国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

模擬水位下降與刈割對高寒濕地土壤氨氧化與反硝化微生物的影響

2017-12-07 10:33孫翼飛沈菊培張翠景孫書存賀紀正
關鍵詞:若爾蓋硝態(tài)硝化

孫翼飛 ,沈菊培 *,張翠景 ,孫書存 ,賀紀正

模擬水位下降與刈割對高寒濕地土壤氨氧化與反硝化微生物的影響

孫翼飛1,2,沈菊培1,2*,張翠景1,2,孫書存3,賀紀正1,2

(1.中國科學院生態(tài)環(huán)境研究中心,北京 100085;2.中國科學院大學,北京 100049;3.南京大學生命科學學院,南京 210023)

濕地土壤是溫室氣體重要的源和匯,認識濕地生態(tài)系統(tǒng)氮循環(huán)過程有助于預測氮循環(huán)對未來氣候變化的響應與反饋機制。為探討硝化作用和反硝化作用對土壤水位變化和刈割的響應機制,依托于2013年在青藏高原東部若爾蓋泥炭地南部濕地設置的野外實驗,通過在樣地周圍挖掘不同深度的排水溝模擬水位下降,結(jié)合刈割處理,研究水位下降和刈割對泥炭地土壤氨氧化古菌(Ammonia-oxidizing archaea,AOA)、氨氧化細菌(Ammonia-oxidizing bacteria,AOB)和反硝化細菌(Denitrifying bacteria)豐度的影響。2014年7月取樣分析結(jié)果表明:水位下降顯著降低土壤含水量,水位下降與刈割均顯著降低土壤呼吸;氨氧化及反硝化微生物功能基因豐度在各處理間無顯著差異,但刈割及其與水位下降的交互作用顯著影響AOA-amoA與AOB-amoA基因豐度比。刈割處理顯著增加AOB-amoA基因相對豐度,但對AOA-amoA基因豐度無顯著影響,揭示AOB可能在濕地土壤硝化過程中占主導地位。土壤nirS基因豐度顯著高于nirK基因,表明nirS基因?qū)λ幌陆导柏赘畹捻憫鼮槊舾小kS著土壤水位的下降,刈割促進了由AOB主導的氨氧化過程,而反硝化微生物豐度的增加削減了氨氧化產(chǎn)物硝酸鹽的積累,繼而降低了土壤硝酸鹽含量。

水位下降;氨氧化細菌;氨氧化古菌;反硝化微生物;若爾蓋濕地

關于外界環(huán)境變化對若爾蓋濕地土壤氮素的影響已開展了一些研究。例如:李麗等[13]研究表明泥炭地排水、地下水位降低是土壤氮素流失的重要原因;趙寧等[14]發(fā)現(xiàn)輕度放牧顯著增加了土壤硝化速率和凈礦化速率。土壤微生物豐度與群落結(jié)構(gòu)對濕地水位下降、土壤養(yǎng)分含量變化響應較為敏感[15-16]。有研究表明,表層土壤中古菌的豐度隨水位下降而下降[15],而水位變化和刈割通過影響土壤中氧氣的擴散速率和氧化還原電位以及減少土壤碳源的輸入影響土壤產(chǎn)甲烷菌和甲烷氧化菌的生長。關于功能微生物對水位下降的響應大多集中在與碳循環(huán)相關的產(chǎn)甲烷菌和甲烷氧化菌[17-18]。然而,關于參與氮循環(huán)的功能微生物對環(huán)境因子的響應機制尚不明確。有研究表明若爾蓋濕地AOA多樣性指數(shù)較低,且與土壤銨態(tài)氮和硝態(tài)氮含量顯著相關[19];另有研究表明土壤水分可能是影響氨氧化和反硝化微生物群落的重要因素[20]。為探究濕地土壤氮循環(huán)功能微生物對環(huán)境干擾的響應機制,以青藏高原東部若爾蓋濕地南部的泥炭濕地為試驗樣地,以在樣地周邊挖掘不同深度的排水溝來模擬水位下降,用刈割模擬土地管理方式的變化,研究人類活動干擾對土壤理化性質(zhì)、微生物活性、氨氧化(AOA-amoA和AOB-amoA)和反硝化(nirK和nirS)功能微生物豐度的影響。

1 材料與方法

1.1 實驗樣地與設計

試驗樣地位于四川省阿壩州紅原縣青藏高原東部若爾蓋濕地南部的高原,坐標 102°33′E、32°48′N,海拔3561 m。本研究區(qū)域分布在若爾蓋高寒地區(qū)季節(jié)性積水區(qū)的高寒草甸濕地[21]。該地區(qū)泥炭層厚度在0.3~10 m之間,干物質(zhì)積累平均速率為0.03 g·m-2·a-1[22]。試驗前土壤基本理化性質(zhì)如下:土壤pH值在6.6~7.0之間[23],總碳(Total carbon,TC)平均含量為 58.6 mg·L-1,總氮(Total nitrogen,TN)及可溶性有機碳(Dissolved organic carbon,DOC)含量分別為 1.4、25.7 mg·L-1[24]。研究樣地植被類型屬于沼澤草甸,優(yōu)勢植物種包括發(fā)草、穗三毛、鵝絨萎陵菜、高山嵩草等。土壤為泥炭土,年均溫為1.1℃,年均降水量為752 mm,80%以上降水集中在5—9月[25]。

