2): 195-211.
[14] 龔自明,王雪萍,高士偉,等. 礦物元素分析判別綠茶產(chǎn)地來源研究[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報,2012,30(4):429-433. Gong Zining, Wang Xueping, Gao Shiwei, et al. Study on the origin of green tea by discriminant analysis of mineral elements[J]. Journal of Sichuan Agricultural University, 2012, 30(4): 429-433. (in Chinese with English abstract)
[15] 孫淑敏,郭波莉,魏益民,等. 基于礦物元素指紋的羊肉產(chǎn)地溯源技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(17):237-243. Sun Shumin, Guo Boli, Wei Yimin, et al. Origin tracing technology of mutton based on mineral element fingerprints [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 237-243. (in Chinese with English abstract)
[16] 萬婕,劉成梅,劉偉,等. 電感耦合等離子體原子發(fā)射光譜法分析不同產(chǎn)地大豆中的礦物元素含量[J]. 光譜學(xué)與光譜分析,2010(2):543-545. Wan Jie, Liu Chengmei, Liu Wei, et al. Analysis of Mineral Element Content in Soybean from Different Producing Areas by Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Spectroscopy and Spectral Analysis, 2010(2): 543-545. (in Chinese with English abstract)
[17] Bong Y S, Song B Y, Gautam M K, et al. Discrimination of the geographic origin of cabbages[J]. Food Control, 2013, 30(2): 626-630.
[18] Cheajesadagul P, Arnaudguilhem C, Shiowatana J, et al. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry[J]. Food Chemistry, 2013, 141(4): 3504-3509.
[19] Shen S, Xia L, Xiong N, et al. Determination of the geographic origin of rice by element fingerprints and correlation analyses with the soil of origin[J]. Analytical Methods, 2013, 5(21): 6177-6185.
[20] Longobardi F, Ventrella A, Casiello G, et al. Instrumental and multivariate statistical analyses for the characterisation of the geographical origin of Apulian virgin olive oils[J]. Food Chemistry, 2012, 133(2): 579-584.
[21] Zhao Y, Zhang B, Chen G, et al. Tracing the Geographic Origin of Beef in China on the Basis of the Combination of Stable Isotopes and Multielement Analysis[J]. Journal of Agricultural and Food Chemistry, 2013, 61(29): 7055-7060
[22] 郭小溪,劉源,許長華,等. 水產(chǎn)品產(chǎn)地溯源技術(shù)研究進展[J]. 食品科學(xué),2015,36(13):294-298.
[23] Badia Melis R, Mishra P, Ruiz García L. Food traceability: New trends and recent advances. A review[J]. Food Control, 2015, 57: 393-401.
[24] Costas Rodríguez M, Lavilla I, Bendicho C. Classification of cultivated mussels from Galicia (northwest Spain) with European Protected Designation of Origin using trace element fingerprint and chemometric analysis[J]. Analytica Chimica Acta, 2010, 664(2): 121–128.
[25] 趙海燕,郭波莉,張波,等.小麥產(chǎn)地礦物元素指紋溯源技術(shù)研究[J]. 中國農(nóng)業(yè)科學(xué),2010,43(18):3817-3823. Zhao Haiyan, Guo Boli, Zhang Bo, et al. Study on Fingerprint Traceability of Mineral Elements in Wheat Producing Area[J]. Scientia Agricultura Sinica, 2010, 43(18): 3817-3823. (in Chinese with English abstract)
[26] 李平惠,錢麗麗,楊義杰,等. 基于礦物元素指紋圖譜技術(shù)的蕓豆產(chǎn)地溯源研究[J]. 中國糧油學(xué)報,2016,31(6):134-139 Li Pinghui, Qian Lili, Yang Yijie, et al. Trace research on the origin of kidney bean based on mineral element fingerprints technique[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(6):134-139. (in Chinese with English abstract)
[27] 公麗艷,孟憲軍,劉乃僑,等. 基于主成分與聚類分析的蘋果加工品質(zhì)評價[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(13):276-285. Gong Liyan, Meng Xianjun, Liu Naiqiao, et al. Evaluation of apple quality based on principal component and hierarchical cluster analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 276-285. (in Chinese with English abstract)
[28] Pilgrim T S, Watling R J, Grice K. Application of trace element and stable isotope signatures to determine the provenance of tea () samples[J]. Food Chemistry, 2010, 118(4): 921-926.
