張 珊, 柴玉珍
(太原理工大學(xué) 數(shù)學(xué)學(xué)院, 山西 太原 030024)
非自治Fitzhugh-Nagumo方程在周期邊界下的整體解
張 珊, 柴玉珍
(太原理工大學(xué) 數(shù)學(xué)學(xué)院, 山西 太原 030024)
Hodgkin-Huxley方程是描述神經(jīng)纖維膜電流、 膜電壓關(guān)系的微分方程, Fitzhugh-Nagumo方程是Hodgkin-Huxley方程的簡(jiǎn)化模型.討論了具有周期邊界的非自治FitzHugh-Nagumo系統(tǒng)在外刺激下的初邊值問(wèn)題, 首先利用Galerkin方法及常微分方程理論證明了具有周期邊界的非自治Fitzhugh-Nagumo方程存在局部解; 其次利用了一種新的方法對(duì)局部解作一致先驗(yàn)估計(jì)證明了整體解的存在性; 最后利用Gronwall不等式證明了非自治Fitzhugh-Nagumo系統(tǒng)整體解的唯一性.
Fitzhugh-Nagumo系統(tǒng); 非自治方程; 外刺激項(xiàng); Galerkin方法; Gronwall不等式
FitzHugh-Nagumo方程是一類(lèi)描述了在高于閾值的常電流刺激下神經(jīng)元?jiǎng)幼麟娢坏闹芷谛哉袷幍姆蔷€性演化方程, 同時(shí)也是一個(gè)著名的反應(yīng)擴(kuò)散模型, 這類(lèi)模型在實(shí)際中有廣泛的應(yīng)用, 因此是近年來(lái)很多學(xué)者研究的熱點(diǎn)方程之一.這類(lèi)方程是由Richard FitzHugh和南云仁一于1961年由H-H模型[1]簡(jiǎn)化得到的一個(gè)二維系統(tǒng), 亦即F-N模型[2]
ut=uxx+f(u)-v,vt=δu-γv.
近年來(lái)人們對(duì)神經(jīng)脈沖傳導(dǎo)的F-N方程做了很多研究[3-5], 如M.Osman Gani和Toshiyuki Ogawa分析了廣義F-N模型的不穩(wěn)定周期行波解[6], Gianni Arioli和 Hans Kochb研究了F-N方程的旅游脈沖解的存在性和穩(wěn)定性[7], 吳永輝等研究較為廣義F-N方程組的整體吸引子及慣性流形[8], 簡(jiǎn)化了P.Constantin等人的工作, 王慕潔等討論了F-N模型以2D為周期的初值問(wèn)題[9-10], 但是對(duì)外刺激下的非自治神經(jīng)元傳導(dǎo)模型研究得甚少.
本文研究非自治F-N系統(tǒng)在周期邊界條件下的初邊值問(wèn)題
邊界條件和初值條件為
式中:u表示跨膜電壓的特性;v描述鉀激活和鈉失活的慢變過(guò)程;I1(x,t,u),I2(x,t,u)為外加刺激電流項(xiàng)(外刺激項(xiàng)依賴(lài)于時(shí)間變量、 空間變量以及它們的函數(shù)), 且x∈Ω,Ω為R上的有界區(qū)間,a,λ,b是非負(fù)常數(shù),f∈L2(Ω),g∈L2(Ω).
P2)h是一個(gè)非線性光滑函數(shù), 且滿(mǎn)足
h(s)s≥0,h(0)=0,h′(s)≥-c,s∈R,
|h′(s)|≤c(1+|s|r),s∈R,
其中,n≤2,r≥0, 當(dāng)n≥3時(shí),
P4)I1(x,t,u),I2(x,t,u)關(guān)于x,t可測(cè), 對(duì)u連續(xù), 且?t>0, ?0≤hi(x,t)∈L2(0,t,L2(Ω)),i=(0,2), ?0≤hj(x,t)∈L2(0,t,L∞(Ω)),j=(1,3), 使得
I1(x,t,u)≤h0+h1|u|,
|fg|dx≤‖f‖Lp(Ω)‖g‖Lq(Ω).
