国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于精簡并發(fā)潛結(jié)構(gòu)映射的豎爐焙燒過程綜合故障診斷

2018-01-08 03:00劉強(qiáng)秦泗釗
自動化學(xué)報 2017年12期
關(guān)鍵詞:磁選回收率故障診斷

劉強(qiáng) 秦泗釗

基于精簡并發(fā)潛結(jié)構(gòu)映射的豎爐焙燒過程綜合故障診斷

劉強(qiáng)1,2秦泗釗2,3

豎爐焙燒過程因運(yùn)行條件異常變化或操作不當(dāng)會造成上火、冒火、過還原和欠還原等運(yùn)行故障.這些故障直接影響過程運(yùn)行安全和產(chǎn)品質(zhì)量(比如,磁選管回收率),但難以采用基于模型和基于知識的方法建模故障與產(chǎn)品質(zhì)量的關(guān)系,以及診斷故障變量.針對上述問題,本文提出數(shù)據(jù)驅(qū)動的基于并發(fā)潛結(jié)構(gòu)映射(Concurrent projection to latent structures,CPLS)的豎爐焙燒過程綜合故障診斷方法.首先,將并發(fā)潛結(jié)構(gòu)映射分解的過程變量共有子空間與殘差空間精簡合并來建立磁選管回收率相關(guān)的過程變化空間,提出基于精簡并發(fā)潛結(jié)構(gòu)映射模型的豎爐焙燒過程綜合監(jiān)控方法;接下來,定義相應(yīng)的重構(gòu)貢獻(xiàn)圖并與豎爐焙燒過程相結(jié)合,提出CPLS精簡重構(gòu)貢獻(xiàn)方法用于豎爐焙燒過程故障變量診斷;最后,利用豎爐焙燒過程半實物仿真平臺采集的數(shù)據(jù)進(jìn)行實驗研究,結(jié)果表明所提方法不僅可以診斷出質(zhì)量相關(guān)的故障,而且可診斷出回路設(shè)定值之外的故障變量.

豎爐焙燒過程,綜合故障診斷,并發(fā)潛結(jié)構(gòu)映射,精簡重構(gòu)貢獻(xiàn)

豎爐焙燒過程是選礦生產(chǎn)的關(guān)鍵工序,用于對原料赤鐵礦高溫焙燒,將弱磁性礦物轉(zhuǎn)化成強(qiáng)磁性礦物,作為下游磁選工序的原料.豎爐焙燒原料礦石的大小、種類、成分變化頻繁,在運(yùn)行條件異常變化或操作不當(dāng)時,可發(fā)生上火和冒火等與運(yùn)行安全密切相關(guān)的故障,也可發(fā)生過還原和欠還原等與質(zhì)量指標(biāo)(即磁選管回收率)下降密切相關(guān)的故障,有必要有效監(jiān)控與診斷.

豎爐焙燒過程生產(chǎn)條件變化頻繁、物理和化學(xué)反應(yīng)機(jī)理復(fù)雜,一方面難以依據(jù)物理和化學(xué)規(guī)律建立過程的精確數(shù)學(xué)模型;另一方面,豎爐焙燒過程的運(yùn)行故障不是傳統(tǒng)的傳感器和執(zhí)行機(jī)構(gòu)故障,難以建立故障模型.因此,以過程模型與故障模型為基礎(chǔ)的基于模型方法難以用于豎爐焙燒過程運(yùn)行故障診斷[1].

近年來,學(xué)者提出基于知識的豎爐焙燒過程故障診斷方法.比如,Chai等[2]、吳峰華等[3]建立了基于規(guī)則推理的豎爐焙燒過程故障診斷專家系統(tǒng),對過程變量的觀測值利用產(chǎn)生式規(guī)則進(jìn)行判斷與推理,以規(guī)則推理的結(jié)論作為故障診斷結(jié)論;嚴(yán)愛軍等[4]提出基于案例推理的豎爐焙燒過程故障診斷方法,將新故障與案例庫中的歷史故障進(jìn)行比較,得到以概率形式表示的故障診斷結(jié)論.但上述方法存在兩個問題:1)只能診斷出故障發(fā)生,但不能診斷故障原因,特別是無法診斷回路設(shè)定值之外的故障原因變量;2)由于豎爐焙燒過程的過程變量相關(guān)關(guān)系復(fù)雜,難以獲得用于規(guī)則推理及案例推理所需的過程先驗知識,方法實施與維護(hù)難度大.

