国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

虹吸管道坡度對(duì)氣液兩相流動(dòng)特性影響的試驗(yàn)研究

2017-11-24 06:07張小瑩靳晟譚義海吳洋鋒
關(guān)鍵詞:管內(nèi)坡度氣泡

張小瑩,李 琳※,靳晟,譚義海,吳洋鋒

(1. 新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,烏魯木齊 830052;2. 新疆農(nóng)業(yè)大學(xué)計(jì)算機(jī)與信息工程學(xué)院,烏魯木齊 830052)

虹吸管道坡度對(duì)氣液兩相流動(dòng)特性影響的試驗(yàn)研究

張小瑩1,李 琳※1,靳晟2,譚義海1,吳洋鋒1

(1. 新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,烏魯木齊 830052;2. 新疆農(nóng)業(yè)大學(xué)計(jì)算機(jī)與信息工程學(xué)院,烏魯木齊 830052)

為了探明坡度對(duì)中行管段傾斜布置的正虹吸管路水力特性的影響,設(shè)置11個(gè)不同坡度(0、±1/60、±1/30、±1/20、±1/15、±1/10)和2個(gè)安裝高度(4、6 m)在不同水位差下量測(cè)了虹吸管內(nèi)的氣液兩相流動(dòng)現(xiàn)象、含氣率、氣泡的運(yùn)動(dòng)速度、過(guò)流能力及總水頭損失等水力特性。通過(guò)試驗(yàn)得到了正坡和逆坡管路坡度變化對(duì)管路水氣流動(dòng)現(xiàn)象的影響規(guī)律,揭示了坡度改變對(duì)管內(nèi)含氣率和氣泡運(yùn)動(dòng)速度、虹吸管路流量及管路水頭損失的影響規(guī)律,并結(jié)合理論分析探討了氣體存在對(duì)流量和總水頭損失的影響。結(jié)果表明,隨著坡度逐漸增大,管內(nèi)偽空化現(xiàn)象逐漸減弱,氣體的體積逐漸減小,含氣率逐漸減小,氣泡運(yùn)動(dòng)速度逐漸加快,虹吸管路的輸水流量逐漸增大,總水頭損失也逐漸增大。通過(guò)量綱分析的方法,推導(dǎo)出適用于傾斜布置的不同坡度下正虹吸管路輸水流量的計(jì)算公式;經(jīng)驗(yàn)證,公式計(jì)算值與實(shí)測(cè)值相接近,逆坡管路中相對(duì)誤差控制在±6%,正坡管路控制在±7%。以上探究結(jié)果為實(shí)際工程中管路布置形式提供了參考依據(jù)。

虹吸管路;坡度;流量;水頭損失;含氣率;量綱分析

0 引 言

虹吸管道以其輸水不受布置條件的限制,路線布置簡(jiǎn)便,施工工程量小,保證正常供水等優(yōu)勢(shì)已經(jīng)成為許多工程首選的輸水管路[1-4]。隨著大量的地表水資源被持續(xù)開(kāi)發(fā)與應(yīng)用,坎兒井式的地下水庫(kù)的建設(shè)和研究已成為近些年新疆水利工程界關(guān)注的重點(diǎn),而距離較長(zhǎng)、真空度較大的正虹吸式輸水管道正是其重要組成部分[5-8],但是目前對(duì)負(fù)壓條件工作的正虹吸管道相關(guān)水力特性研究報(bào)道甚少,筆者通過(guò)試驗(yàn)研究發(fā)現(xiàn)正虹吸管道中行管段坡度的減小使管內(nèi)偽空化現(xiàn)象愈發(fā)嚴(yán)重,常規(guī)有壓輸水管道過(guò)流能力的計(jì)算公式已經(jīng)不適用于虹吸管路氣液兩相流的計(jì)算[9]。國(guó)內(nèi)外學(xué)者多對(duì)倒虹吸管路的虹吸過(guò)程進(jìn)行研究,如Petaccia[10]利用壓電壓力傳感器和超聲波液位測(cè)量?jī)x是用來(lái)確定虹吸的水力性能。Kang等[11]應(yīng)用虹吸斷路器作為一種被動(dòng)安全裝置來(lái)確保研究反應(yīng)堆水位高度問(wèn)題。Naoki Tajima等[12-13]對(duì)虹吸管內(nèi)粒子隨管內(nèi)水流運(yùn)動(dòng)所產(chǎn)生的現(xiàn)象做了描述,得到了虹吸管路淤積的特征及影響因素;熊曉亮等[14-15]提出了邊坡、滑坡地區(qū)虹吸排水的最佳管徑;徐力群等[16]提出了虹吸管與輻射井相結(jié)合的尾礦壩排滲系統(tǒng),驗(yàn)證了排滲效果的有效性。而筆者課題組成員許史等[17-19]通過(guò)研究發(fā)現(xiàn)隨著正虹吸管道的安裝高度增大,虹吸管內(nèi)的汽化愈嚴(yán)重(特別在中行管段);譚義海等[19-25]通過(guò)試驗(yàn),理論分析了流量和壓降實(shí)測(cè)值不同于單相水流動(dòng)的理論流量值和壓降值的原因;王夢(mèng)婷等[25]推導(dǎo)出平坡布置的正虹吸管的輸水流量計(jì)算公式。許史等[17-19]僅對(duì)中行管段坡度為平坡時(shí)的正虹吸管道進(jìn)行研究,并未對(duì)中行管段呈不同坡度時(shí)的正虹吸管路進(jìn)行研究。目前僅有對(duì)傾斜布置的正壓管道內(nèi)氣液兩相流動(dòng)的水力特性進(jìn)行的研究:如 Barnea等[26-30]研究了微傾斜管內(nèi)氣液兩相流型,并繪制了向上傾斜管內(nèi)的流型圖;黨民等[30-34]按照常見(jiàn)流型定義,給出了水平和傾斜管內(nèi)流型判別的方法。但以上研究均針對(duì)正壓條件下的一般傾斜管道,尚無(wú)其他研究人員對(duì)負(fù)壓條件下傾斜布置的正虹吸管道展開(kāi)研究。因此,本文通過(guò)系統(tǒng)試驗(yàn)研究正虹吸管路在不同坡度下的氣液兩相流動(dòng)過(guò)流能力和水頭損失特性,以期為工程設(shè)計(jì)與運(yùn)行提供理論依據(jù),豐富和完善有壓管道氣液兩相流動(dòng)過(guò)流能力及水頭損失的計(jì)算理論。