為評估水位下降和刈割對土壤化學性質(zhì)和土壤微生物的影響,我們采用了配對裂區(qū)設計,通過在樣地周圍挖掘不同深度的排水溝,來模擬土壤地下水位下降,其寬度為0.5 m,共設計2個梯度,分別為20 cm(樣地周圍挖掘20 cm排水溝)及50 cm(樣地周圍挖掘50 cm排水溝),用于模擬淺水位(S)和深水位(H)。樣地排水溝與一條240 m長、0.5 m寬、1 m深的主排水溝相連,排水樣地隨機分布在距主排水溝兩側(cè)30 m處;以不挖排水溝的樣地作為對照,且隨機分布在兩側(cè)排水樣地外30 m處,相鄰樣地間隔30 m,每個設計6個重復,共18個6 m×6 m的區(qū)組;每個區(qū)組有2個2 m×2 m的亞區(qū),分別為刈割(M)與對照處理,每個亞區(qū)間隔3 m且距樣地邊緣1 m。因此,本樣地共6個處理,即正常水位下不刈割(CK)及刈割處理(M),淺水位不刈割(S),淺水位刈割(SM),深水位不刈割(H)及深水位刈割(HM)處理,每個處理6個重復,共36個亞區(qū)。同時,每個亞區(qū)通過刈割保持8 cm植物群落,以不刈割作為對照。樣地具體設置如圖1,該模擬試驗開始于2013年5月。

圖1 試驗樣地設置示意圖Figure 1 Experimental site design

土壤樣品采集于2014年7月,每個亞區(qū)用直徑5 cm的土鉆隨機取3個樣品混合,采集0~20 cm土壤樣品。所有的樣品均在3 d內(nèi)運到實驗室。土壤樣品通過2 mm篩去除草根和石塊,一部分新鮮土壤儲存在4℃用于分析基本理化性質(zhì),另一部分經(jīng)冷凍干燥后存儲在-80℃用于分子生物學指標分析。

1.2 土壤理化性質(zhì)和微生物活性測定

在105℃烘箱中烘干12 h來測量土壤含水量(Soil moisture,SM)。采用 pH 計,以土水比為 1∶2.5(g∶mL)來測定土壤 pH 值(Delta 320,Mettler-Toledo Instruments Co.,Shanghai,China)。土壤銨態(tài)氮(NH+4-N)和硝態(tài)氮(NO-3-N)用1 mol·L-1氯化鉀提取(土壤∶水=1 g∶5 mL),用連續(xù)流動分析儀(SAN++,Skalar,Holand)測定濃度。

通過構(gòu)建偏最小二乘(PLS)、支持向量回歸(SVR)、人工神經(jīng)網(wǎng)絡(ANN)、主成分分析-支持向量回歸(PCA-SVR)、主成分分析-人工神經(jīng)網(wǎng)絡(PCA-ANN)5種模型對造紙廢水處理過程中出水化學需氧量(COD)和出水懸浮固形物(SS)濃度進行預測。計算結(jié)果表明,非線性SVR和ANN建模方法的預測效果要優(yōu)于線性PLS的預測效果;在5種模型中,基于PCA降維模型的軟測量方法可以獲得更好的預測效果,且PCA-ANN的預測效果最優(yōu)??紤]到PCA-ANN與PCA-SVR 2種模型的預測精度受各自模型參數(shù)的影響較大,本課題組下一步將研究模型參數(shù)的選擇對模型預測精度的影響。

硝化潛勢(Potential nitrification rate,PNR)的測量使用氯酸鹽抑制方法:將5.0 g新鮮土壤加入到50 mL離心管中,并向其中加入20 mL磷酸緩沖溶液(PBS)(NaCl 8 g·L-1,KCl 0.2 g·L-1,Na2HPO41.44 g·L-1,KH2PO40.24 g·L-1,pH 7.4),內(nèi)含 2.64 mg 1 mmol·L-1(NH4)2SO4和 0.024 5 mg 50 mg·L-1KClO3來抑制亞硝酸鹽(NO-2)氧化為硝酸鹽(NO-3)。土樣于25℃條件下,在搖床中以180 r·min-1的速度培養(yǎng)24 h后用5 mL 2 mol·L-1氯化鉀提取亞硝酸鹽(NO-2),含有 NO-2的上清液以N-(1-萘胺)乙二胺鹽酸鹽顯色,用分光光度法在530 nm波長下測定濃度[26]。

