陳俊敏,張祥建,劉曉霞,宋德剛,曹曉蕓,孫倩
血管穩(wěn)態(tài)是維持神經(jīng)系統(tǒng)功能正常的基礎(chǔ)。周細(xì)胞(pericyte)圍繞、包裹毛細(xì)血管壁,可收縮以調(diào)節(jié)腦血流量(cerebral blood flow,CBF),在維持血腦屏障(blood-brain barrier,BBB)、穩(wěn)定新生血管中發(fā)揮重要作用;同時(shí),與中樞神經(jīng)系統(tǒng)(central nervous system,CNS)疾病發(fā)生、發(fā)展和預(yù)后有關(guān),有可能成為CNS相關(guān)疾病的治療靶點(diǎn),越來越引起臨床的重視。
在CNS中內(nèi)皮細(xì)胞、基膜、周細(xì)胞、星型膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞和神經(jīng)元組成神經(jīng)血管單元,神經(jīng)血管單元是神經(jīng)活動(dòng)與血管功能的耦合器,周細(xì)胞是神經(jīng)血管單元的重要組成部分。周細(xì)胞通過直接接觸和(或)旁分泌信號(hào)與內(nèi)皮細(xì)胞進(jìn)行細(xì)胞通訊,引起相應(yīng)毛細(xì)血管活動(dòng)。周細(xì)胞主要功能包括:①調(diào)節(jié)CBF分布以匹配鄰近細(xì)胞局部代謝需要[1];②維持BBB穩(wěn)定[2];③穩(wěn)定新生血管;④多能干細(xì)胞功能[3];⑤參與神經(jīng)瘢痕的形成;⑥吞噬細(xì)胞活性等[4]。目前認(rèn)為周細(xì)胞在多種疾病中發(fā)揮重要作用,如卒中、糖尿病視網(wǎng)膜病變、阿爾茨海默?。ˋlzheimer's disease,AD)、常染色體顯性遺傳病合并皮質(zhì)下梗死和白質(zhì)腦?。╟erebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy,CADASIL)等。
1923年,ZIMMERMANN首先命名了周細(xì)胞,他詳細(xì)定義了周細(xì)胞的各種形態(tài)分類,包括它與平滑肌細(xì)胞的過渡形式。周細(xì)胞是一種扁而有突起的細(xì)胞,嵌入毛細(xì)血管的基膜中,位于內(nèi)皮細(xì)胞周圍,部分突起呈楔形插入內(nèi)皮細(xì)胞之間,通過毛細(xì)血管基膜的孔隙與內(nèi)皮細(xì)胞直接接觸。電鏡下,周細(xì)胞的核呈圓盤狀,主要由異染色質(zhì)構(gòu)成,細(xì)胞質(zhì)包含核糖體、高爾基體、線粒體、溶酶體、粗面和滑面內(nèi)質(zhì)網(wǎng)等細(xì)胞器。周細(xì)胞的突起具有多樣性,在小動(dòng)脈末端的毛細(xì)血管段突起呈圓環(huán)帶狀,在毛細(xì)血管床的中段突起呈細(xì)長(zhǎng)狀,在靜脈端的毛細(xì)血管段突起呈星狀[3,5]。不同形態(tài)突起的周細(xì)胞其肌動(dòng)蛋白表達(dá)不同,具有圓環(huán)帶狀突起的周細(xì)胞表達(dá)α平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA),具有細(xì)長(zhǎng)突起的周細(xì)胞部分表達(dá)α-SMA,具有星狀突起的周細(xì)胞不表達(dá)α-SMA[2]。周細(xì)胞表達(dá)肌動(dòng)蛋白故具有收縮性。有學(xué)者認(rèn)為,毛細(xì)血管的直徑變化是由周細(xì)胞產(chǎn)生的,而不是內(nèi)皮細(xì)胞,周細(xì)胞舒張可擴(kuò)張毛細(xì)血管。周細(xì)胞表面表達(dá)血小板衍生生長(zhǎng)因子β受體(platelet derived growth factor receptor β,PDGFR-β)和神經(jīng)膠質(zhì)細(xì)胞2型(neuroglial cell 2,NG2)硫酸軟骨素糖蛋白(chondroitin sulfate glycoprotein,CSGP)[3,6]。