1 材料與方法

1.1 試驗(yàn)材料

平坡、正坡、逆坡管路的布置如圖 1所示。整個(gè)試驗(yàn)裝置由上游水箱、虹吸管路及下游水箱組成,虹吸管路由上行管、中行管、下行管組成;考慮到管道自重及管段之間的銜接,整個(gè)管路系統(tǒng)由內(nèi)徑為2 cm的圓管組成;管道材料為有機(jī)玻璃管,有機(jī)玻璃管便于對(duì)管路中氣液兩相流動(dòng)狀態(tài)的觀測(cè)。將中行管段傾斜放置(逆坡布置時(shí)坡度為負(fù),正坡布置時(shí)坡度為正),不同坡度下中行管的長(zhǎng)度均為18.15 m,恒定不變。豎直管段(上行管、下行管)均垂直于地面布置,長(zhǎng)度由實(shí)際安裝高度決定。整個(gè)虹吸管路從上游至下游依次布置9個(gè)環(huán)形摻氣電極、4個(gè)壓力傳感器、2個(gè)電子真空壓力表。在上游水箱中布置溢流堰,在下游水箱內(nèi)布置薄子壓力表(PG-801C)進(jìn)行量測(cè);截壁堰。由于本試驗(yàn)是系列基礎(chǔ)性試驗(yàn),不涉及試驗(yàn)的幾何參數(shù)對(duì)應(yīng)的實(shí)際工程尺寸,即不存在模型和原型的比尺問(wèn)題。

圖1 試驗(yàn)裝置圖Fig. 1 Test unit graph

1.2 試驗(yàn)設(shè)計(jì)

當(dāng)上下游水位差H大于135 cm與安裝高度hs小于2 m時(shí),管內(nèi)為單一液相流,而本試驗(yàn)主要展開(kāi)對(duì)氣液兩相流動(dòng)的研究。當(dāng)安裝高度大于7 m時(shí),虹吸管路迅速發(fā)生斷流現(xiàn)象,無(wú)法及時(shí)觀測(cè)管內(nèi)流動(dòng)現(xiàn)象。故試驗(yàn)選取H= 5~135 cm時(shí) 13個(gè)水位差,hs= 4 m與hs= 6 m的2個(gè)安裝高度進(jìn)行試驗(yàn)。結(jié)合實(shí)際工程,選擇坡度i為±1/60到±1/10的11個(gè)坡度共286個(gè)工況進(jìn)行試驗(yàn)。試驗(yàn)主要量測(cè)虹吸管路的流量、壓強(qiáng)、含氣率、氣泡運(yùn)動(dòng)速度、及虹吸時(shí)間等變量的大小。當(dāng)虹吸過(guò)程穩(wěn)定后,開(kāi)始進(jìn)行虹吸管道的過(guò)流量、壓強(qiáng)及含氣率的量測(cè):流量采用20°開(kāi)口三角形薄壁堰進(jìn)行量測(cè);壓強(qiáng)利用壓力傳感器(KYB11G/A)和真空電面含氣率利用環(huán)形摻氣電極(CQ6-2005)和電導(dǎo)率儀(DDLY-2005)量測(cè);測(cè)量結(jié)果通過(guò)DJ數(shù)據(jù)采集系統(tǒng)(DJ800升級(jí)版)輸出,以上測(cè)量?jī)x器均由中國(guó)水利水電科學(xué)研究院提供。同時(shí)記錄氣泡的運(yùn)動(dòng)速度,并用高清照相機(jī)對(duì)管內(nèi)的氣液兩相流動(dòng)現(xiàn)象進(jìn)行拍攝,記錄試驗(yàn)現(xiàn)象。以上每個(gè)試驗(yàn)工況的試驗(yàn)均進(jìn)行3次重復(fù),以確保數(shù)據(jù)的準(zhǔn)確。

1.3 指標(biāo)計(jì)算方法

水力學(xué)中用常規(guī)有壓管路流量公式(1)來(lái)計(jì)算管路的流量[34];列出正坡和逆坡管段中2個(gè)壓力傳感器(C、D)之間的能量方程(2)和(3),根據(jù)能量方程可得正坡和逆坡中行管路的總水頭損失hw如式(4)和(5)。

式中λ為沿程阻力系數(shù);l表示管道長(zhǎng)度,m;d表示管道直徑,cm;Σζ表示管路各局部水頭損失系數(shù)的總和,本試驗(yàn)中的局部水頭損失系數(shù)應(yīng)為進(jìn)口處局部水頭損失系數(shù)與兩個(gè)彎管處局部損失系數(shù)之和,故Σζ=1.2×2+0.5=2.9;A為管道的過(guò)水?dāng)嗝婷娣e,m2;H為上下游水位差,cm。

式中P1、P2分別表示測(cè)點(diǎn)C、D的壓強(qiáng),kPa;ρ表示液體密度,g/cm3;v1、v2表示測(cè)點(diǎn)C、D所在斷面的斷面平均速度,m/s;wh正和wh逆表示正、逆坡管道總水頭損失,m;Δh為測(cè)點(diǎn)C、D的位置水頭之差,m。