土壤異養(yǎng)呼吸(Heterotrophic respiration,Rh)的測定方法如下:將10 g新鮮土壤加入到120 mL血清瓶中,恒溫培養(yǎng)箱25℃條件下培養(yǎng)24 h,收集二氧化碳氣體(CO2)并用氣相色譜儀(Agilent 7890A GC System)測定濃度[27]。

1.3 土壤DNA提取和實時定量PCR測定

稱取0.25 g凍土,按照PowerSoilTMTotal DNA Isolation 試劑盒(Mo Bio Laboratories,Inc.,San Diego,CA,USA)提供的方法提取土壤總DNA。采用Nano-Drop分光光度計(NanoDrop Technologies,USA)測定DNA純度和濃度。將DNA樣品稀釋10倍后用于分子實驗的模板,并存儲于-20℃。采用iCycler iQ5儀器(Bio-Rad Laboratories,Inc.,USA)進行 AOA-amoA、AOB-amoA、nirK和nirS基因的定量PCR實驗,使用的引物和反應條件在表1中列出。

功能基因的定量測定在iCycler iQ5儀器(Bio-Rad Laboratories,Inc.,USA)上完成,用 SYBR GREEN作為熒光標記,反應體系為 25 μL,包含 12.5 μL 2 x SYBR Premix Ex TaqTM(Takara Biotechnology,Japan),每個引物 0.5 μL(10 μmol·L-1)和 2 μL 的 DNA 模板(1~10 ng),其他用滅菌水補足。使用10倍連續(xù)稀釋的質(zhì)粒作為模板繪制標準曲線,所有基因的擴增效率在85%~100%之間,R2為0.99。利用溶解曲線和瓊脂糖凝膠電泳檢測擴增產(chǎn)物的特異性。

1.4 統(tǒng)計分析

R 3.3.2及SPSS19軟件被用來進行統(tǒng)計分析,當P<0.05時,差異顯著。使用重復試驗的雙因素方差分析(Duncan檢驗)評估處理(模擬水位下降、刈割及二者交互作用)對土壤化學性質(zhì)、微生物活性及功能微生物豐度的影響。采用Spearman相關分析來揭示土壤化學性質(zhì)與土壤微生物活性及功能基因豐度間的相關性。響應比率(Response ratio)用來分析水位下降與刈割對土壤微生物的影響,在95%的置信區(qū)間下,平均值與零重疊表示處理對土壤微生物無顯著影響,平均值不與零重疊表示處理對土壤微生物影響顯著[32]。

表1 PCR所用的引物序列和反應條件Table 1 Primer sequences and reaction conditions used for PCR

2 結(jié)果與分析

2.1 模擬水位下降與刈割對土壤化學性質(zhì)和微生物活性的影響

模擬水位下降與刈割對土壤化學性質(zhì)和微生物活性的影響見表2和表3。不論是否刈割,土壤含水量隨地下水位下降顯著降低,土壤含水量在對照處理(CK)中最高,在深水位處理中最低。水位下降顯著增加了土壤pH值,且同一水位下刈割處理的土壤pH值均顯著低于對照組;水位下降與刈割對土壤硝態(tài)氮含量有顯著的交互作用,硝態(tài)氮含量在對照處理中最高,在深水位處理中最低。水位下降與刈割均顯著影響了土壤呼吸,土壤呼吸在對照處理中最高,深水位與刈割二者交互作用處理中最低。水位下降和刈割對土壤硝化潛勢和銨態(tài)氮均沒有顯著影響。Spearman相關分析發(fā)現(xiàn):土壤含水量與土壤呼吸顯著正相關(ρ=0.549,P=0.004)。

表2 不同地下水位下刈割處理土壤化學性質(zhì)與微生物活性Table 2 Effects of mowing across different water table on soil chemical index and microbial activities

表3 水位下降與刈割對土壤理化性質(zhì)和微生物活性的雙因素方差檢驗Table 3 Two-way ANOVA(P value)on physico chemical properties and microbial activities across all the treatments

2.2 模擬水位下降與刈割對氨氧化和反硝化微生物豐度的影響

模擬水位下降與刈割對土壤氨氧化(AOA-amoA、AOB-amoA)和反硝化微生物(nirK、nirS)功能基因豐度的影響見圖2??傮w上講,AOA-amoA基因豐度高于AOB-amoA基因豐度,nirS基因豐度高于nirK基因豐度,且各基因豐度在處理間無顯著差異。AOA-amoA基因豐度范圍為每克干土(0.43~1.05)×106拷貝數(shù),AOB-amoA基因豐度范圍為(0.11~1.33)×105拷貝數(shù),nirK基因豐度范圍為(0.77~4.44)×105拷貝數(shù),nirS基因豐度范圍為(1.36~5.74)×108拷貝數(shù)。刈割、水位下降與刈割二者交互作用對AOA-amoA與AOB-amoA基因豐度比有顯著影響(P=0.016;P=0.045)(圖 2e),對 nirK 與 nirS 基因豐度比、氨氧化與反硝化微生物豐度比無顯著影響。