針對上述問題,Lu等[5]結(jié)合數(shù)據(jù)驅(qū)動故障診斷方法無需過程精確數(shù)學(xué)模型、降維可視化以及實施維護(hù)方便等優(yōu)點(diǎn)[6?8],利用歷史正常數(shù)據(jù),采用主元分析(Principal component analysis,PCA)技術(shù)建立豎爐焙燒過程的多元統(tǒng)計模型與故障監(jiān)控指標(biāo),在此基礎(chǔ)上進(jìn)行豎爐焙燒過程故障診斷.但該方法屬于單一層面的潛結(jié)構(gòu)建模與故障診斷,將質(zhì)量變量等同于一般的過程變量,無法診斷故障與產(chǎn)品質(zhì)量磁選管回收率之間的關(guān)系.針對單一層面數(shù)據(jù)建模與故障診斷方法的問題,多位學(xué)者研究了多層面數(shù)據(jù)建模與故障診斷[7?16].比如,MacGraegor等[8]提出基于偏最小二乘(Partial least squares,PLS)的故障診斷方法,Zhou等[9]、Li等[10?11]提出全潛結(jié)構(gòu)映射的建模與監(jiān)控方法,Qin等[12]、Liu等[13]提出并發(fā)潛結(jié)構(gòu)映射(Concurrent projection to latent structures,CPLS)多層面建模與監(jiān)控方法,實現(xiàn)過程與質(zhì)量的聯(lián)合監(jiān)控,已成為過程工業(yè)數(shù)據(jù)建模與故障診斷的新方向[17].

然而,CPLS方法將與質(zhì)量直接相關(guān)的過程變化以及與質(zhì)量潛在相關(guān)的過程變化,劃分成兩個不同的子空間,即共有子空間與過程變化殘差空間,分別用T2統(tǒng)計指標(biāo)與Q統(tǒng)計指標(biāo)監(jiān)控.對于豎爐焙燒過程而言,新發(fā)故障可能同時影響這兩個子空間.為此,本文提出將兩個統(tǒng)計指標(biāo)合并為一個統(tǒng)一指標(biāo),利用豎爐焙燒過程歷史正常數(shù)據(jù)(以磁選管回收率作為質(zhì)量變量,以燃燒室溫度、還原煤氣流量、爐頂廢氣溫度、爐內(nèi)負(fù)壓、燃燒煤氣熱值和加熱空氣流量作為過程變量),建立豎爐焙燒過程并發(fā)潛結(jié)構(gòu)映射模型及精簡CPLS模型用于綜合監(jiān)控.在此基礎(chǔ)上,考慮到CPLS重構(gòu)貢獻(xiàn)難以滿足正確診斷的必要條件,本文提出CPLS精簡重構(gòu)貢獻(xiàn)方法,用于診斷豎爐焙燒過程質(zhì)量相關(guān)故障變量.

1 豎爐焙燒過程工藝及故障描述

1.1 豎爐焙燒過程工藝描述

首先,礦石經(jīng)皮帶輸送到爐頂?shù)膬Σ?之后進(jìn)入爐膛內(nèi)通過預(yù)熱帶和爐頂廢氣熱交換進(jìn)行預(yù)熱,使溫度升至150~200°C;預(yù)熱后的礦石進(jìn)入加熱帶繼續(xù)加熱至1045~1160°C左右;其后礦石進(jìn)入還原帶與還原煤氣接觸,使其溫度降低到570°C左右.期間,與還原煤氣中的CO和H2進(jìn)行還原反應(yīng),生成強(qiáng)磁性鐵礦物Fe3O4.

適宜條件下,還原帶中的礦石發(fā)生如下反應(yīng):

其中,生成物Fe3O4為強(qiáng)磁性鐵礦,磁選管回收率較高,利于磁選出高品位精礦.

還原反應(yīng)不充分時,生成物為Fe3O4和Fe2O3的混合物.還原反應(yīng)過度時,還會發(fā)生下面的反應(yīng):

其中,生成物FeO是弱磁性物質(zhì),不利于磁選工序提取強(qiáng)磁性的高品位精礦.由此看出,還原不充分與過還原都會降低產(chǎn)品質(zhì)量,以磁選管回收率來衡量.磁選管回收率降低會直接影響下游球磨工序和磁選工序的工藝指標(biāo):金屬回收率和精礦品位.

圖1中,質(zhì)量變量為磁選管回收率γ;相關(guān)的過程變量主要包括燃燒室溫度、還原煤氣流量、爐頂廢氣溫度、爐內(nèi)負(fù)壓、加熱煤氣熱值和加熱空氣流量.正常工況下,上述過程變量都將維持在合適的范圍內(nèi),保證還原反應(yīng)正常運(yùn)行.因物料能量耦合關(guān)系,以及底層回路控制與上層運(yùn)行控制作用使得過程變量在正常工況下具有特定的相關(guān)關(guān)系潛結(jié)構(gòu),可利用該相關(guān)關(guān)系建立正常工況數(shù)據(jù)并發(fā)潛結(jié)構(gòu)模型.