2.1 調(diào)節(jié)腦血流及血氧代謝 大腦對(duì)血流波動(dòng)很敏感,血液供應(yīng)的穩(wěn)定性對(duì)維持大腦功能至關(guān)重要。大腦存在多種復(fù)雜的平衡調(diào)節(jié)機(jī)制,以維持充足的腦灌注[7]。最初認(rèn)為,腦血液系統(tǒng)是由腦血管壁、血液循環(huán)成分、神經(jīng)膠質(zhì)和神經(jīng)元組成,但現(xiàn)在認(rèn)為周細(xì)胞也參與其中并發(fā)揮重要作用[8]。在大腦皮層、小腦、視網(wǎng)膜等部位,去極化、神經(jīng)遞質(zhì)釋放、神經(jīng)元激活等可以使毛細(xì)血管的周細(xì)胞收縮,從而改變毛細(xì)血管的直徑[9]。在大腦皮層,神經(jīng)元激活等使幾乎相同數(shù)量的毛細(xì)血管和小動(dòng)脈擴(kuò)張,毛細(xì)血管擴(kuò)張發(fā)生在小動(dòng)脈擴(kuò)張之前,且毛細(xì)血管擴(kuò)張的發(fā)生與周細(xì)胞的存在相關(guān),這意味著毛細(xì)血管擴(kuò)張是由活性物引起周細(xì)胞松弛的主動(dòng)擴(kuò)張,而不是由小動(dòng)脈擴(kuò)張產(chǎn)生局部血壓增加的被動(dòng)反應(yīng)[6,10]。周細(xì)胞通過收縮和松弛,改變毛細(xì)血管直徑,使CBF重新分配。毛細(xì)血管收縮時(shí),毛細(xì)血管收縮點(diǎn)的大小不允許血細(xì)胞通過,但允許血漿通過,造成血細(xì)胞攔截而血漿流動(dòng)不間斷,即氧傳輸不足,同時(shí)葡萄糖繼續(xù)使用,促使無氧糖酵解乳酸鹽形成增加造成異相乳酸性酸中毒。在缺血性卒中上述原因可能是決定梗死的關(guān)鍵[11]。
2.2 維持血腦屏障穩(wěn)定 BBB指血-腦及血-腦脊液屏障,是腦毛細(xì)血管的特征性結(jié)構(gòu),限制周圍血細(xì)胞和大分子物質(zhì)從腦毛細(xì)血管進(jìn)入腦組織,可使腦組織少受甚至不受血液中有害物質(zhì)的損害從而保護(hù)腦組織,維持腦組織內(nèi)環(huán)境的穩(wěn)定性,同時(shí)對(duì)維持CNS神經(jīng)元的正?;顒?dòng)起著重要作用[1,12]。周細(xì)胞對(duì)誘導(dǎo)BBB形成和維持BBB功能起重要作用[13]。有證據(jù)表明功能性的BBB在胚胎時(shí)期星形膠質(zhì)細(xì)胞出現(xiàn)前已經(jīng)形成,其中周細(xì)胞是形成BBB所必需的并且調(diào)節(jié)和維持BBB結(jié)構(gòu)完整性,周細(xì)胞誘導(dǎo)內(nèi)皮細(xì)胞的緊密連接,抑制引起血管通透性增加的分子表達(dá)。轉(zhuǎn)基因小鼠模型中,周細(xì)胞表達(dá)減少引起B(yǎng)BB通透性增加。分離血管壁上的周細(xì)胞,引起B(yǎng)BB喪失內(nèi)皮細(xì)胞功能,導(dǎo)致緊密連接表達(dá)減少,引起胞飲和滲漏增加[14-15]。慢性BBB破壞可導(dǎo)致血液衍生的神經(jīng)毒性蛋白在CNS的積累包括纖維蛋白、凝血酶、血紅蛋白、含鐵血黃素、游離鐵和纖溶酶等,通過直接接觸神經(jīng)元產(chǎn)生毒性或氧化應(yīng)激,引起進(jìn)行性神經(jīng)元變性從而造成神經(jīng)元的損傷[13]。