進一步分析各基因相對豐度對水位下降及刈割的響應敏感度,發(fā)現(xiàn)刈割顯著增加了AOB-amoA基因相對豐度(圖3a)。Spearman相關分析發(fā)現(xiàn),AOA-amoA與AOB-amoA基因豐度比與銨態(tài)氮含量顯著負相關(ρ=-0.604,P<0.001),與土壤含水量(ρ=0.406,P=0.044)、硝態(tài)氮含量(ρ=0.531,P=0.006)顯著正相關,nirS基因豐度與硝態(tài)氮含量顯著負相關(ρ=-0.403,P=0.046)。

3 討論

3.1 模擬水位下降與刈割對土壤化學性質(zhì)和微生物活性的影響

異養(yǎng)呼吸是指土壤微生物分解有機質(zhì)釋放CO2的過程[33],是泥炭濕地有機碳儲備降低的影響因素之一,主要與土壤水分和有機質(zhì)含量顯著相關[34]。土壤異養(yǎng)呼吸主要由于土壤有機質(zhì)和植物殘留物的降解,與自養(yǎng)呼吸相比具有更高的水分敏感性[35]。本研究發(fā)現(xiàn)模擬水位下降與刈割均顯著降低了土壤異養(yǎng)呼吸,主要與土壤中可溶性有機碳的降低有關。土壤呼吸與含水量顯著正相關,土壤水分的降低通過影響可溶性有機碳的有效性間接影響土壤呼吸[36-37]。Wu等[11]經(jīng)過為期3年的碳動態(tài)觀測,發(fā)現(xiàn)水位下降顯著促進了土壤可溶性有機碳分解,進而導致該樣地0~20 cm土壤有機碳含量下降了18.5%。除此之外,土壤溫度也是影響土壤呼吸強度的因素之一。有研究表明,排水引起的地下水位下降,致使土壤有機質(zhì)暴露于更多的有氧環(huán)境中,進而加速有機質(zhì)氧化分解,導致泥炭層收縮,而泥炭厚度的降低則會引起土壤有機碳儲量的降低[38]。此外,刈割所導致的凋落物輸入減少,可能會引起可降解基質(zhì)減少[39],同時也會降低土壤微生物生物量[40],進而降低土壤異養(yǎng)呼吸??梢姡幌陆蹬c刈割主要通過影響微生物生長所需的底物可利用性進而影響土壤異養(yǎng)呼吸。有研究表明,微生物活性隨土壤含水量的降低而降低,進而影響土壤呼吸,而隨著時間推移微生物活性降低逐漸減緩,趨于逐漸適應干旱脅迫[41]。本研究采樣時距樣地設置僅為1年,而持續(xù)水位下降條件下土壤呼吸的變化情況還有待進一步研究。

水位下降與刈割二者交互作用對土壤硝態(tài)氮含量有顯著影響,與其他的研究結(jié)果一致[42-43]。有研究指出,水位下降可以促進土壤氮素礦化,從而促進硝化與反硝化過程,增加N2O的釋放量;且高寒濕地水位在-2 cm至-20 cm之間有利于硝化和反硝化的共同進行,產(chǎn)生較多的N2O,進而顯著降低土壤硝態(tài)氮含量[43]。當水位進一步下降時,則不利于反硝化細菌活動,硝態(tài)氮含量應有所增加。然而,本研究中硝態(tài)氮含量持續(xù)降低,究其原因,可能是在有氧的條件下,發(fā)生了氨氧化微生物的反硝化作用,將亞硝酸鹽還原為N2O,進而顯著降低土壤中硝態(tài)氮含量[44]。

3.2 模擬水位下降與刈割對AOA-amoA、AOB-amoA、nirK和nirS基因豐度的影響

模擬水位下降顯著降低土壤含水量,水的可利用性會顯著影響土壤養(yǎng)分循環(huán)[45]。有人在對若爾蓋濕地進行研究時發(fā)現(xiàn),土壤水分含量與土壤有機碳、氮含量正相關[46],而土壤碳、氮含量被認為是土壤微生物生長的主要限制因素[47]。本研究中模擬水位下降與刈割均對土壤氨氧化微生物基因豐度無顯著影響,但刈割、刈割與水位下降二者交互作用對AOA-amoA與AOB-amoA基因豐度比有顯著影響。AOA-amoA與AOB-amoA基因豐度比與銨態(tài)氮含量負相關,且AOB-amoA基因的相對豐度對刈割顯著響應,說明AOB可能在濕地土壤硝化過程中占主導作用。AOB-amoA基因的相對豐度在深水位刈割處理中最高,主要與水位下降所引起的土壤含水量顯著降低有關,AOB是好氧微生物,水分通過控制土壤中O2的擴散而間接影響好氧微生物的活性[48];同時,刈割降低了地上部分覆蓋面積,提高土壤通氣性,減小O2的擴散阻力,進而促進好氧微生物的生長。