圖1 豎爐焙燒過程工藝圖Fig.1 Flow chart of shaft furnace roasting processes

1.2 豎爐焙燒過程故障描述

豎爐焙燒實際生產(chǎn)過程中,由于原料礦石的大小、成分與種類頻繁變化,在過程操作與運(yùn)行條件不相符時,可發(fā)生與運(yùn)行安全密切相關(guān)的冒火和上火故障,也可發(fā)生欠還原與過還原這類與磁選管回收率相關(guān)的運(yùn)行故障,故障具體描述為

1)冒火:爐內(nèi)負(fù)壓較低,使得爐膛內(nèi)加熱帶中的火焰不能及時上升,從火眼噴出爐外;

2)上火:未完全燃燒的煤氣進(jìn)入煙道燃燒,使得爐內(nèi)的火焰從爐頂噴出;

3)欠還原:礦石在豎爐焙燒過程沒有充分的還原就被搬出爐體;

4)過還原:還原成的磁鐵礦(主要成分Fe3O4)進(jìn)一步被還原為弱磁鐵礦后,才搬出爐體.

豎爐焙燒過程工況異常,直接影響生產(chǎn)與人員安全;磁選管回收率降低,直接影響下游工序的工藝指標(biāo)(金屬回收率和精礦品位).長期以來,豎爐焙燒過程的操作者主要依據(jù)經(jīng)驗知識通過觀察爐體表面的現(xiàn)象進(jìn)行判斷與決策以避免工藝設(shè)備可能會發(fā)生的故障,但由于豎爐焙燒過程的過程變量較多,僅僅依靠操作員觀察爐體外觀來進(jìn)行故障診斷,無法診斷故障原因,也無法分析故障是否影響質(zhì)量指標(biāo)磁選管回收率.而且,故障的現(xiàn)有理解將上火故障與過還原等區(qū)分為不同的故障,而實際生產(chǎn)中,上火故障等異常工況也會影響磁選管回收率.

異常運(yùn)行工況可導(dǎo)致過程變量的異常變化、過程變量間的相關(guān)關(guān)系改變以及過程變量與質(zhì)量變量間相關(guān)關(guān)系的改變.為此,本文下一節(jié)提出利用歷史數(shù)據(jù)建立磁選管回收率與過程變量間的潛結(jié)構(gòu)相關(guān)關(guān)系;在此基礎(chǔ)上,針對新發(fā)故障可能影響歷史已發(fā)故障殘差空間異常變化,提出并發(fā)潛結(jié)構(gòu)映射豎爐焙燒過程綜合監(jiān)控方法和基于CPLS精簡重構(gòu)貢獻(xiàn)的故障變量診斷方法.

2 基于并發(fā)潛結(jié)構(gòu)映射的豎爐焙燒過程綜合故障診斷

2.1 豎爐焙燒過程綜合監(jiān)控

2.1.1 豎爐焙燒過程并發(fā)潛結(jié)構(gòu)建模

首先,以燃燒室溫度TO1、還原煤氣流量Fh、爐頂廢氣溫度TO2、爐內(nèi)負(fù)壓Pf、加熱煤氣熱值 h 和加熱空氣流量Fk作為過程變量,構(gòu)造樣本向量,x(k) =[TO1(k),Fh(k),TO2(k),Pf(k),h(k),Fk(k)]T(k為采樣時刻),過程變量數(shù)為m=6;以磁選管回收率γ作為質(zhì)量變量,構(gòu)造樣本向量y?(k)=[γ?(k)],質(zhì)量變量數(shù)為p=1.

正常工況下,根據(jù)磁選管回收率同步采集過程變量,構(gòu)建過程變量建模數(shù)據(jù)陣X?和質(zhì)量變量建模數(shù)據(jù)陣Y?,如式(1)和(2)所示:

式中,n為樣本數(shù);

接下來,對{X?, Y?}進(jìn)行標(biāo)準(zhǔn)化處理,即對每一列各元素減去該列的均值后除以該列的標(biāo)準(zhǔn)差,以消除變量單位和測量范圍的影響,得到{X,Y}.

其后,利用過程數(shù)據(jù)陣X與質(zhì)量數(shù)據(jù)陣Y,采用并發(fā)潛結(jié)構(gòu)映射算法建立過程變量與磁選管回收率間的潛結(jié)構(gòu)模型[12],

其中,Rc ∈ R6×lc、 Px∈ R6×lx、Qc∈ R1×lc和Py∈R1×ly為負(fù)荷陣,lc、lx和ly分別為共有變化、過程特有變化和磁選管回收率特有變化的潛變量個數(shù);TTc、TTx和TTy為得分矩陣;TTTc為可用于預(yù)測磁選管回收率的過程共有變化,TTTx為對預(yù)測磁選回收率無用的過程特有變化, TTy表示不能由過程變量預(yù)測的磁選管回收率變化,為過程變量殘差,為磁選管回收率殘差.

