張海燕+劉庚
摘 要:如果在群CnCn中,每個(gè)含有2n-1個(gè)元素的極小零和序列中都包含一些階數(shù)為n-1的元素,那么我們稱正整數(shù)n具有性質(zhì)B。在二維阿貝爾群的零和理論中,性質(zhì)B是一個(gè)中心議題。關(guān)于性質(zhì)B這一問題最早是由高維東教授和A.Geroldinger提出并進(jìn)行研究[1-3]。之后,他們證明了如果n具有性質(zhì)B[4-6],當(dāng)n大于等于6時(shí),2n也具有性質(zhì);還證明了如果n∈{2,3,4,5,6,7},n具有性質(zhì)B。在文[7]中,我們證明了n=10時(shí),n具有性質(zhì)B。本文證明n=8時(shí),n也具有性質(zhì)B。
關(guān)鍵詞:阿貝爾群;零和子列;性質(zhì)B
DOI:10.15938/j.jhust.2017.06.021
中圖分類號(hào): O156.1
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2017)06-0113-03
Abstract:We say a positive integer n has Property B if every minimal zerosum subsequence of 2n-1 elements in CnCn contains some elements n-1 times. Property B is a central topic in zerosum theory on abelian group G with rank two. Property B has been first formulated and investigated by professer W.D.Gao and A.Geroldinger in [1-3]. It has been proved that if n≥6 and if n has Property B, then 2n has Property B. It has been also proved that if n∈{2,3,4,5,6,7}, then n has property B[4-6]. In [7], we proved that n=10 has Property B. In this paper, we will verify that n=8 has Property B.
Keywords:abelian group; zerosum subsequence; Property B
Similar to the proof of case 1, we can verify that there are at most two distinct elements in Tof case2 and case 3.
Theorem is true.
References:
[1] GAO W D, GEROLDINGER A. On Long Minimal Zero Sequences in Finite Abelian Groups[J]. Period Math. Hungar, 1999(38):179-211.
[2] GAO W D, GEROLDINGER A. On Zerosum Sequences in Z/nZ Z/nZ[J]. Integers, 2003(3) (Paper A08).
[3] GAO W D, ZHUANG J J. Sequences not Containing Long Zerosum Subsequences[J]. European J. Combin, 2006(27): 777-787.
[4] GAO W D, GEROLDINGER A. Zerosum Probiems in Finite Abelian Groups: a survey[J]. Expo.Math, 2006(24): 337-369.
[5] CHANG G J, CHEN S H, WANG G Q, et al. On the Number of Subsequences with a Given Sum in a Finite Abelian Group[J]. Electron. J. Combin, 2011(18): 133-157.
[6] CHINTAMANI M N, MORIYA B K, GAO W D, et al. New Upper Bounds for the Davenport and for the ErdosGinzburgZiv Constants[J]. Arch. Math., 2012(98):133-142.
[7] ZANG H Y, LIU W H. A Property on Minimal Zerosum Subsequence inC10C10[J]. Advanced Materials Research ICEEIS2016981,2014:255-257.
[8] 韓冬春. ErdosGinzburgZiv Theorem for Finite Nilpotent Groups[J]. Arch. Math, 2015(104): 325-332.
[9] GAO W D,LI Y L, YUAN P Z,et al. On the Structure of Long Zerosum Free Sequences and Nzerosum Free Sequences Over Finite Cyclic Groups[J]. Arch. Math, 2015(105): 361-370.
[10]高維東,韓冬春,PENG J T, et al. On Zerosum Subsequences of Length k*exp(G)[J]. J. Combin. Theory Ser. 2014(A125):240-253.
[11]ADHIKARIA S D,高維東,WANG G Q. ErdosGinzburgZiv Theorem for Finite Commutative Semigroups[J]. J. Pure Appl. Algebra, 2014(218):1838-1844.
[12]高維東,路在平. The ErdsGinzburgZiv Theorem for Dihedral Groups[J]. J. Pure Appl. Algebra, 2008(212): 311-319.
[13]高維東,侯慶虎,SCHMID W, et al. On Short Zerosum Subsequences II[J]. Integers,2007(7):21-56.
[14]GAO W D, Alfred Geroldinger. On a Property of Minimal Zerosum Sequences and Restricted Sumsets[J]. Bull. London Math. Soc, 2005(37):321-334.
[15]高維東,PENG J T,鐘慶海. A Quantitative Aspect of Nonunique Factorizations: the Narkiewicz Constants III[J]. Acta Arith., 2013(158):271-285.
(編輯:溫澤宇)endprint