通常情況下,AOB-amoA基因相對豐度的增加會提高反硝化作用的底物硝酸鹽含量,進而促進由反硝化微生物驅(qū)動的反硝化作用,促進硝酸鹽被還原為N2O或N2,導致氮素流失。然而,本研究中反硝化功能基因nirK和nirS豐度無顯著變化,但水位下降與刈割二者交互作用顯著降低了土壤硝態(tài)氮含量,說明有其他途徑導致了土壤硝酸鹽含量的降低。有研究表明,氨氧化微生物在有氧條件下,會將亞硝酸鹽還原為一氧化氮(NO),即發(fā)生氨氧化微生物的反硝化作用,且AOB是在有氧的狀態(tài)下發(fā)生氨氧化微生物反硝化作用的主要驅(qū)動者[42]。本研究中AOB-amoA基因相對豐度的增加印證了這一觀點。

圖2 模擬水位下降與刈割對各基因豐度的影響Figure 2 Effects of mowing on abundances of functional genes across different treatments

圖3 氨氧化與反硝化基因豐度對刈割(a)與模擬水位下降(b)的響應Figure 3 Response ratio(RR)of relative abundance of functional genes to mowing(a)and water table lowing-dwon(b)

本研究中nirS基因豐度顯著高于nirK,與其他研究結(jié)果相一致[49]。nirS基因豐度與土壤硝態(tài)氮含量顯著負相關,說明nirS對水位下降及刈割的響應更敏感,在反硝化過程中可能起著比nirK更為重要的作用。這主要與土壤含水量的顯著變化有關。有研究表明,以nirS基因為代表的反硝化微生物群落組成對水分變化響應顯著[50]??梢?,水分條件是影響土壤反硝化過程功能微生物基因豐度的關鍵因子。

4 結(jié)論

(1)土壤水位下降顯著降低土壤含水量,限制了可溶性有機碳的有效性,從而間接影響微生物生長所需的底物和能量來源,降低土壤異養(yǎng)呼吸。

(2)水位下降和刈割對氨氧化微生物與反硝化細菌基因豐度無顯著影響,但AOB-amoA基因相對豐度對刈割顯著響應,表明AOB可能在濕地土壤硝化過程中占主導作用。

(3)隨著土壤水位的下降,刈割促進了由AOB主導的氨氧化過程,而反硝化微生物豐度的增加削減了氨氧化產(chǎn)物硝酸鹽的積累,繼而降低了土壤硝酸鹽的含量。

[1]Armas C,Kim J H,Bleby T M,et al.The effect of hydraulic lift on organic matter decomposition,soil nitrogen cycling,and nitrogen acquisition by a grass species[J].Oecologia,2012,168(1):11-22.

[2]Shuang X,Guo R Q,Ning W,et al.Current status and future prospects of Zoige marsh in eastern Qinghai-Tibet Plateau[J].Ecological Engineering,2009,35(4):553-562.

[3]Molina V,Ulloa O,Farías L,et al.Ammonia-oxidizing beta-proteobacteria from the oxygen minimum zone off northern Chile[J].Applied&Environmental Microbiology,2007,73(11):3547.

[4]賀紀正,張麗梅.氨氧化微生物生態(tài)學與氮循環(huán)研究進展[J].生態(tài)學報,2009,29(1):406-415.

HE Ji-zheng,ZHANG Li-mei.Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J].Acta Ecologica Sinica,2009,29(1):406-415.

[5]Kowalchuk G A,Stephen J R.Ammonia-oxidizing bacteria:A model for molecular microbial ecology[J].Annual Review of Microbiology,2001,55(1):485.

[6]Leininger S,Urich T,Schloter M,et al.Archaea predominate among ammonia-oxidizing prokaryotes in soils[J].Nature,2006,442(7104):806-809.

[7]Morales S E,Cosart T,Holben W E.Bacterial gene abundances as indicators of greenhouse gas emission in soils[J].The ISME Journal,2010,4(6):799.

[8]Szukics U,Hackl E,Zechmeister-Boltenstern S,et al.Contrasting response of two forest soils to nitrogen input:Rapidly altered NO and N2O emissions and nirK abundance[J].Biology&Fertility of Soils,2009,45(8):855-863.

[9]Bao Q,Ju X,Gao B,et al.Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil[J].Soil Science Society of America Journal,2012,76(1):130.