對單一樣本,CPLS模型表示為

其中

需要說明的是,過程變化 TTTc與(或 tttc與)均可能與磁選管回收率相關(guān),有必要將二者合并.從而,同時監(jiān)控歷史已發(fā)及未發(fā)的與磁選管回收率相關(guān)的過程故障;TTTy與(或tty與)均為不能由過程變化預(yù)測的磁選管回收率變化,有必要將二者合并.從而,同時監(jiān)控歷史已發(fā)及未發(fā)的不可由過程變化預(yù)測的磁選管回收率異常.然而,Tc(或 tc)與Ty(或 ty)為得分變化,適于采用T2統(tǒng)計量監(jiān)控;為殘差變化,適于采用Q統(tǒng)計量監(jiān)控,不能將二者簡單合并.因此,這里并未給出顯式的精簡并發(fā)潛結(jié)構(gòu)模型;在第3.1.2節(jié)中,通過相應(yīng)的綜合指標(biāo)來建立精簡并發(fā)潛結(jié)構(gòu)空間;在此基礎(chǔ)上,實現(xiàn)豎爐焙燒過程的綜合監(jiān)控.

2.1.2 基于精簡CPLS的豎爐焙燒過程綜合監(jiān)控

首先,采集過程變量實時數(shù)據(jù)x?,采用 BP 神經(jīng)網(wǎng)絡(luò)[18],計算質(zhì)量變量磁選管回收率預(yù)測值yy?,并根據(jù)?}的均值和標(biāo)準(zhǔn)差對{x?,y?}歸一化處理,得到x,y.

接下來,利用第3.1.1節(jié)建立的CPLS模型,對給定的新數(shù)據(jù)樣本{x, y},按照式(8)~(16)計算得分與殘差,對得分和殘差分別建立二次型統(tǒng)計指標(biāo),由T2統(tǒng)計量監(jiān)控得分的變化,由Q統(tǒng)計量監(jiān)控殘差的變化.假設(shè)數(shù)據(jù)服從多元正態(tài)分布,T2統(tǒng)計量服從F分布,Q統(tǒng)計量服從χ2分布,從而根據(jù)Qin等[12]方法列出5個統(tǒng)計指標(biāo)及其控制限如表1所示.

表1 豎爐焙燒過程統(tǒng)計指標(biāo)及其控制限[12]Table 1 The statistics and control limits for shaft furnace roasting processes[12]

其中

gx、hx為服從χ2分布的Qx統(tǒng)計指標(biāo)的系數(shù)和自由度;gy、hy為對于服從χ2分布的Qy的系數(shù)和自由度,可按Qin等[12]方法求得.

對于豎爐焙燒過程而言,新發(fā)故障可能引起歷史已發(fā)故障殘差空間異常變化.因此,根據(jù)表1中求得的5個統(tǒng)計指標(biāo)及其控制限,將其精簡為三個統(tǒng)計指標(biāo),得到綜合監(jiān)控豎爐焙燒過程磁選管相關(guān)故障和過程相關(guān)故障的方案如下.

其中

φ的控制限?21近似服從χ2分布[12,20],按照如下方式計算:

其中

且SSSx=XXXTXXX/(n?1)為xxx樣本協(xié)方差,1?α為置信水平(α=0.05).

其中

其中

綜合監(jiān)控φ、和κ三個統(tǒng)計指標(biāo),相應(yīng)的精簡并發(fā)潛結(jié)構(gòu)映射(Simpli fi ed concurrent projection to latent structures,S-CPLS)模型說明如下.

1)對于過程變化,φ和根據(jù)xxx重寫為二次型的一般形式:

從而,將原始過程變化x空間,投影到新的精簡過程變化zx空間.

2)對于磁選管回收變化,κ根據(jù)重寫為二次型的一般形式:

2.2 CPLS精簡重構(gòu)貢獻(xiàn)用于診斷豎爐焙燒過程故障變量

在豎爐焙燒過程綜合監(jiān)控的基礎(chǔ)上,進(jìn)行豎爐焙燒過程故障變量的診斷.雖然重構(gòu)貢獻(xiàn)比貢獻(xiàn)圖方法診斷準(zhǔn)確率高[21],但豎爐焙燒過程CPLS模型的Tc2指標(biāo)重構(gòu)不能滿足重構(gòu)的必要條件.為此,基于上節(jié)建立的S-CPLS模型,提出CPLS精簡重構(gòu)貢獻(xiàn)方法用于診斷豎爐焙燒過程故障變量.

重構(gòu)貢獻(xiàn)方法以沿著變量方向的故障監(jiān)控指標(biāo)的重構(gòu)量作為變量對故障的貢獻(xiàn).

為了定義磁選管回收率相關(guān)故障與磁選管回收率無關(guān)故障的重構(gòu)貢獻(xiàn),本文參照Alcala等[21]的重構(gòu)貢獻(xiàn)定義,利用φ和Tx2根據(jù)xxx重寫為二次型的一般形式Index(xx)=xxTMMMxxx.沿著第i個過程變量的方向 ξi(i=1,2,···,m) 定義二次型重構(gòu)指標(biāo)為

其中,故障強(qiáng)度f最優(yōu)值可根據(jù)對f求偏導(dǎo)為0求得,為ξi為單位陣的第i列.