2 結(jié)果與分析

2.1 不同坡度下中行管內(nèi)氣液兩相流動(dòng)現(xiàn)象

虹吸管安裝高度和水位差相同、坡度不同時(shí)虹吸管內(nèi)氣液兩相流動(dòng)現(xiàn)象不相同,主要選取典型工況hs= 6 m、H= 35 cm為例對(duì)中行管路逆坡、平坡、正坡布置的管內(nèi)的流態(tài)進(jìn)行描述(圖 2),其他工況時(shí)管道內(nèi)水氣兩相流動(dòng)現(xiàn)象隨坡度的變化規(guī)律一致,囿于篇幅,不再贅述。如圖2a所示,平坡管路中管內(nèi)氣泡數(shù)量很多,從上游析出的氣泡在中行管路首部時(shí)氣泡直徑大約為4~5 mm,整個(gè)管壁上附著大量1 mm左右直徑較小的氣泡,在流動(dòng)的過(guò)程中氣泡逐漸聚合成較大的氣泡,整個(gè)管道分布著大小不一的氣囊,沿程分布的氣囊靜止在管壁的上部,氣囊運(yùn)動(dòng)速度緩慢,氣泡運(yùn)動(dòng)方向與水流方向相同。圖 2b為逆坡管路i=-1/60時(shí)管內(nèi)流動(dòng)現(xiàn)象,與正坡管路相同,此時(shí)仍有許多小氣泡吸附在管壁上靜止不動(dòng),氣泡的運(yùn)動(dòng)方向與水流方向相同;與平坡不同,當(dāng)氣囊流向下游的過(guò)程中,主要集中在靠近下游的位置處。正坡管路內(nèi)的流態(tài)如圖2c所示,與逆坡管路不同,正坡管路虹吸一段時(shí)間后,在浮力作用下聚集在管內(nèi)的氣囊開(kāi)始以很緩慢的速度向上游運(yùn)動(dòng),即氣泡運(yùn)動(dòng)方向與水流方向相反。

圖2 平坡、正坡及逆坡管路中行管路內(nèi)流態(tài)示意圖Fig. 2 Schematic of flow in flat slope, positive slope and inverse slope pipeline

坡度不同時(shí)中行管內(nèi)氣體的分布情況如圖 3所示。當(dāng)氣體直徑大于1 cm時(shí)將其稱(chēng)為氣囊,其余體積為氣泡。圖3b為不同坡度下逆坡中行管上游段管內(nèi)流態(tài)。由圖可知,當(dāng)逆坡i=-1/60時(shí)管內(nèi)為5~6 cm的氣囊,此時(shí)管內(nèi)氣泡流動(dòng)速度緩慢,且大體積的氣囊不斷吸收附管壁上的小氣泡;當(dāng)坡度增大到-1/30時(shí),管內(nèi)出現(xiàn)3~4 cm的小氣囊,靠近上游管內(nèi)邊壁上附著一些 1 mm大小的氣泡;當(dāng)i增大到-1/10時(shí),氣泡的大小減小到1 cm左右,邊壁上附著小氣泡的體積變小,數(shù)量變少。圖3b為不同坡度下正坡中行管中游的管內(nèi)流態(tài)。當(dāng)i=1/60時(shí),管內(nèi)氣囊大小為50~60 cm;當(dāng)坡度增大到i=1/30時(shí),氣囊減小到30~40 cm;當(dāng)正坡坡度變?yōu)樽畲骾=1/10,氣囊的大小為20~30 cm。無(wú)論是正坡或逆坡管路,隨著坡度的逐漸增大,管內(nèi)氣泡或氣囊體積逐漸減小,氣泡數(shù)量逐漸減少。

2.2 不同坡度下管路的過(guò)流能力變化

正坡及逆坡管路的實(shí)測(cè)流量值與坡度關(guān)系繪于圖 4中。由圖 4可知,在正坡管路及逆坡管路中,虹吸管路的流量均隨坡度的增大而增大。逆坡管路中,當(dāng)hs=4 m、H=5 cm時(shí),坡度從i=-1/60增大到i=-1/10,流量增大22%;hs=6 m、H=35 cm 時(shí),隨著坡度增大,流量增大23.8%。正坡管路中,當(dāng)hs=4 m、H=15 cm時(shí),i從1/60增大到1/10時(shí),流量增大18.6%;hs=6 m、H=45 cm時(shí),流量增加16.5%。

圖3 坡度不同時(shí)管內(nèi)氣囊形態(tài)Fig. 3 Bubble form under different gradient in pipeline

圖4 不同水位差時(shí)坡度與流量的關(guān)系Fig. 4 Relationship between gradient and flow rate under different waterhead

圖 5為逆坡和正坡管路中不同坡度下含氣率隨坡度的變化規(guī)律。由圖 5可知,隨坡度的增大,管道的含氣率越小,含氣率的減小使管道有效的過(guò)流面積增大,因此其過(guò)流能力隨坡度的增大而增大。在逆坡管路中(圖5a),當(dāng)t=0~50 s,隨著坡度由-1/60增加到-1/30、-1/20、-1/10時(shí),平均含氣率由10.6%減少到8.8% 、6.8%、5.4%,含氣率減小了 5.2%;在t=150~200 s,隨著坡度由-1/60增大到-1/10,平均含氣率由13.8%減小到8.3%,含氣率減小了5.5%。與逆坡管路相同,在正坡管路中(圖5b),當(dāng)t=100~150 s,隨著坡度由1/60增加到1/30、1/20、1/10時(shí),平均含氣率由16.3%減少到14.2%、13.4%、10.8%,含氣率減小5.5%;在t=250~300 s,隨著坡度由i=1/60增大到i=1/10時(shí),平均含氣率由15.9%減小到9.6%。無(wú)論正坡還是逆坡管路,含氣率均隨坡度增大而減小。含氣率減小的原因是保持虹吸管安裝高度(即管道最高點(diǎn)至水源液面的距離)不變,無(wú)論是正坡或是逆坡,坡度增大時(shí)虹吸管內(nèi)平均真空度減小,氣泡內(nèi)部與外部壓強(qiáng)差減小,游離于水內(nèi)的氣核不易膨脹析出,因此管內(nèi)的含氣量隨著坡度的增大而減小,截面含氣率降低。由有壓管路流量式(1)可知,當(dāng)l、d、λ、∑ξ、H等值均不發(fā)生變化時(shí),流量Q的大小僅與過(guò)流斷面積A有關(guān),過(guò)流面積A與管路過(guò)流量成正比。由試驗(yàn)可知,隨坡度的增大,管道的含氣率越小,含氣率的減小使管道有效的過(guò)流面積增大,因此其過(guò)流能力隨坡度的增大而增大。