[29] Hague T, Petroczi A, Andrews P L, et al. Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study[J]. Chemistry Central Journal, 2008, 2(25): 9530-9537.
[30] 劉美玲,高玎玲,閆鑫磊,等. 礦物質(zhì)指紋技術(shù)在動物性食品產(chǎn)地溯源中的應(yīng)用[J]. 中國食物與營養(yǎng),2017(5):9-13. Liu Meiling, Gao Dingiling, Yan Xinlei, et al. Application of Mineral Fingerprint Technology in Traceability of Animal Food Origin[J]. Food and Nutrition in China, 2017(5): 9-13. (in Chinese with English abstract)
鹿保鑫,張東杰. 基于礦物元素指紋圖譜的黑龍江黃豆產(chǎn)地溯源[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):216-221. doi:10.11975/j.issn.1002-6819.2017.21.026 http://www.tcsae.org
Lu Baoxin, Zhang Dongjie. Origin traceability of Heilongjiang soybean using fingerprint of mineral elements[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 216-221. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.026 http://www.tcsae.org
Origin traceability of Heilongjiang soybean using fingerprint of mineral elements
Lu Baoxin, Zhang Dongjie※
(163319,)
China is a major production country of soybeans. A number of geographical indication products (such as soybeans in the Qiqihar region and soybeans in the Bei’an area) have been formed in long-term climate environments and specific geographical locations. The establishment of source traceability technology for the soybean production with geographical indication provides a strong technical support to improve the reputation of production enterprises and market competitiveness. Identification of the information to be recorded is the most important requirement for developing an effective traceability system. The feasibility analysis with mineral composition fingerprint technique for geographical origin traceability of Heilongjiang soybean and the screening of effective indicators to determine origin place of Heilongjiang soybean were performed in this research. The contents of 52 mineral elements including Na, Mg, Al, and K in 50 soybean samples from Qiqihar and Bei’an were measured using inductively coupled plasma mass spectrometry (ICP-MS), and then variance analysis (VA), principal component analysis (PCA) and discriminant analysis (DA) were performed with the data. The contents of 46 mineral elements of the soybeans significantly differed among regions, which suggested that these mineral components could be used for origin traceability of Heilongjiang soybean. Based on the scree plot and the contribution rate of variance, 8 principal components were extracted by the PCA to establish the origin discrimination model using the DA. The overall criterion rate of crossing examination of the model was 95.7%, which confirmed that the models could accurately discriminate the origin place of soybean. The contents of AI, V, Ag, Cd, Ba, Tb, Pt and Au showed effective judgment on soybean samples from Qiqihar and Bei’an. In order to further explain the relation between mineral element contents in soil and those in soybean, Pearson correlation analysis was carried out. The contents of As, Ru and Gd in soybean were positively related with those in soil, while the content of Tb in soybean was highly positively related with that in soil. The discriminant model formed by 4 mineral elements was proved to discriminate the sources of the whole samples correctly. The correct discrimination rates of the models for Qiqihar and Bei’an were 96.2% and 100% respectively. Therefore, the mineral element fingerprint technology is feasible to determine the origin place of soybean.
agricultural products; minerals; soils; soybean; origin traceability; fingerprint
10.11975/j.issn.1002-6819.2017.21.026
S565.1
A
1002-6819(2017)-21-0216-06
2017-04-30
2017-08-25
黑龍江省高等學(xué)??萍紕?chuàng)新團隊建設(shè)計劃項目(2014TD006);黑龍江省應(yīng)用技術(shù)研究與開發(fā)計劃項目(GA14B104);黑龍江八一農(nóng)墾大學(xué)校內(nèi)培育課題資助計劃重點項目(XA2016-04)
鹿保鑫,教授,研究方向為農(nóng)產(chǎn)品加工與安全。Email:lubaoxin72@126.com
※通信作者:張東杰,教授,研究方向為農(nóng)產(chǎn)品加工與安全。Email:byndzdj@126.com。