2.3 穩(wěn)定新生血管 在血管生成的早期階段即胚胎時(shí)期血管生成階段,周細(xì)胞發(fā)揮重要作用。在血管生成階段,內(nèi)皮源性PDGFR-β和周細(xì)胞表達(dá)的受體PDGFR結(jié)合,介導(dǎo)周細(xì)胞增殖和遷移,黏附在血管腔上,周細(xì)胞進(jìn)一步調(diào)節(jié)內(nèi)皮細(xì)胞數(shù)量并促進(jìn)生成穩(wěn)定、成熟的血管網(wǎng)[16]。在PDGFR-β突變的轉(zhuǎn)基因小鼠模型中周細(xì)胞缺失,胚胎時(shí)期可以出現(xiàn)血管發(fā)芽,但是形成的血管管腔粗細(xì)不均,局灶性或彌漫性管腔擴(kuò)張,常出現(xiàn)易于破裂的微動(dòng)脈瘤,這表明周細(xì)胞對(duì)調(diào)節(jié)血管穩(wěn)定性至關(guān)重要[17-18]。周細(xì)胞還涉及參與神經(jīng)發(fā)生中血管生成信號(hào)分子的調(diào)節(jié)。周細(xì)胞分泌促血管生成細(xì)胞因子即血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF),VEGF反過來促進(jìn)周細(xì)胞增殖[19]。
2.4 多能干細(xì)胞功能 周細(xì)胞被認(rèn)為作為多能干細(xì)胞具有巨大的再生潛能。從不同組織分離的周細(xì)胞,在體外培養(yǎng)后可以分化成多種細(xì)胞類型,如樹突狀細(xì)胞、星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞、成骨細(xì)胞、成軟骨細(xì)胞、脂肪細(xì)胞、平滑肌細(xì)胞和內(nèi)皮細(xì)胞等[20-21]。在體內(nèi),內(nèi)源性周細(xì)胞被認(rèn)為是存在于組織的祖細(xì)胞,可以通過分化替換損傷細(xì)胞(不同類型的細(xì)胞),有助于組織修復(fù)和再生,并且可以進(jìn)一步促進(jìn)組織愈合。有研究者將周細(xì)胞注入急性心肌梗死老鼠的心臟,周細(xì)胞的再生能力增強(qiáng)了心臟的修復(fù)[22]。將成人CNS的周細(xì)胞分離并進(jìn)行體外培養(yǎng),通過多重免疫細(xì)胞化學(xué)標(biāo)記培養(yǎng)的細(xì)胞群。這些細(xì)胞表達(dá)出周細(xì)胞、神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞等特征性標(biāo)志物,許多細(xì)胞雙重表達(dá)不同細(xì)胞類型的特征性標(biāo)志物,將這些細(xì)胞繼續(xù)培養(yǎng),可分化出神經(jīng)譜系中的多種細(xì)胞類型,說明成人CNS周細(xì)胞具有神經(jīng)干細(xì)胞功能[19,23]。Nuno Guimar?es-Camboa等[20]通過研究認(rèn)為心臟、腦、骨骼肌和脂肪組織的內(nèi)源性成熟的周細(xì)胞不表現(xiàn)出多能干細(xì)胞的功能,其認(rèn)為體外培養(yǎng)或體內(nèi)移植后周細(xì)胞表現(xiàn)出多能干細(xì)胞的功能,可能與人工細(xì)胞培養(yǎng)環(huán)境有關(guān)。內(nèi)源性周細(xì)胞如何表現(xiàn)出多能干細(xì)胞的功能,仍需進(jìn)一步研究。
3.1 卒中 缺血性卒中,可通過多個(gè)途徑引起周細(xì)胞的收縮和死亡,如缺血性腦組織釋放三磷腺苷和血栓素A2能有效地引起周細(xì)胞的收縮,活性氧可引起肌動(dòng)蛋白運(yùn)動(dòng)而引起周細(xì)胞收縮[24]。周細(xì)胞收縮引起毛細(xì)血管收縮,隨后周細(xì)胞死亡[15,25]。即使血管上游的致病血栓祛除,堵塞的動(dòng)脈重新開放,由于周細(xì)胞死亡造成毛細(xì)血管的收縮長(zhǎng)期持續(xù),毛細(xì)血管再灌注受到限制,這是缺血性卒中后無復(fù)流現(xiàn)象的原因。此外,周細(xì)胞的死亡有可能導(dǎo)致BBB的破壞[2,6]。有觀點(diǎn)認(rèn)為,在缺血性卒中的不同階段,周細(xì)胞發(fā)揮不同的作用:①超急性期,周細(xì)胞收縮和死亡可能是腦毛細(xì)血管中無復(fù)流現(xiàn)象的原因。②急性期,周細(xì)胞從毛細(xì)血管分離并參與炎癥免疫反應(yīng),導(dǎo)致BBB損傷和腦水腫。周細(xì)胞同時(shí)可以通過保護(hù)內(nèi)皮細(xì)胞和釋放神經(jīng)營養(yǎng)因子,達(dá)到穩(wěn)定BBB和神經(jīng)保護(hù)的作用。③恢復(fù)期,周細(xì)胞有助于血管生成和神經(jīng)發(fā)生,從而促進(jìn)損傷恢復(fù)[26]。缺血性卒中后預(yù)防周細(xì)胞死亡成為重要的治療策略,周細(xì)胞成為缺血性卒中的潛在治療靶點(diǎn)[6,27]。