圖5 正、逆坡管路的含氣率大小隨坡度的變化Fig. 5 Gas rate changes with gradient in positive and inverse slope

2.3 不同坡度下管路的總水頭損失變化

根據(jù)式(4)和式(5)分別計(jì)算正逆坡虹吸管中行管路hw,其隨坡度的變化情況如表1所示。由表1可知,隨著坡度逐漸增大,水頭損失hw逐漸增大。當(dāng)hs=4 m、H=5 cm,坡度i從-1/60增加到-1/10時(shí),hw增大了28.89%;hs=6 m、H=35 cm時(shí),隨著正坡管路的坡度增大,hw增大了42.86%。通過(guò)試驗(yàn)觀測(cè)了部分工況下管路中氣泡的速度大小,如圖6所示,無(wú)論是逆坡管路還是正坡管路,氣泡運(yùn)動(dòng)速度均隨坡度增大而增大。在逆坡管路中,如圖6a 所示,hs=4 m,H=95 cm時(shí),隨著坡度增大,氣泡運(yùn)動(dòng)速度增大18.62%;hs=6 m,H=75 cm時(shí),氣泡速度變大了22.52%(圖6b)。正坡管路中,hs= 4 m,H=75 cm時(shí),隨著坡度增大,氣泡的運(yùn)動(dòng)速度增加了19.07%;hs=6 m,H=55 cm時(shí),隨坡度增大,氣泡的運(yùn)動(dòng)速度增大28.9%。由于坡度增大,正、逆坡管道流量增大而流速隨之增大,故管路水頭損失也相應(yīng)增大,正、逆坡管路中水頭損失均隨坡度增大而增大。

2.4 不同坡度流量公式推導(dǎo)及驗(yàn)證

2.4.1 流量公式推導(dǎo)

研究表明當(dāng)管內(nèi)平均截面含氣率α≤11%時(shí),管內(nèi)大多呈現(xiàn)氣泡流,坡度對(duì)管路的過(guò)流量影響很小,可以忽略不計(jì),只需測(cè)定含氣率大小,修正管道過(guò)水?dāng)嗝娣e,用常規(guī)有壓管流流量公式計(jì)算其過(guò)流量即可[35]。但當(dāng)α>11%時(shí),管內(nèi)呈現(xiàn)過(guò)渡流和氣團(tuán)流流型,此時(shí)坡度對(duì)正、逆坡管路過(guò)流量產(chǎn)生的影響已不能忽略不計(jì);當(dāng)α<30%時(shí),管內(nèi)發(fā)生極短暫虹吸后即發(fā)生斷流,無(wú)法形成穩(wěn)定虹吸。坡度的變化所引起的氣液兩相流動(dòng)現(xiàn)象使得含氣率對(duì)流動(dòng)阻力的影響不同于液相滿(mǎn)流,故本文推導(dǎo)了過(guò)渡流和氣團(tuán)流下,含氣率為11%<α<30%,坡度為1/60≤i≤1/10時(shí)正、逆坡虹吸管路的流量計(jì)算公式。

表1 不同坡度下的總水頭損失Table 1 Total head loss under different gradient m

圖6 氣泡的運(yùn)動(dòng)速度與坡度的關(guān)系Fig. 6 Relationship between gradient and bubble velocity

通過(guò)對(duì)試驗(yàn)數(shù)據(jù)的分析可知,在中行管段傾斜布置時(shí),虹吸管路的過(guò)流量Q主要與λ、l、d、∑ζ、ρ、g、H、α、i有關(guān)。用函數(shù)關(guān)系式(6)表示各個(gè)變量與流量Q之間的關(guān)系。

此時(shí),令Q=C·Q′,則

此時(shí),共有7個(gè)物理量,選擇d,ρ,g為3個(gè)基本物理量,且α,i均為無(wú)量綱的物理量,則有7-3-2=2個(gè)無(wú)量綱數(shù)π所組成的方程。根據(jù)量綱和諧原理,則這 2個(gè)無(wú)量綱數(shù)π分別用π1及π2表示如下

將式(10)與式(11)代入式(9)可得

將上式可改寫(xiě)成

利用hs=4 m時(shí)逆坡管路中不同坡度的實(shí)測(cè)數(shù)據(jù)推導(dǎo)逆坡布置的虹吸管輸水流量公式:令F=Q′/(g1/2·d5/2),B=α·i,將F、B帶入式(13)可得式(14),式(14)可寫(xiě)為式(15)的形式。將各坡度下F/B與H/d的試驗(yàn)數(shù)據(jù)點(diǎn)匯在圖7中,將圖7中的各點(diǎn)進(jìn)行數(shù)據(jù)擬合可得到式(16),該式即為F/B與H/d的關(guān)系式。