從而,φ和T2x兩個統(tǒng)計指標(biāo)的重構(gòu)貢獻(xiàn)為

3 實驗研究

利用豎爐焙燒過程運(yùn)行控制仿真實驗平臺[22],進(jìn)行豎爐焙燒過程正常工況與異常工況運(yùn)行實驗.該仿真平臺采用的回路控制策略、運(yùn)行控制策略以及運(yùn)行條件,與實際現(xiàn)場一致.采集正常工況數(shù)據(jù)和異常工況數(shù)據(jù),對本文所提方法進(jìn)行驗證.

首先,在歷史正常運(yùn)行工況下,采集10小時時間段內(nèi)的質(zhì)量變量磁選管回收率測量值及與其同步采樣的過程變量,建立豎爐焙燒過程數(shù)據(jù)潛結(jié)構(gòu)模型,具體是:lc=1,lx=4,ly=1;Rc=[?1.7165,0.3585,0.6597,?0.4038,?0.6156,

接下來,正常工況采集的400個樣本如圖2(a)所示,上火故障工況下采集的200個樣本如圖2(b)所示,以第36個樣本時刻引入上火故障,102個樣本時刻恢復(fù)正常.對于正常工況數(shù)據(jù)和故障工況數(shù)據(jù),分別將本文所提S-CPLS綜合監(jiān)控方法與PCA、PLS、CPLS三種方法進(jìn)行比較分析.

正常工況下,PCA方法、PLS方法、CPLS方法以及S-CPLS方法,過程監(jiān)控的實驗結(jié)果分別如圖 3(a)~(d)所示,經(jīng)統(tǒng)計,誤報率分別為4%、3.25%、2%、1.33%,S-CPLS方法誤報率最低.

上火故障工況下,相比較圖2(a)而言,圖2(b)中各過程變量單一變量均看不出明顯異常變化,因而難以采用基于規(guī)則及人工方法診斷.PCA、PLS、CPLS及S-CPLS四種方法的故障監(jiān)控實驗結(jié)果見圖4(a)~(d).圖4(a)中,PCA方法以T2指標(biāo)和Q指標(biāo)超限監(jiān)控過程運(yùn)行異常,T2指標(biāo)和Q指標(biāo)從36個樣本時刻開始超限,從而檢測到異常工況,但無法診斷其是否與磁選管回收率異常有關(guān).圖4(b)中,PLS方法以T2指標(biāo)超限監(jiān)控與質(zhì)量相關(guān)的過程運(yùn)行異常,T2指標(biāo)從36個樣本時刻開始超限,從而診斷出磁選管回收率相關(guān)的過程故障,但PLS的T2指標(biāo)在第120個樣本時刻后超限,與如圖2(b)所示的磁選管回收率恢復(fù)正常不符.圖4(c)中,CPLS方法以T2c和Qx指標(biāo)超限監(jiān)控與質(zhì)量相關(guān)的過程運(yùn)行異常、以Qy指標(biāo)超限監(jiān)控質(zhì)量特有異常,T2c指標(biāo)36個樣本時刻開始超限、102個樣本開始恢復(fù)正常,有效診斷出該時段內(nèi)發(fā)生磁選管回收率相關(guān)的過程故障;但Qx指標(biāo)在130個樣本時刻后仍超限,這與102個樣本時刻磁選管回收率已恢復(fù)正常不一致,為誤報;另外,由圖4(c)的T2c和Qx,CPLS方法過程變量與質(zhì)量變量的共有子空間以及殘差子空間都發(fā)生異常變化.為此,S-CPLS方法將二者合并為如圖4(d)所示的φ綜合指標(biāo).圖4(d)中,S-CPLS方法以φ指標(biāo)超限監(jiān)控質(zhì)量相關(guān)異常、以T2x指標(biāo)超限監(jiān)控過程特有異常,φ指標(biāo)第36個樣本時刻開始超限、第102個樣本時刻恢復(fù)到正常,有效診斷出磁選管回收率相關(guān)的過程故障,并由120個樣本時刻后T2x指標(biāo)超限檢測到過程特有變化,經(jīng)分析是由運(yùn)行控制引起的與磁選管回收率無關(guān)的正常變化.S-CPLS方法的上述故障診斷結(jié)果與實際的仿真實驗條件一致,表明了S-CPLS綜合監(jiān)控的有效性.統(tǒng)計故障工況下,PCA、PLS、CPLS以及S-CPLS的誤報率分別為49.63%、52.59%、17.78%、14.07%,漏報率分別為1.54%、44.62%、0%、0%,采用本文所提的S-CPLS綜合監(jiān)控方法的診斷準(zhǔn)確率更高.