[10]Xiang S,Guo R,Wu N,et al.Current status and future prospects of Zoige marsh in eastern Qinghai-Tibet Plateau[J].Ecological Engineering,2009,35(4):553-562.

[11]Wu X,Cao R,Wei X,et al.Soil drainage facilitates earthworm invasion and subsequent carbon loss from peatland soil[J].Journal of Applied Ecology,2017,DOI:10.1111/1365-2664.12894

[12]Danevcic T,Mandic-Mulec I,Stres B,et al.Emissions of CO2,CH4and N2O from southern European peatlands[J].Soil Biology&Biochemistry,2010,42(9):1437-1446.

[13]李 麗,高俊琴,雷光春,等.若爾蓋不同地下水位泥炭濕地土壤有機碳和全氮分布規(guī)律[J].生態(tài)學雜志,2011,30(11):2449-2455.

ZHANG Li,GAO Jun-qin,LEI Guang-chun,et al.Distribution patterns of soil organic carbon and total nitrogen in Zoige peatland with different ground water table[J].Chinese Journal of Ecology,2011,30(11):2449-2455.

[14]趙 寧,張洪軒,王若夢,等.放牧對若爾蓋高寒草甸土壤氮礦化及其溫度敏感性的影響[J].生態(tài)學報,2014,34(15):4234-4241.

ZHAO Ning,ZHANG Hong-xuan,WANG Ruo-meng,et al.Effect of grazing intensity on temperature sensitivity of soil nitrogen mineralization in Zoige alpine meadow[J].Acta Ecologica Sinica,2014,34(15):4234-4241.

[15]Tian J,Shu C,Chen H,et al.Response of archaeal communities to water regimes under simulated warming and drought conditions in Tibetan Plateau wetlands[J].Journal of Soils and Sediments,2015,15(1):179-188.

[16]Wu L,Su F,Nie Y,et al.Soil cellulase activity and fungal community responses to wetland degradation in the Zoige Plateau,China[J].Journal of Mountain Science,2015,12(2):471-482.

[17]Zhang G,Tian J,Jiang N,et al.Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I[J].Environmental Microbiology,2008,10(7):1850-1860.

[18]Kang H,Jang I,Kim S.Key processes in CH4dynamics in wetlands and possible shifts with climate change[M].Netherlands:Springer,2012:99-114

[19]鄭有坤,王憲斌,辜運富,等.若爾蓋高原濕地土壤氨氧化古菌的多樣性[J].微生物學報,2014,54(9):1090-1096.

ZHENG You-kun,WANG Xian-bin,GU Yun-fu,et al.Diversity of ammonia-oxidizing archaea in Tibetan Zoige plateau wetland[J].Acta Microbiologica Sinica,2014,54(9):1090-1096.

[20]Wu L,Nie Y,Yang Z,et al.Responses of soil inhabiting nitrogen-cycling microbial communities to wetland degradation on the Zoige Plateau,China[J].Journal of Mountain Science,2016,13(12):2192-2204.

[21]蔡倩倩,郭志華,胡啟鵬,等.若爾蓋高寒嵩草草甸濕地不同水分條件下土壤有機碳的垂直分布[J].林業(yè)科學,2013,49(3):9-16.

CAI Qian-qian,GUO Zhi-hua,HU Qi-peng,et al.Vertical distribution of soil organic carbon and carbon storage under different hydrologic conditions in Zoigê alpine Kobresia meadows wetland[J].Scientia Silvae Sinicae,2013,49(3):9-16.

[22]Chen H,Wu N,Yao S P,et al.Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai-Tibetan Plateau[J].Environmental Monitoring and Assessment,2010,164(1/2/3/4):21-28.

[23]Tian J Q,Zhu Y B,Kang X M,et al.Effects of drought on the archaeal community in soil of the Zoige wetlands of the Qinghai-Tibetan plateau[J].European Journal of Soil Biology,2012,52(5):84-90.

[24]Yang G,Chen H,Wu N,et al.Effects of soil warming,rainfall reduction and water table level on CH4emissions from the Zoige peatland in China[J].Soil Biology&Biochemistry,2014,78:83-89.

[25]Zhao J,He K,Peng Y,et al.Net neutral effects of a generalist vertebrate predator on seed production result from simultaneous suppression of plant antagonists and mutualists[J].Basic&Applied Ecology,2016,17(4):344-351.

[26]Kurola J,Salkinoja-Salonen M,Aarnio T,et al.Activity,diversity and population size of ammonia-oxidizing bacteria in oil-contaminated land farming soil[J].FEMS Microbiology Letters,2005,250(1):33-38.

[27]Brown J R,Blankinship J C,Niboyet A,et al.Effects of multiple global change treatments on soil N2O fluxes[J].Biogeochemistry,2012,109(1):85-100.