引理3[12-15]已知Φ(t) (t∈R+)是絕對(duì)連續(xù)的正值函數(shù), 且存在ε>0使得微分不等式
成立. 其中存在α≥0和a∈[0,1], 使得g(t)滿(mǎn)足
存在β≥0, 使得h(t)滿(mǎn)足
|h(y)|dt≤β,
α,β是與t無(wú)關(guān)的常數(shù).則存在γ(γ是與α和ε有關(guān)的常數(shù))使得
成立.
式中:αjm,βjm為未知函數(shù). 那么由Galerkin方法可知,um,vm應(yīng)滿(mǎn)足下面的常微分方程組
(umt-aΔum+λum+h(um)+vm-f(x)-
(vmt-ε(t)(um-bum+g(x)+
再由peano定理, 方程(8)~(9)滿(mǎn)足初始條件
的解在[0,tN]上存在. 其中, 初值ajm,bjm的選取滿(mǎn)足
由常微分方程理論, 方程(8)~(10)存在唯一局部解um,vm.
下面對(duì)um,vm作一致先驗(yàn)估計(jì).
引理4 假設(shè)式(5)~(7)成立, 則對(duì)方程(8)和(9)的近似解um,vm有如下估計(jì)
ε(t)‖um‖2+‖vm‖2≤γ[ε(0)‖um(0)‖2+‖vm(0)‖2]eη1t+ρ, ?t>0,
證明在式(8)中令ωs=ε(t)um, 在式(9)中令ωs=vm, 兩式相加有
(umt-aΔum+λum+h(um)+vm-f(x)-I1m(x,t,u),ε(t)um)+
對(duì)式(12)利用分部積分及格林函數(shù)有
對(duì)式(13)右邊各項(xiàng)利用引理1和引理2, 可得
以及
將上述估計(jì)代入式(13)有
2aε(t)‖
式(14)兩邊同時(shí)加上
karctan(t+t0)[ε(t)‖um‖2+‖vm‖2].
其中
karctant0≥
t0為大于零的常數(shù), 令Φ(t)=ε(t)‖um‖2+‖vm‖2,
則有
(?t∈R+),
其中
由ε(t)的假設(shè)
由引理3知
ε(t)‖um‖2+‖vm‖2≤
γ[ε(0)‖um(0)‖2+‖vm(0)‖2]eη1t+ρ.
再對(duì)式(14)從[0,2D]積分即完成引理的證明.
引理5 若滿(mǎn)足引理4的條件, 則有
ε(t)‖um‖2+‖vm‖2≤M1,
式中:Mi(i=1~3)及以下諸引理中的Mi均為與N無(wú)關(guān)的常數(shù).
證明用-ε(t)Δum與式(8)作內(nèi)積, 用-Δvm與式(9)作內(nèi)積, 兩式相加得
2bε(t)‖vm‖2=2ε(t)(h(um),Δum)-2ε(t)[(f,Δum)+(g,Δvm)+
利用Sobolev不等式、 引理1和引理2對(duì)式(15)估計(jì)有
2ε(t)(h(um),Δum)=-2ε(t)(h(um),um)=-2ε(t)(h′(um)um,um)≤2cε(t)‖um‖2·
(I1(x,t,um),Δum)≤‖h0‖2‖Δum‖+‖h1‖∞‖um‖‖um‖≤
同理
(I2(x,t,vm),Δvm)≤‖h2‖2‖Δvm‖+‖h3‖∞‖vm‖‖vm‖≤
3ε(t)‖Δvm‖2≤Q1(t)[ε(t)‖um‖2+
將式(17)從0~2D積分, 得
[ε(t)‖um‖2+‖vm‖2]+
記
Wm(t)=[ε(t)‖um‖2+‖vm‖2]+
則
Wm(t)≤
其中 0≤Qi(t)∈L1(0,t),i=1,2.
由前述假設(shè)知,Wm(0)對(duì)N一致有界, 從而
由Gronwall不等式, 并利用引理4的結(jié)論即得本引理的證明.
注意到上面估計(jì)式中各常數(shù)M均為與N無(wú)關(guān), 因此由緊致性原理即有下面的結(jié)論.
推論在定理1的假設(shè)下, 有
‖u‖∞+‖v‖∞≤C, ?t≥0,
其中,C是與‖u0‖1, ‖v0‖1有關(guān)與t無(wú)關(guān)的常數(shù).
定理2 在定理1的條件下, 方程(8)~(10)的整體解是唯一的.
利用微分中值定理得
由Gronwall不等式和式(20)有
[1] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its applications to conduction and excitation in nerve[J]. J. Physiol., 1952(117): 500-544.