圖2 豎爐焙燒過程正常工況與上火故障工況數(shù)據(jù)Fig.2 Data collected from shaft furnace roasting process under normal operation and fi re-emitting fault

圖3 正常工況監(jiān)控結(jié)果Fig.3 Monitoring results for normal operation condition

在綜合監(jiān)控的基礎(chǔ)上,進(jìn)行故障變量的診斷.對于故障發(fā)生時刻(第36個樣本),CPLS和S-CPLS的重構(gòu)貢獻(xiàn)圖如圖5(a)~(b)所示.由圖5(a)可以看出,因質(zhì)量變量數(shù)少,沿各個變量方向?qū)c2指標(biāo)重構(gòu)貢獻(xiàn)相等,無法有效診斷磁選管回收率相關(guān)故障變量.圖5(b)診斷出與磁選管回收率下降相關(guān)的故障變量為燃燒室溫度.根據(jù)過程知識,與上火故障發(fā)生機(jī)理,以及伴隨其發(fā)生過還原發(fā)生機(jī)理一致,說明診斷出故障原因變量;由圖5(b)的Tx2指標(biāo)重構(gòu)貢獻(xiàn)圖診斷出爐內(nèi)負(fù)壓與加熱空氣流量偏離正常工況范圍,為過程特有變化故障變量.

4 結(jié)語

本文提出了數(shù)據(jù)驅(qū)動的基于精簡并發(fā)潛結(jié)構(gòu)映射的豎爐焙燒過程多層面綜合故障診斷方法,并利用豎爐焙燒過程半實物仿真平臺進(jìn)行實驗研究,結(jié)果表明:

圖4 上火故障監(jiān)控結(jié)果Fig.4 Monitoring results for fi re-emitting fault

圖5 上火故障重構(gòu)貢獻(xiàn)診斷結(jié)果Fig.5 Reconstruction contribution based fault diagnosis results for fi re-emitting fault

1)正常工況下,相比PCA、PLS和CPLS方法,本文所提出的S-CPLS綜合監(jiān)控方法誤報率更低;

2)故障工況下,本文所提出的S-CPLS的綜合監(jiān)控方法不僅檢測出豎爐焙燒過程故障工況,且診斷出上火故障會降低磁選管回收率,以及與之相應(yīng)的故障變量;

3)本文基于S-CPLS重構(gòu)貢獻(xiàn)診斷出回路設(shè)定值之外的故障變量.

本文所提方法不僅在豎爐焙燒過程實驗平臺成功應(yīng)用,還可以推廣應(yīng)用于實際的豎爐焙燒過程.在方法軟件化的基礎(chǔ)上,利用現(xiàn)場實際數(shù)據(jù)建立模型,給出可視化的監(jiān)控圖與重構(gòu)貢獻(xiàn)圖,可以實現(xiàn)實際豎爐焙燒過程的綜合故障診斷.此外,本文所提出的精簡重構(gòu)貢獻(xiàn)圖等研究成果還可應(yīng)用于高爐煉鐵等其他復(fù)雜系統(tǒng)的多層面監(jiān)控與診斷.

1 Chai Tian-You,Ding Jin-Liang,Wang Hong,Su Chun-Yi.Hybrid intelligent optimal control method for operation of complex industrial processes.Acta Automatica Sinica,2008,34(5):505?515(柴天佑,丁進(jìn)良,王宏,蘇春翌.復(fù)雜工業(yè)過程運(yùn)行的混合智能優(yōu)化控制方法.自動化學(xué)報,2008,34(5):505?515)

2 Chai T Y,Ding J L,Wu F H.Hybrid intelligent control for optimal operation of shaft furnace roasting process.Control Engineering Practice,2011,19(3):264?275

3 Wu Feng-Hua,Ding Jin-Liang,Yue Heng,Chai Tian-You.Intelligent fault diagnosis system for roasting process of shaft furnace.Journal of Nanjing University of Aeronautics&Astronautics,2006,38(S1):91?94(吳峰華,丁進(jìn)良,岳恒,柴天佑.豎爐焙燒過程智能故障診斷系統(tǒng).南京航空航天大學(xué)學(xué)報,2006,38(S1):91?94)

4 Yan Ai-Jun,Wang Pu,Zeng Yu.Intelligent fault prediction system of combustion process in shaft furnace.Journal of Chemical Industry and Engineering(China),2008,59(7):1768?1772(嚴(yán)愛軍,王普,曾宇.豎爐燃燒過程智能故障預(yù)報系統(tǒng).化工學(xué)報,2008,59(7):1768?1772)

5 Lu X L,Liu Q,Chai T Y,Qin S J.Data-driven fault diagnosis of shaft furnace roasting processes using reconstruction and reconstruction-based contribution approaches.IFAC Proceedings Volumes,2014,47(3):8897?8902

6 Qin S J.Survey on data-driven industrial process monitoring and diagnosis.Annual Reviews in Control,2012,36(2):220?234

7 Wen Cheng-Lin,Lv Fei-Ya,Bao Zhe-Jing,Liu Mei-Qin.A review of data driven-based incipient fault diagnosis.ActaAutomatica Sinica,2016,42(9):1285?1299(文成林,呂菲亞,包哲靜,劉妹琴.基于數(shù)據(jù)驅(qū)動的微小故障診斷方法綜述.自動化學(xué)報,2016,42(9):1285?1299)

8 MacGregor J F,Kourti T.Statistical process control of multivariate processes.Control Engineering Practice,1995,3(3):403?414