[28]Touratier F,Legendre L,Vezina A.Model of copepod growth influenced by the food carbon:Nitrogen ratio and concentration,under the hypothesis of strict homeostasis[J].Journal of Plankton Research,1999,21(6):1111-1132.

[29]Rotthauwe J H,Witzel K P,Liesack W.The ammonia monooxygenase structural gene amoA as a functional marker:Molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Applied&Environmental Microbiology,1997,63(12):4704-4712.

[30]Braker G,Ayala-del-Rio H L,Devol A H,et al.Community structure of denitrifiers,bacteria,and archaea along redox gradients in pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase(nirS) and 16S rRNA genes[J].Applied&Environmental Microbiology,2001,67(4):1893-1901.

[31]Avrahami S,Conrad R,Braker G.Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers[J].Applied&Environmental Microbiology,2002,68(11):5685-5692.

[32]Luo Y Q,Hui D F,Zhang D Q.Elevated CO2stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis[J].E-cology,2006,87(1):53-63.

[33]Trumbore S.Carbon respired by terrestrial ecosystems-recent progress and challenges[J].Global Change Biology,2006,12(2):141-153.

[34]朱先進,于貴瑞,王秋鳳,等.典型森林和草地生態(tài)系統(tǒng)呼吸各組分間的相互關系[J].生態(tài)學報,2013,33(21):6925-6934.

ZHU Xian-jin,YU Gui-rui,WANG Qiu-feng,et al.The interaction between components of ecosystem respiration in typical forest and grassland ecosystems[J].Acta Ecologica Sinica,2013,33(21):6925-6934.

[35]Moyano F E,Manzoni S,Chenu C.Responses of soil heterotrophic respiration to moisture availability:An exploration of processes and models[J].Soil Biology&Biochemistry,2013,59:72-85.

[36]Casals P,Romanyà J,Cortina J,et al.CO2efflux from a Mediterranean semi-arid forest soil:I.seasonality and effects of stoniness[J].Biogeochemistry,2000,48(3):283-306.

[37]陳全勝,李凌浩,韓興國,等.水分對土壤呼吸的影響及機理[J].生態(tài)學報,2003,23(5):972-978.

CHEN Quan-sheng,LI Ling-hao,HAN Xing-guo,et al.Effects of water content on soil respiration and the mechanisms[J].Acta Ecological Sinica,2003,23(5):972-978.

[38]周文昌.人類活動對若爾蓋高原泥炭地碳通量和碳儲量的影響[D].北京:中國林業(yè)科學研究院,2015.

ZHOU Wen-chang.Effects of human activities on carbon fluxes and storage in the Zoige peatland of the Qinghai-Tibet Plateau[D].Beijing:Chinese Academy of Forestry,2015.

[39]Arnold K V,Nilsson M,Hanell B,et al.Fluxes of CO2,CH4and N2O from drained organic soils in deciduous forests[J].Soil Biology&Biochemistry,2005,37(6):1059-1071.

[40]Li Y Q,Xu M,Sun O J,et al.Effects of root and litter exclusion on soil CO2efflux and microbial biomass in wet tropical forests[J].Soil Biology&Biochemistry,2004,36(12):2111-2114.

[41]富宏霖,王生榮,韓士杰,等.土壤干濕交替對長白山闊葉紅松林土壤微生物活性與區(qū)系的影響[J].東北林業(yè)大學學報,2009,37(7):80-81.

FU Hong-lin,WANG Sheng-rong,HAN Shi-jie,et al.Influence of wet/dry cycle on soil microbial activity and community flora in broadleaved Korean pine forest in Changbai Mountains[J].Journal of Northeast Forestry University,2009,37(7):80-81.

[42]Goldberg S D,Knorr K H,Blodau C,et al.Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations[J].Global Change Biology,2010,16(1):220-233.

[43]王冬雪,高永恒,安小娟,等.青藏高原高寒濕地溫室氣體釋放對水位變化的響應[J].草業(yè)學報,2016,25(8):27-35.WANG Dong-xue,GAO Yong-heng,AN Xiao-juan,et al.Responses of greenhouse gas emissions to water table fluctuations in an alpine wetland on the Qinghai-Tibetan Plateau[J].Acta Prataculturae Sinica,2016,25(8):27-35.

[44]Wang Q,Zhang L M,Shen J P,et al.Nitrogen fertilizer-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils[J].Biology and Fertility of Soils,2016,52(8):1163-1171.

[45]Singh J S,Kashyap A.Dynamics of viable nitrifier community,N-mineralization and nitrification in seasonally dry tropical forests and savanna[J].Microbiological Research,2006,161(2):169-179.

[46]Tian Y,Xiong M,Song G.Restoration succession of wetland soils and their changes of water and nutrient in Ruoergai Plateau[J].Chinese Journal of Ecology,2005,24(1),21-25.