圖7 F/B與H/d的關(guān)系Fig. 7 Relationship between F/B and H/d

將F=Q′/(g1/2·d5/2),B=α·i同時(shí)代入式(16)中,可得

則可寫(xiě)為

式(19)即逆坡管路流量公式(11%<α<30%,坡度為-1/60≤i≤-1/10)。

由試驗(yàn)數(shù)據(jù)可知,中行管段逆坡和正坡布置時(shí)虹吸管路的輸水流量并不相等,與正坡管路同理,用相同方法推導(dǎo)出的正坡管路流量公式如(20)所示,該公式適用范圍為(11%<α<30%,坡度為1/60≤i≤1/10)。

觀察兩組血糖指標(biāo),包括空腹血糖(FPG)、餐后2 h血糖(2 hPG)、糖化血紅蛋白(HbAlc)。取兩組治療后空腹靜脈血 3 mL,靜置 2 h,3 000 r/min,離心處理 10 min,保存-80℃冰箱待檢;行酶聯(lián)免疫吸附法測(cè)定多聚ADP核糖聚合酶(PARP)。

2.4.2 流量公式驗(yàn)證及誤差分析

為了比較正坡及逆坡管路中流量的公式計(jì)算值與試驗(yàn)實(shí)測(cè)值的差異,將逆坡及正坡管路不同坡度下hs=6 m時(shí)試驗(yàn)實(shí)測(cè)值與公式計(jì)算值的相對(duì)誤差分布情況繪制于圖8中,由圖可知,逆坡管路流量計(jì)算值與實(shí)測(cè)值的相對(duì)誤差控制在±6%以?xún)?nèi),正坡管路相對(duì)誤差控制在±7%以?xún)?nèi),且分布較為均勻。由此說(shuō)明所推導(dǎo)的逆坡及正坡管路流量計(jì)算公式對(duì)坡度不同的正虹吸管路的計(jì)算是適用的。

圖8 流量計(jì)算值與實(shí)測(cè)值的相對(duì)誤差Fig. 8 Relative error of calculated and measured flow rate values

3 結(jié) 論

本文通過(guò)試驗(yàn)研究了中行管路坡度變化對(duì)整個(gè)虹吸管路過(guò)流能力和水頭損失的影響規(guī)律,得到以下結(jié)論。

1)安裝高度及水頭差不變時(shí),平坡管路中氣泡或氣囊體積大于正、逆坡管路,偽空化現(xiàn)象最為嚴(yán)重;逆坡管路氣囊主要分布在中行管下游最高點(diǎn)附近;正坡管路中氣泡運(yùn)動(dòng)方向與水流方向相反,氣囊聚集在上游最高點(diǎn)附近。正坡及逆坡管路中,隨著坡度增大,管內(nèi)偽空化現(xiàn)象逐漸減弱,氣泡或氣囊的數(shù)量及體積逐漸減小,氣泡的運(yùn)動(dòng)速度逐漸增大。

2)無(wú)論是正坡管路還是逆坡管路,虹吸管路輸水流量均隨坡度的增大而增大;總水頭損失也隨坡度增大而增大。含氣率減小使得實(shí)際的過(guò)流面積增大,流量也逐漸增大,氣泡運(yùn)動(dòng)速度隨流量增大而逐漸加快,管內(nèi)的水流挾氣能力增強(qiáng),使得總水頭損失也逐漸增大。

3)通過(guò)量綱分析方法,對(duì)逆坡及正坡管路影響輸水流量的因素進(jìn)行了分析,得到了考慮坡度影響的真空度較大的正虹吸管路流量的計(jì)算公式。計(jì)算得到的流量值與實(shí)測(cè)的流量值比較接近,逆坡管路二者的相對(duì)誤差控制在±6%,正坡管路控制在±7%。

本研究雖然得到了坡度改變對(duì)正坡及逆坡管路對(duì)氣液兩相流動(dòng)現(xiàn)象、含氣率、氣泡的運(yùn)動(dòng)速度、過(guò)流能力及總水頭損失的影響,推導(dǎo)了適用于工程實(shí)際的傾斜管路中輸水流量計(jì)算公式,但理論并不完善。公式推導(dǎo)中僅考慮了影響流量的主要因素,忽略了如水的溫度、水中雜質(zhì)的含量、氣液兩相混合運(yùn)動(dòng)參數(shù)等因素,流量的計(jì)算結(jié)果有可能導(dǎo)致偏差。在后續(xù)研究中應(yīng)考慮在逆坡和正坡管路中在何處設(shè)置排氣裝置才可使實(shí)際工程中虹吸穩(wěn)定時(shí)間更長(zhǎng),工程造價(jià)更低。

[1] 姜俊紅,戴紅霞. 駝峰后帶長(zhǎng)直管虹吸式出水流道的水力特性試驗(yàn)研究[J]. 中國(guó)農(nóng)村水利水電. 2008(8):130-132.Jiang Junhong, Dai Hongxia. Research on the test of the hydraulic characteristic of the siphon outlet with long straight conduit after the roof[J]. China Rural Water and Hydropower,2008(8): 130-132. (in Chinese with English abstract)

[2] 施俊躍,陳革強(qiáng),盧健國(guó). 水庫(kù)虹吸管的運(yùn)用特性[J]. 水利技術(shù)監(jiān)督,2008(3):41-43.Shi Junyue, Chen Geqiang, Lu Jianguo. Characteristics of siphon in reservoir[J]. Technical Supervision in Water Resources, 2008(3): 41-43. (in Chinese with English abstract)

[3] 王衛(wèi)平. 虹吸管在水庫(kù)放水涵管改造中的應(yīng)用[J]. 節(jié)水灌溉,2008(1):51-53.Wang Weiping. Application of siphon in reconstruction of reservoir's diversion culvert[J]. Water Saving Irrigation,2008(1): 51-53. (in Chinese with English abstract)