9 Zhou D H,Li G,Qin S J.Total projection to latent structures for process monitoring.AIChE Journal,2010,56(1):168?178

10 Li G,Qin S J,Ji Y D,Zhou D H.Total PLS based contribution plots for fault diagnosis.Acta Automatica Sinica,2009,35(6):759?765

11 Li G,Qin S J,Zhou D H.Geometric properties of partial least squares for process monitoring.Automatica,2010,46(1):204?210

12 Qin S J,Zheng Y Y.Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures.AIChE Journal,2013,59(2):496?504

13 Liu Q,Qin S J,Chai T Y.Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes.IEEE Transactions on Industrial Electronics,2014,61(11):6429?6437

14 Cao Yu-Ping,Huang Lin-Zhe,Tian Xue-Min.A process monitoring method using dynamic input-output canonical variate analysis.Acta Automatica Sinica,2015,41(12):2072?2080(曹玉蘋,黃琳哲,田學(xué)民.一種基于DIOCVA的過程監(jiān)控方法.自動化學(xué)報,2015,41(12):2072?2080)

15 Zhu Q Q,Liu Q,Qin S J.Concurrent canonical correlation analysis modeling for quality-relevant monitoring.IFACPapersOnLine,2016,49(7):1044?1049

16 Dong Y N,Qin S J.Dynamic-inner partial least squares for dynamic data modeling.IFAC-PapersOnLine,2015,48(8):117?122

17 Liu Qiang,Qin S J.Perspectives on big data modeling of process industries.Acta Automatica Sinica,2016,42(2):161?171(劉強(qiáng),秦泗釗.過程工業(yè)大數(shù)據(jù)建模研究展望.自動化學(xué)報,2016,42(2):161?171)

18 Yan Ai-Jun,Chai Tian-You.Intelligent hybrid prediction method of magnetic tube recovery rate.Information and Control,2005,34(6):759?764(嚴(yán)愛軍,柴天佑.磁選管回收率智能混合預(yù)報方法.信息與控制,2005,34(6):759?764)

19 Yue H H,Qin S J.Reconstruction-based fault identi fi cation using a combined index.Industrial&Engineering Chemistry Research,2001,40(20):4403?4414

20 Box G E P.Some theorems on quadratic forms applied in the study of analysis of variance problems,I.eあect of inequality of variance in the one-way classi fi cation.The Annals of Mathematical Statistics,1954,25(2):290?302

21 Alcala C F,Qin S J.Reconstruction-based contribution for process monitoring.Automatica,2009,45(7):1593?1600

22 Zhou Ping,Dai Wei,Chai Tian-You.Exploration of operational optimization control system for shaft furnace roasting process and its experiment study.Control Theory&Applications,2012,29(12):1565?1572(周平,代偉,柴天佑.豎爐焙燒過程運(yùn)行優(yōu)化控制系統(tǒng)的開發(fā)及實驗研究.控制理論與應(yīng)用,2012,29(12):1565?1572)

Comprehensive Fault Diagnosis of Shaft Furnace Roasting Processes Using Simpli fi ed Concurrent Projection to Latent Structures

LIU Qiang1,2QIN S.Joe2,3

Operational faults of shaft furnace roasting processes can appear when operational conditions change abnormally or operators do not react properly or timely.Typical operational faults,including fi re-emitting, fl ame-out,under-reduction and over-reduction,are highly related to process safety and product quality,e.g.,magnetic tube recovery rate(MTRR).Fault diagnosis of shaft furnace roasting processes deserves more attentions.However,it is diきcult to apply model-based or knowledge-based fault diagnosis methods.In particular,it is diきcult to model the relations between fault and product quality.In this paper data-driven concurrent projection to latent structures(CPLS)based fault diagnosis is developed for shaft furnace roasting processes.First,a CPLS based comprehensive monitoring method for shaft furnace roasting processes is proposed by combining co-variation and residual of process spaces of concurrent projection to latent structures into a simpli fi ed MTRR-relevant process-variation space.Secondly,a corresponding simpli fi ed reconstructionbased contribution method is proposed and used to pinpoint the faulty variable.Finally,the proposed methods are veri fi ed using the data collected from a hardware-in-loop simulation platform.The results demonstrate that the quality-relevant faults as well as faulty variables are successfully diagnosed.

Shaft furnace roasting processes,comprehensive fault diagnosis,concurrent projection to latent structures(CPLS),simpli fi ed reconstruction based contributions

Liu Qiang,Qin S.Joe.Comprehensive fault diagnosis of shaft furnace roasting processes using simpli fi ed concurrent projection to latent structures.Acta Automatica Sinica,2017,43(12):2160?2169

2016-07-01 錄用日期2016-10-14

July 1,2016;accepted October 14,2016國家自然科學(xué)基金(61673097,61304107,61490704,61573022),深圳市科技計劃項目(基20160207),德克薩斯–威斯康辛–加利福尼亞控制聯(lián)盟(TWCCC),博士后國際交流計劃派出項目(20130020),中央高校基本科研業(yè)務(wù)費(fèi)(N160804002,N160801001)資助