在出血性卒中,周細(xì)胞可在不同階段發(fā)揮不同的作用:①出血前,功能障礙和形態(tài)異常的周細(xì)胞可導(dǎo)致動(dòng)脈瘤形成、血管脆性增加、血流動(dòng)力學(xué)紊亂,最終導(dǎo)致脈管系統(tǒng)破裂[28];在PDGFR-β突變的轉(zhuǎn)基因小鼠模型中周細(xì)胞缺失,毛細(xì)血管具有出血傾向[15]。②出血急性期,復(fù)雜的出血微環(huán)境導(dǎo)致周細(xì)胞死亡,進(jìn)一步造成BBB破壞,周細(xì)胞可以介導(dǎo)炎癥級(jí)聯(lián)反應(yīng)、白質(zhì)損傷,并最終加重神經(jīng)損傷。③出血恢復(fù)期,被激活的周細(xì)胞可以分化成神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞、內(nèi)皮細(xì)胞以修復(fù)神經(jīng)血管網(wǎng)。周細(xì)胞可以吞噬紅細(xì)胞,使腦實(shí)質(zhì)免受毛細(xì)血管外漏的紅細(xì)胞造成的繼發(fā)性損傷。此外,許多周細(xì)胞聚集到損傷處有助于BBB的重塑,從而促進(jìn)卒中后的神經(jīng)血管功能恢復(fù)[15,28]。有觀點(diǎn)認(rèn)為,周細(xì)胞具有促凝和抗凝雙重功能,周細(xì)胞在出血性卒中具有協(xié)調(diào)止血和血栓形成的作用。其中,周細(xì)胞表達(dá)具有功能的活性組織因子,其激活凝血級(jí)聯(lián)反應(yīng),負(fù)調(diào)節(jié)纖維蛋白溶解,達(dá)到促血栓形成作用,該作用有助于調(diào)節(jié)和降低顱內(nèi)微出血的風(fēng)險(xiǎn)[15]。由于周細(xì)胞出血性卒中病理生理學(xué)中的多重功能,周細(xì)胞有可能成為出血性卒中的治療靶點(diǎn)。
3.2 糖尿病視網(wǎng)膜病變 周細(xì)胞嵌入視網(wǎng)膜毛細(xì)血管的基膜,并與糖尿病視網(wǎng)膜病變有關(guān)。視網(wǎng)膜毛細(xì)血管較其他組織更依賴周細(xì)胞,周細(xì)胞是維持視網(wǎng)膜毛細(xì)血管穩(wěn)定性和血視網(wǎng)膜屏障的關(guān)鍵[2,29]。周細(xì)胞對(duì)高血糖的代謝環(huán)境高度敏感,在糖尿病視網(wǎng)膜病變?cè)缙诎l(fā)生周細(xì)胞凋亡[30],并且證據(jù)表明周細(xì)胞的凋亡可能導(dǎo)致毛細(xì)血管的穩(wěn)定性受損,有可能出現(xiàn)微動(dòng)脈瘤造成微出血和毛細(xì)血管灌注損傷等,使視網(wǎng)膜毛細(xì)血管逐漸閉塞和血視網(wǎng)膜屏障破壞。最近,糖尿病視網(wǎng)膜中周細(xì)胞的凋亡被認(rèn)為是糖尿病視網(wǎng)膜病變的標(biāo)志[31-32],周細(xì)胞可能成為糖尿病視網(wǎng)膜病變的治療靶點(diǎn)。
3.3 阿爾茨海默病 AD患者大腦組織病理標(biāo)本具有小血管病的血管變化證據(jù),包括周細(xì)胞損傷、變性和萎縮,內(nèi)皮細(xì)胞損傷,平滑肌細(xì)胞變性,基底膜增厚,緊密連接和黏附連接蛋白減少,毛細(xì)血管密度降低等。有研究認(rèn)為周細(xì)胞與AD中的血管功能障礙、β淀粉樣蛋白(amyloid-β protein,Aβ)神經(jīng)變性、tau病理變化、神經(jīng)元丟失等密切相關(guān)[33-34]。對(duì)AD患者大腦的尸檢結(jié)果顯示,退化的周細(xì)胞內(nèi)檢測(cè)到淀粉樣沉積物,認(rèn)為在AD中周細(xì)胞功能障礙導(dǎo)致腦灌注不足和Aβ清除損傷,揭示出該疾病的一個(gè)新的時(shí)間變化順序,先由周細(xì)胞引起的微循環(huán)的功能障礙繼而引起神經(jīng)元變性[2]。在AD中,周細(xì)胞功能障礙引起B(yǎng)BB損傷,使血液來源的蛋白質(zhì)(如免疫球蛋白、白蛋白、纖維蛋白原和凝血酶)在海馬和皮層中積累,進(jìn)一步引起損傷[14]。在AD中,周細(xì)胞可能成為潛在的治療目標(biāo)。