[4] 李娟. 長(zhǎng)距離倒虹吸水流特性的三維數(shù)值模擬[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2013.Li Juan. Study on the Flow Characteristics 3D-Numerical Simulation of Long Distances Inverted Siphon[D]. Urumqi:Xinjiang Agricultural University, 2013. (in Chinese with English abstract)

[5] 裴建生. 干旱區(qū)山前沖洪積扇凹陷帶坎兒井式地下水庫(kù)建設(shè)的原理及實(shí)踐[J]. 水利水電技術(shù),2016,47(3):42-46.Pei Jiansheng. Principle and practice of construction of karez well typed groundwater reservoir within depress zone of mountain-front alluvial plain in arid region[J]. Water Resources and Hydropower Engineering, 2016, 47(3): 42-46. (in Chinese with English abstract)

[6] 裴建生,龐忠和,鄧銘江,等. 新疆臺(tái)蘭河坎兒井式地下水庫(kù)試驗(yàn)研究[J]. 第四紀(jì)研究,2014,18(5):941-949.Pei Jiansheng, Pang Zhonghe, Deng Mingjiang, et al.Experimental study on karjer well groundwater reservoir on tailan river[J].Quaternary Sciences, 2014, 18(5): 941-949.(in Chinese with English abstract)

[7] 劉慧. 臺(tái)蘭河地下水庫(kù)結(jié)構(gòu)及調(diào)蓄能力研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2012.Liu Hui. Study on Structure and Regulation and Storage Capacity of Groundwater Reservoir in Tailan River[D].Urumqi: Xinjiang Agricultural University, 2013. (in Chinese with English abstract)

[8] 李濤,鄧銘江,王于寶,等. 臺(tái)蘭河山前地下儲(chǔ)水構(gòu)造及地下水庫(kù)可行性研究[J]. 水文地質(zhì)工程地質(zhì),2011,38(1):30-34.Li Tao, Deng Mingjiang, Wang Yubao, et al. Feasibility study on underground water storage structure and groundwater reservoir in piedmont of tailan River[J].Hydrogeology & Engineering Geology, 2011, 38(1): 30-34.(in Chinese with English abstract)

[9] 張小瑩,李琳,譚義海,等. 坡度對(duì)虹吸管路氣液兩相流動(dòng)水力特性影響試驗(yàn)研究[J]. 中國(guó)農(nóng)村水利水電,2017(1):143-147,151.Zhang Xiaoying, Li Lin, Tan Yihai, et al. Experimental research on the influence of siphon pipe slope to hydraulic characteristics of gas-liquid two-phase flow [J]. China Rural Water and Hydropower, 2017 (1): 143-147, 151. (in Chinese with English abstract)

[10] Petaccia, Fenocchi. Experimental assessment of the stage-discharge relationship of the Heyn siphons of Bric Zerbino dam[J]. Flow Measurement and Instrumentation,2015, 41: 36-40.

[11] Kang Soon-Ho, Lee Kwon, Lee GiCheol. Investigation on effects of enlarged pipe rupture size and air penetration timing in real-scale experiment of siphon breaker[J]. Nuclear Engineering and Technology, 2014, 46(4): 817-824.

[12] Naoki Tajima, Michio Sadatom, Akimaro Kawahara.Dredging of sediment in dam utilizing siphon age with sliding outer tube[J]. Japanese Journal of Multiphase Flow,2010, 241: 145-148.

[13] Yan Tao, Chen Li, Xu Min. Siphon pipeline resistance characteristic research[J]. Procedia Engineering, 2012, 32(28):53-58.

[14] 熊曉亮. 高揚(yáng)程虹吸排水合理管徑數(shù)值模擬[D]. 杭州:浙江大學(xué),2014.Xiong Xiaoliang. Numerical Simulation Research of pipe Diameter Selection in High-lift Siphon Drainage[D].Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)

[15] 馬俊廷. 虹吸式進(jìn)水口在寒冷地區(qū)水電站的應(yīng)用[J]. 小水電,2013,69(1):13-16.Ma Junting. Application of siphon inlet in hydropower station in cold area[J]. Small Hydro Power, 2013, 69(1):13-16. (in Chinese with English abstract)

[16] 徐力群,賈凡,徐瓊,等. 虹吸管與輻射井相結(jié)合的尾礦壩排滲系統(tǒng)排滲效果分析[J]. 水電能源科學(xué),2014,32(9):94-97,74.Xu Liqun, Jia Fan, Xu Qiong, et al. Analysis of seepage effect of tailings dam seepage system combined with siphon pipe and radiation well[J]. Water Resources and Power, 2014,32(9): 94-97, 74. (in Chinese with English abstract)

[17] 許史,李琳,邱秀云,等. 長(zhǎng)距離虹吸管輸水試驗(yàn)研究初探[J]. 中國(guó)農(nóng)村水利水電,2010,3:70-72.Xu Shi, Li Lin, Qiu Xiuyun, et al. Experimental study on long distance siphon water conveyance[J]. China Rural Water and Hydropower, 2010, 3: 70-72. (in Chinese with English abstract)

[18] 李琳,邱秀云,許史,等. 長(zhǎng)距離虹吸管道輸水水力學(xué)模型試驗(yàn)研究[J]. 南水北調(diào)與水利科技,2010,8(3):106-109.Li Lin, Qiu Xiuyun, Xu Shi, et al. Study on hydrodynamic model test of long distance siphon pipe transportation[J].South-to-North Water Transfers and Water Science &Technology, 2010, 8(3): 106-109. (in Chinese with English abstract)

