陳晉寶
【摘要】開發(fā)結構健康診斷系統(tǒng)是結構損傷識別的一個重要課題。本文基于頻率易測且精度較高的特點,提出一種剪切型框架結構損傷識別的方法。其基本思想是:把頻率看作損傷參數(shù)的函數(shù),通過測量結構損傷前后頻率的變化,構造以損傷參數(shù)為未知量的齊次線性方程組,求解可以得到全部損傷的位置和程度。并進一步提出求解齊次線性方程組的自迭代技術,極大地提高了診斷損傷的精度。最后通過對一個三層框架結構進行數(shù)值模擬分析,驗證了它的可行性。
【關鍵詞】剪切型結構;損傷識別;齊次線性方程組;自迭代
【Abstract】Development of health monitoring system becomes an important task for structure damage identification. Based on the easy testability and high measure precision of structural frequency, a damage identification method for shear buildings is presented. With frequency being regarded as the function of damage parameters, the homogeneous linear equations with damage parameters as unknowns can be constructed via Taylor expansion. The equations are solved to locate the whole damage location and quantify the severity of the damage. The data used in the method include frequency and mode shape measurement before and after damage. Furthermore, the iteration-self modification is proposed to improve the accuracy of damage identification greatly. A numerical simulation example using a three-storey sheer structure is given to validate the present method.
【Key words】Shear buildings damage identification;Homogeneous linear equations;Iteration-self
1. 前言
近幾十年來,涌現(xiàn)出許多基于振動損傷識別的方法。其原理是結構的損傷破壞通常導致剛度的降低,從而引起結構動力特性的變化。常用的診斷數(shù)據(jù)包括固有頻率和振型[1~8]。本文在前人研究的基礎上,提出一種剪切型框架結構損傷識別的方法。它從結構模態(tài)有限元算式出發(fā),把每層的損傷參數(shù)作為系統(tǒng)的變量,以頻率為損傷參數(shù)的函數(shù),并經泰勒級數(shù)展開,取其一次項,構造以損傷參數(shù)為未知量的齊次線性方程組。求解此方程組得到結構全部損傷的位置和程度。文中推導了頻率對損傷參數(shù)的一階偏導數(shù)的計算公式。由于在構建方程組時僅取泰勒級數(shù)的一次項,必然影響其識別精度,據(jù)此提出自迭代修正技術,極大地提高了損傷識別精度。最后通過對一個三層框架結構進行數(shù)值模擬分析,驗證它的可行性。
4.數(shù)值模擬計算與分析
4.1為了驗證本方法的可行性和準確性,進行了一個三層的剛架結構的數(shù)值模擬計算。下圖給出了一個剪切型框架(即剛性梁)和它的樓層重量和層間剛度。假設該結構產生損傷,第一、二、三層的層間剛度系數(shù)損傷分別為:0.15、0.30、0.35(計算簡圖見圖1)。
4.2根據(jù)公式(2)計算出本結構的無損和有損三階頻率及振型,將其代入公式(6)(在實際工程中應為測量值),構建含有三個未知數(shù)的齊次方程組。求解此方程組并利用自迭代修正技術,得損傷參數(shù)值如表所示。
從表中可以看出,直接求解方程組得到的損傷參數(shù)值與真實值相比,還有較大的誤差。但通過兩次迭代計算,其結果就非常接近真實值了。這說明本方法可以同時準確地判定結構損傷發(fā)生的位置以及程度(見表1)。
5. 結論
(1)基于頻率變化的齊次線性方程組求解的結構損傷識別,不僅可以判斷結構是否有損傷,而且還可以判定損傷的位置以及損傷的程度。
(2)修正技術的應用可以很大地提高識別精度。
(3)本方法使用容易測試且測量精度較高的模態(tài)參數(shù):頻率和振型,且易于在計算機中得到實現(xiàn),在工程實際中有較好的適用性。
參考文獻
[1]Salawu, O. S. Detection of Structural Damage through Changes on Frequency:A Review[J], Engineering Structures, 1997, 19(9) :718~723.
[2]Pandey, A.K., Biswas, W. Samman, M. M., Damage detection from changes in curvature mode shapes,[J] Journal of Sound and Vibration,1991,Vol.3,505~517.
[3]Bernal,D. Load Vectors for Damage Localization. ASCE. Journal of Engineering Mechanics, 2002, 128(1): 7~14.
[4]Bernal, D, Gunes, B. Damage Localization in output-systems: A flexibility based approach. IMAC_XX, Los Angees, California, 2002: 1185~1191.
[5]Yong Gao, Manuel, E., Ruiz_Sandoval, Spencer, B. F., Jr, Flexibility-Based Damage Localization Employing Ambient Vibration 15th ASCE Engineering Mechanics Conference, Columbia University, New York,NY. 2002, 6:1~8.
[6]Yao,G..C. Change,K.C. and Lee,G..C. Damage diagnosis of steel frames using vibrational signature analysis, [J] Journal of Engineering Mechanics, 1992, 118(9), 1949~1961.
Stubbs N, Kim, J. T, Farrar, C. R. Field Verification of a Node Structive Damage Localization and Sensitivity Estimator Algorithm. Proceedings of the 13th International Modal Analysis Conference.1995, 210~218.
[7]Shi ZY,Law S.S.,Zhang LM. Structural damage detection from modal strain energy change [J].Journal of Engineering Mechanics, 2000, 126(12):1216~1223.
[8]Shi ZY,Law S.S.,Zhang LM. Optimum sensor placement for structural damage detection [J]. Journal of Engineering Mechanics, 2000, 126(11):1173~1179.
[9]王柏生,倪一清,高贊明.青馬大橋橋板結構損傷位置識別的數(shù)值模擬.土木工程學報,2001,34(3).
[10]余天慶、錢濟成編著,損傷理論及其應用,北京:國防工業(yè)出版社,1998.第35-96頁.