Supported by National Natural Science Foundation of China(61673097,61304107,61490704,61573022),the Fundamental Disciplinary Research Program of the Shenzhen Committee on Science and Innovation(20160207),the Texas-Wisconsin-California Control Consortium,the International Postdoctoral Exchange Fellowship Program(20130020),the Fundamental Research Funds for the Central Universities(N160804002,N160801001)

本文責(zé)任編委鐘麥英

Recommended by Associate Editor ZHONG Mai-Ying

1.東北大學(xué)流程工業(yè)綜合自動化國家重點(diǎn)實驗室 沈陽 110819中國

2.美國南加州大學(xué)化工系 洛杉磯 90089美國 3.香港中文大學(xué)(深圳)深圳518172中國

1.State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China 2.Department of Chemical Engineering and Materials Science,University of Southern California,Los Angeles,CA 90089,USA 3.School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen,Shenzhen 518172,China

劉強(qiáng),秦泗釗.基于精簡并發(fā)潛結(jié)構(gòu)映射的豎爐焙燒過程綜合故障診斷.自動化學(xué)報,2017,43(12):2160?2169

DOI10.16383/j.aas.2017.c160505

劉 強(qiáng) 東北大學(xué)流程工業(yè)綜合自動化國家重點(diǎn)實驗室副教授,美國南加州大學(xué)化工系博士后.主要研究方向為基于數(shù)據(jù)的復(fù)雜工業(yè)過程建模與故障診斷.曾獲遼寧省優(yōu)秀博士學(xué)位論文獎、自動化學(xué)會優(yōu)秀博士學(xué)位論文提名獎等.

E-mail:liuq@mail.neu.edu.cn

(LIU Qiang Associate professor at the State Key Laboratory of Synthetical Automation for Process Industries(Northeastern University),China,and postdoctor in the Department of Chemical Engineering,University of Southern California,USA.His research interest covers statistical process monitoring and fault diagnosis of complex industrial processes.Dr.Liu was the recipient of the Excellent Doctoral Dissertation of the Liaoning Province of China.He was also the recipient of the Excellent Doctoral Dissertation Nomination Award of Automation Society by the Automation Society of China.)

秦泗釗 美國南加州大學(xué)教授,IEEE會士、IFAC會士.主要研究方向為統(tǒng)計過程監(jiān)控,故障診斷,模型預(yù)測控制,系統(tǒng)辨識,建筑能源優(yōu)化與控制性能監(jiān)控.曾獲美國國家科學(xué)基金成就獎,中國國家自然科學(xué)基金海外杰出青年獎,清華大學(xué)自動化系長江講座教授,Halliburton/Brown&Root杰出青年教師獎,DuPont(杜邦)青年教授獎.國際期刊Journal of Process Control,IEEE Control Systems Magazine副主編,Journal of Chemometrics編委.本文通信作者.

E-mail:sqin@usc.edu

(QIN S.Joe Professor at the University of Southern California,Los Angeles,USA.He is a Fellow of the International Federation of Automatic Control and a Fellow of IEEE.His research interest covers statistical process monitoring,fault diagnosis,model predictive control,system identi fi cation,building energy optimization,and control performance monitoring.Professor Qin was a recipient of the NSF CAREER Award,the NSF-China Outstanding Young Investigator Award,the Chang Jiang Professor of Tsinghua University,the Halliburton/Brown and Root Young Faculty Excellence Award,and the DuPont Young Professor Award.He is currently an associate editor of theJournal of Process Controland theIEEE Control Systems Magazineand a member of the editorial board of theJournal of Chemometrics.Corresponding author of this paper.)

猜你喜歡
磁選回收率故障診斷
抽屜式磁選器在高純粉體材料磁選中的應(yīng)用研究
WEEE產(chǎn)品總回收率的影響因素初探
基于包絡(luò)解調(diào)原理的低轉(zhuǎn)速滾動軸承故障診斷
不同形態(tài)氮肥對棉花15N回收率和產(chǎn)量的影響
自清式磁選器在小麥清理中的應(yīng)用
全國農(nóng)膜回收率年底前達(dá)到80%以上
粉煤灰綜合利用磁選除鐵工藝技術(shù)研究
數(shù)控機(jī)床電氣系統(tǒng)的故障診斷與維修
化妝品中性激素檢測方法的改進(jìn)
銅鉍混合精礦超聲波分散磁選分離工藝
马公市| 梨树县| 芮城县| 大同县| 洪雅县| 哈尔滨市| 饶河县| 重庆市| 沁水县| 盈江县| 汾西县| 大埔县| 崇文区| 大洼县| 盘锦市| 大田县| 从化市| 马尔康县| 屯门区| 西贡区| 乌恰县| 普定县| 枝江市| 锡林浩特市| 含山县| 宁河县| 新龙县| 饶平县| 桐庐县| 昌图县| 新化县| 图们市| 合川市| 白沙| 许昌县| 若羌县| 多伦县| 淄博市| 嘉兴市| 化州市| 勐海县|