[19] 譚義海,李琳,邱秀云. 真空有壓管道內(nèi)偽空化水流試驗(yàn)研究[J].中國(guó)農(nóng)村水利水電,2015,(10):100-103.Tan Yihai, Li Lin, Qiu Xiuyun. Pseudo cavitation flow test in vacuum pressure pipeline[J]. China Rural Water and Hydropower, 2015, (10): 100-103. (in Chinese with English abstract)

[20] 張小瑩,李琳,張圣凱. 基于實(shí)驗(yàn)?zāi)P偷暮缥艿浪畾鈨上嗔鲃?dòng)特性研究[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,38(3):246-250.Zhang Xiaoying, Li Lin, Zhang Shengkai. Study on water-gas two-phase flow characteristics of siphon pipeline based on experimental model[J]. Journal of Xinjiang Agricultural University, 2015, 38(3): 246-250. (in Chinese with English abstract)

[21] 張小瑩,李琳,王夢(mèng)婷,等. 虹吸管氣液兩相流過(guò)流能力影響因素分析[J]. 水電能源科學(xué),2015,33(9):90-94.Zhang Xiaoying, Li Lin, Wang Mengting, et al. Analysis of influencing factors on gas-liquid two-phase flow capacity of siphon[J]. Water Resources and Power, 2015, 33(9): 90-94.(in Chinese with English abstract)

[22] 張小瑩,李琳,王夢(mèng)婷,等. 真空管道水力特性試驗(yàn)研究[J]. 水力發(fā)電,2015,41(11):123-126.Zhang Xiaoying, Li Lin, Wang Mengting, et al.Experimental study on hydraulic characteristics of vacuum pipelines[J].Water Power, 2015, 41(11): 123-126. (in Chinese with English abstract)

[23] 張小瑩,李琳,王夢(mèng)婷,等. 虹吸管氣液兩相流動(dòng)壓降特性試驗(yàn)[J]. 水利水電技術(shù),2015,46(11):115-120.Zhang Xiaoying, Li Lin, Wang Mengting, et al. Physical characteristics of siphon gas-liquid two-phase flow[J]. Water Resources and Hydropower Engineering, 2015, 46(11): 115-120. (in Chinese with English abstract)

[24] 張小瑩,李琳,王夢(mèng)婷,等. 虹吸管道水氣兩相流動(dòng)過(guò)流能力試驗(yàn)分析[J]. 水資源與水工程學(xué)報(bào),2015,26(6):142-145,150.Zhang Xiaoying, Li Lin, Wang Mengting, et al. Experimental analysis of water-gas two-phase flow over-current in siphon pipelines[J]. Journal of Water Resources and Water Engineering, 2015, 26(6): 142-145, 150. (in Chinese with English abstract)

[25] 王夢(mèng)婷,李琳,譚義海,等. 正虹吸管道水力特性試驗(yàn)研究[J]. 水電能源科學(xué),2014,32(12):87-90,98.Wang Mengting, Li Lin, Tan Yihai, et al. Experimental study on hydraulic characteristics of positive siphon pipe[J]. Water Resources and Power, 2014, 32(12): 87-90, 98. (in Chinese with English abstract)

[26] Barnea D, ShohamD. Flow pattern transitions for gas-liquid flow in horizontal and inclined pipes: Comparison of experimental data with theory[J]. Multiphase Flow, 1980,39(6): 217-225.

[27] Wiesman J, Kang S Y. Flow pattern transition in vertical and upwardly inclined lines[J]. Multiphase Flow, 1981, 42(7):271-291.

[28] Barnea D, Shohamo O, Tatel Y. Gas-liquid flow in inclined tubes: Flow pattern transitions for upward flow[J].Chemical Engineering Science, 1985, 40(1): 131-136.

[29] Barnea D A. Unified model for predicting flow pattern transition for whole ranges of pipe inclinations[J]. Multiphase Flow, 1987, 13(1): 1-12.

[30] 黨民. 水平和傾斜管道中氣液兩相流流型的在線識(shí)別及數(shù)據(jù)采集研究[D]. 成都:西南石油學(xué)院,2004.Dang Min. On-Line Identification and Data Acquisition of Gas-Liquid Two-Phase Flow Patterns in Horizontal and Inclined Pipelines[D]. Chengdu: Southwest Petroleum Institute, 2004. (in Chinese with English abstract)

[31] 李銀朋. 向上傾斜管道內(nèi)氣液兩相流的實(shí)驗(yàn)研究[D]. 大慶:大慶石油學(xué)院,2010.Li Yinpeng. Experimental Study on Gas-Liquid Two-Phase Flow in Upwardly Inclined Pipeline[D]. Daqing: Daqing Petroleum Institute, 2010. (in Chinese with English abstract)

[32] 周云龍,趙建偉,洪文鵬,等. 傾斜下降管內(nèi)氣(汽)-液兩相流流型和摩擦阻力試驗(yàn)研究[J]. 核科學(xué)與工程,1996,16(1):9-17.Zhou Yunlong, Zhao Jianwei, Hong Wenpeng, et al.Experimental study on flow pattern and frictional resistance of gas (vapor)-liquid two-phase flow in inclined downcomer[J]. Nuclear Science and Engineering, 1996, 16(1): 9-17. (in Chinese with English abstract)

[33] 周云龍,趙建偉,衣曉青,等. 傾斜下降管內(nèi)氣(汽)-液兩相流動(dòng)特性研究[J]. 東北電力學(xué)院學(xué)報(bào),2010,15(3):14-24.Zhou Yunlong, Zhao Jianwei, Yi Xiaoqing,et al. Study on gas-vapor two-phase flow characteristics in inclined downcomer[J]. Journal of Northeast Dianli University, 2010,15(3): 14-24. (in Chinese with English abstract)