[47]Kraigher B,Stres B,Hacin J,et al.Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh[J].Soil Biology&Biochemistry,2006,38(9):2762-2771.

[48]章燕平.環(huán)境因素對菜地土壤氮素轉(zhuǎn)化及其生物學特性的影響[D].杭州:浙江大學,2010.

ZHANG Yan-ping.Effects of environmental factors on nitrogen transformation and soil biological characteristics in protected vegetable soils[D].Hangzhou:Zhejiang University,2010.

[49]Ligi T,Truu M,Truu J,et al.Effects of soil chemical characteristics and water regime on denitrification genes(nirS,nirK,and nosZ)abundances in a created riverine wetland complex[J].Ecological Engineering,2014,72:47-55.

[50]劉若萱,賀紀正,張麗梅.稻田土壤不同水分條件下硝化/反硝化作用及其功能微生物的變化特征[J].環(huán)境科學,2014,1(11):4275-4283.

LIU Ruo-xuan,HE Ji-zheng,ZHANG Li-mei.Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil[J].Environmental Science,2014,1(11):4275-4283.

Effects of water table lowering and mowing on soil ammonia oxidizers and denitrifiers in alpine wetlands

SUN Yi-fei1,2,SHEN Ju-pei1,2*,ZHANG Cui-jing1,2,SUN Shu-cun3,HE Ji-zheng1,2
(1.State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.School of Life Sciences,Nanjing University,Nanjing 210023,China)

Wetlands serve as the main sources and sinks of greenhouse gases.Understanding nitrogen cycling in wetlands would greatly help in the assessment of their response and feedback to global climate change.To investigate the effect of water table lowering and mowing on soil nitrification and denitrification in wetlands,a simulated water table lowering via digging drainage ditches at different depths and mowing experiment was set up in the Zoige peatland in the eastern Qinghai-Tibetan Plateau in 2013.The abundances of ammonia-oxidizing archaea,ammonia-oxidizing bacteria,and denitrifying groups were detected using a real-time PCR approach.Results based on the samples taken in July 2014 showed soil moisture decreased significantly with water table lowering.Both water table lowering and mowing significantly decreased soil heterotrophic respiration.The abundances of ammonia oxidizers and denitrifiers did not change under the treatments of water table lowering and mowing,whereas the ratio of abundance of AOA-amoA to AOB-amoA was significantly influenced by both mowingand interaction of mowing and water table lowering.Mowing significantly increased the relative abundance of the AOB-amoA gene but had no influence on that of the AOA-amoA gene,suggesting that the predominant role of AOB in ammonia oxidation.The abundance of nirS gene was higher than that of the nirK gene,indicating that the nirS gene was more sensitive to water table lowering and mowing.With the decline of water table,mowing promoted AOB-driven ammonia oxidation,while higher abundance of denitrifiers mitigated the accumulation of nitrate originated from ammonia oxidation,resulting in low soil nitrate content.

water table lowering;ammonia-oxidizing bacteria(AOB);ammonia-oxidizing archaea(AOA);denitrifiers;Zoige peatland

S154.3

A

1672-2043(2017)11-2356-09

10.11654/jaes.2017-0589

孫翼飛,沈菊培,張翠景,等.模擬水位下降與刈割對高寒濕地土壤氨氧化與反硝化微生物的影響[J].農(nóng)業(yè)環(huán)境科學學報,2017,36(11):2356-2364.SUN Yi-fei,SHEN Ju-pei,ZHANG Cui-jing,et al.Effects of water table lowering and mowing on soil ammonia oxidizers and denitrifiers in alpine wetlands[J].Journal of Agro-Environment Science,2017,36(11):2356-2364.

2017-04-22 錄用日期:2017-07-05

孫翼飛(1985—),女,吉林人,博士研究生,從事土壤分子生態(tài)學研究。E-mail:sunyf_1018@126.com

*通信作者:沈菊培 E-mail:jpshen@rcees.ac.cn

國家重點基礎研究發(fā)展規(guī)劃(973)項目(2013CB956300);國家自然科學基金項目(41371265)

Project supported:National Basic Research Program of China(2013CB956300);National Natural Science Foundation of China(41371265)

猜你喜歡
若爾蓋硝態(tài)硝化
電化學法去除硝態(tài)氮的研究
緩釋碳源促進生物反硝化脫氮技術研究進展
近30年來若爾蓋高寒濕地變化及其對區(qū)域氣候變化的響應
綠龜
在若爾蓋草原(外一首〕
活性碳源顯著降低蔬菜地土壤硝態(tài)氮
淺談污水中脫氮的途徑
同步硝化反硝化的影響因素研究
滴灌施氮對高壟覆膜馬鈴薯產(chǎn)量、氮素吸收及土壤硝態(tài)氮累積的影響
NaCl對真鹽生植物囊果堿蓬硝態(tài)氮吸收親和力系統(tǒng)的影響