[2] FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane[J]. J. Biophys, 1961(1): 445-446.
[3] Zhou Shengfan, Wang Zhaojuan. Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise[J]. J. Math. Anal. Appl., 2016(441): 648-667.
[4] Zheng Qianqian, Shen Jianwei. Pattern formation in the FitzHugh-Nagumo model[J]. Computer & Mathematics with Applications, 2015, 70(5): 1082-1097.
[5] Jia Junyi, Liu Haihong, Xu Chenglin, et al. Dynamic effects of time delay on a coupled FitzHugh-Nagumo neural system[J]. Alexandria Engineering Journal, 2015, 54(2): 241-250.
[6] Osman Gani M, Toshiyuki Ogawa. Instability of periodic traveling wave solutions in a modified FitzHugh-Nagumo model for excitable media[J]. Applied Mathematics and Computation, 2015, 256(1): 968-984.
[7] Gianni Arioli, Hans Koch. Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation[J]. Nonlinear Analysis, 2015(113): 51-70.
[8] 吳永輝, 王明新 .廣義FitzHugh-Nagumo方程組的整體吸引子及慣性流形[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào), 1996, 19(2): 185-195.
Wu Yonghui, Wang Mingxin. Global attractor of the generalized FitzHugh-Nagumo equations and its inertial manifold[J]. Applied Mathematics, 1996, 19(2): 185-195. (in Chinese)
[9] 王慕潔, 張仲. Fitzhugh-Nagumo神經(jīng)傳導(dǎo)方程的周期初值問(wèn)題[J]. 數(shù)理醫(yī)藥學(xué)雜志, 2000, 13(1) : 13-14.
Wang Mujie, Zhang Zhong. Fitzhugh-Nagumo nerve conduction equation of the periodic initial value problem[J]. Journal of Mathematical Medicine, 2000, 13(1) : 13-14. (in Chinese)
[10] 鄭宋穆, 沈瑋熙. Fitzhugh-Nagumo方程組初邊值問(wèn)題的整體存在性[J]. 科學(xué)通報(bào), 1984(16): 966-969.
Zheng Songmu, Shen Weixi. Fitzhugh-Nagumo equations, the global existence of the initial-boundary value problem [J]. Chinese Science Bulletin, 1984(16): 966-969. (in Chinese)
[11] 王術(shù), 空間與偏微分方程引論[M]. 第1版. 北京: 科學(xué)出版社, 2009.
[12] Xie Yongqin, Deng Jianbin. Global attractors for a class of nonlinear evolution equations[J]. Mathematical Theory and Application, 2010, 30(4): 13-19.
[13] Pata V, Squassina M. On the strongly damped wave equation[J]. Communications in Mathematical Physics, 2005, 253(3): 511-533.
[14] Pata V, Zelik S. Smooth attractors for damped wave equation[J]. Nonlinearity, 2006(19): 1495-1506.
[15] Xie Y Q, Zhong C K. Asympotic behavior of a class of nonlinear evolution equations[J]. Nonlinear Anal., 2009(71): 5095-5105.
IntegralSolutionofNon-AutonomousFitzhugh-NagumoEquationUnderthePeriodicBoundary
ZHANG Shan, CHAI Yu-zhen
(College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China)
Hodgkin-Huxley is a kind of differential equation describes the relations of nerve fiber membrane electric current and the membrane voltage and it is a simplified model of Hodgkin-Huxley. The initial-boundary value problem of non-autonomous Fitzhugh-Nagumo system with periodic boundary under the external stimulation is discussed. Firstly, using the Galerkin method and theory of ordinary differential equations the existence of local solution of non-autonomous Fitzhugh-Nagumo equations with periodic boundary; Secondly, with a new method of local solution for consistent prior estimate proves the existence of global solution; Finally, using Gronwall inequality proves the uniqueness of global solutions of non-autonomous Fitzhugh-Nagumo system as a whole.
Fitzhugh-Nagumo systems; non-autonomous equation; outside stimulus items; Galerkin method; Gronwall inequality
1673-3193(2017)05-0531-05
2016-07-06
張 珊(1991-), 女, 碩士, 主要從事偏微分方程及應(yīng)用研究.
O241.8
A
10.3969/j.issn.1673-3193.2017.05.005