[34] 王夢(mèng)婷. 真空管道氣液兩相流動(dòng)水力特性試驗(yàn)研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2015.Wang Mengting. Experimental Study on Hydraulic Characteristic for the Gas-Liquid Two-Phase Flow of Vacuum Pipe[D]. Urumqi: Xinjiang Agricultural University,2015. (in Chinese with English abstract)

Experiment studies on impact of siphon gradient on gas-liquid two-phase flow characteristic

Zhang Xiaoying1,Li Lin1※,Jin Sheng2,Tan Yihai1,Wu Yangfeng1
(1.College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi830052,China;2.College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi830052,China)

With the constant development and application of a large number of surface water resources, the Karez type underground reservoir has become the key of the water conservancy project in Xinjiang in recent years. The siphon pipeline with longer distance and larger vacuum is the most important part of the Karez type underground reservoir. This study explored the impact of gradient change on the hydraulic characteristics of siphon pipeline with inclined arrangement. A total of 11 gradients were designed at the installation height of 4 and 6 m. The waterhead changed from 5 to 135 cm. The experiment was carried out in organic glass pipes. The pipe length was 18.15 m. The observations and measurements included the gas-liquid two-phase flow phenomenon, void fracture, kinematic velocity of bubble, discharge capacity and total head loss inside the siphon. The experimental result shows that in the flat slope pipe, air bubbles were rich with diameter about 4-5 mm in the head of the pipe and the bubbles in diameter of 1 mm were on the wall of pipe. During the movement, the bubbles was clustered into big bubbles and moved in the different directions from the flow. In inverse slope pipe, many small bubbles were on the wall but the air movement direction was same with the flow direction. Different the flat slope, the airbag was concentrated near downstream when it moved downstream. Different from inverse slope pipe, the airbag moved upstream slowly in the opposite direction from the flow direction. With the gradual increasing of gradient, the fake cavitation phenomenon inside the pipe weakened little by little, the volume of bubble or airbag diminished and the quantity dropped off.With the gradual increasing of the gradient, the void fracture in the pipe diminished, the kinetic velocity of bubble accelerated,the water delivery flow in the siphon strengthened gradually, the total head loss also increased gradually, the maximum flow increasing percentage was 23.8% and the total head loss increased by 42.86%. When the gas rate was larger than 11%, flow type in pipe was transitional and air mass type and the effects of gradient on flow rate could not be ignored. When the gas rate was smaller than 30%, the siphon in the pipeline was unstable. The gas-liquid two-phase flow phenomenon induced by the gradient change under such the conditions above made the effect of gas rate on flow resistance different from the liquid phase flow. Thus, based on the experimental data at installation height of 4 m on inverse slope, a formula for flow rate estimation was derived under the condition of transitional and air mass flow with gas rate of 11%-30% on gradient of 1/60-1/10. The flow rate formula was validated by using data at the installation height of 6 m. The validation results showed the relative error of measured and calculated flow rate in the inverse slope pipe was within 6% and it in the positive slope pipe was within 7%. It suggests that the formula is reliable. The results above provide valuable information for the pipe arrangement in the practical engineering.

siphon pipeline; gradient; flow rate; head loss; gas rate; dimensional analysis

10.11975/j.issn.1002-6819.2017.14.017

TV134+.2; TV672+.2

A

1002-6819(2017)-14-0122-08

張小瑩,李 琳,靳 晟,譚義海,吳洋鋒. 虹吸管道坡度對(duì)氣液兩相流動(dòng)特性影響的試驗(yàn)研究[J],農(nóng)業(yè)工程學(xué)報(bào),2017.[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):122-129.

10.11975/j.issn.1002-6819.2017.14.017 http://www.tcsae.org

Zhang Xiaoying, Li Lin, Jin Sheng, Tan Yihai, Wu Yangfeng. Experiment studies on impact of siphon gradient on gas-liquid two-phase flow characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017.(in Chinese with English abstract)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 122-129. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.017 http://www.tcsae.org

2017-01-26

2017-06-10

國(guó)家自然科學(xué)基金資助項(xiàng)目(51369031)

張小瑩,江蘇徐州人,博士生,從事水工水力學(xué)研究。烏魯木齊新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,830052。Email:543485711@qq.com

※通信作者:李 琳,山東青島人,博士,教授,從事水力學(xué)及河流動(dòng)力學(xué)研究。烏魯木齊 新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,830052。

Email:lilin_xjau@163.com

猜你喜歡
管內(nèi)坡度氣泡
傾斜管內(nèi)汽水兩相流動(dòng)不穩(wěn)定特性的數(shù)值分析
SIAU詩(shī)杭便攜式氣泡水杯
浮法玻璃氣泡的預(yù)防和控制對(duì)策
脫硫廢水濃縮系統(tǒng)中煙氣蒸發(fā)器的管內(nèi)模擬
碳?xì)淙剂瞎軆?nèi)氧化結(jié)焦影響規(guī)律研究
Aqueducts
放緩坡度 因勢(shì)利導(dǎo) 激發(fā)潛能——第二學(xué)段自主習(xí)作教學(xué)的有效嘗試
大坡度滑索牽引索失效分析及解決措施研究
冰凍氣泡
關(guān)于場(chǎng)車(chē)規(guī)程中坡度檢驗(yàn)要求的幾點(diǎn)思考
凤翔县| 洪泽县| 什邡市| 西昌市| 上饶市| 莎车县| 南阳市| 富民县| 河北省| 龙口市| 金寨县| 深圳市| 安岳县| 石嘴山市| 长丰县| 响水县| 乌拉特中旗| 长泰县| 西青区| 吴堡县| 贞丰县| 武宣县| 安达市| 平山县| 平江县| 杭锦旗| 罗平县| 玉田县| 镇平县| 德江县| 赤峰市| 泰和县| 宾川县| 德惠市| 夏邑县| 汶川县| 南充市| 新源县| 罗定市| 绍兴县| 商都县|