3.4 CADASIL CADASIL是一種遺傳性小動(dòng)脈疾病,表現(xiàn)為腦血管功能障礙和進(jìn)行性癡呆。此病由Notch3基因突變引起,導(dǎo)致小動(dòng)脈和微小動(dòng)脈平滑肌細(xì)胞退化和功能喪失,平滑肌細(xì)胞表面可見嗜鋨顆粒(granular osmiophilic material,GOM)。周細(xì)胞也表達(dá)Notch3基因[35],在CADASIL中,周細(xì)胞表面可見GOM,導(dǎo)致周細(xì)胞數(shù)目及周細(xì)胞覆蓋在毛細(xì)血管的突起顯著減少,這些變化與星形膠質(zhì)細(xì)胞終足自毛細(xì)血管分離、血漿蛋白泄漏、內(nèi)皮粘連蛋白表達(dá)減少、毛細(xì)血管對(duì)二氧化碳反應(yīng)性下降相關(guān)[36-37]。周細(xì)胞損傷同時(shí)引起毛細(xì)血管通透性增加和功能障礙,導(dǎo)致腦白質(zhì)損傷。周細(xì)胞調(diào)節(jié)毛細(xì)血管收縮性,其損傷導(dǎo)致血管舒縮反應(yīng)異常,該異常出現(xiàn)在CADASIL血管壁組織病理變化之前[38]。因此,保護(hù)周細(xì)胞可能代表一種新的CADASIL的治療策略。
Robert A Hill等[39]認(rèn)為顱內(nèi)毛細(xì)血管中的周細(xì)胞完全缺乏α-SMA的表達(dá),小動(dòng)脈末端的毛細(xì)血管段具有圓環(huán)帶狀突起的壁細(xì)胞為典型的平滑肌細(xì)胞。不能僅從位置和大小鑒定毛細(xì)血管的所有壁細(xì)胞,因?yàn)檫@些壁細(xì)胞均表達(dá)生長(zhǎng)因子受體PDGFR-β和NG2-CSGP。識(shí)別壁細(xì)胞的可靠手段是通過α-SMA表達(dá)和突起的形態(tài)區(qū)別,具有圓環(huán)帶狀突起且表達(dá)α-SMA的壁細(xì)胞為平滑肌細(xì)胞,突起為細(xì)長(zhǎng)狀且不表達(dá)α-SMA為周細(xì)胞,最后其認(rèn)為具有收縮作用調(diào)節(jié)CBF及病理情況下對(duì)微循環(huán)起主要作用的為平滑肌細(xì)胞而不是周細(xì)胞[39]。該觀點(diǎn)與之前的文獻(xiàn)觀點(diǎn)不同之處主要是對(duì)周細(xì)胞和平滑肌細(xì)胞的定義不同,但他們所指的具有收縮性的細(xì)胞均為小動(dòng)脈末端的毛細(xì)血管段呈圓環(huán)帶狀突起的細(xì)胞,該細(xì)胞具有收縮性對(duì)CBF及病理情況下的微循環(huán)起主要作用。對(duì)于周細(xì)胞與平滑肌細(xì)胞的定義不同,造成了不同的結(jié)論,對(duì)該細(xì)胞的定義仍需進(jìn)一步的研究。
綜上所述,周細(xì)胞具有多種功能,與CNS疾病密切相關(guān)。進(jìn)一步深入研究周細(xì)胞的分布、功能,有可能為CNS相關(guān)疾病提供新的治療靶點(diǎn)。
[1] ELALI A,THéRIAULT P,RIVEST S. The role of pericytes in neurovascular unit remodeling in brain disorders[J]. Int J Mol Sci,2014,15(4):6453-6474.
[2] DALKARA T,GURSOY-OZDEMIR Y,YEMISCI M. Brain microvascular pericytes in health and disease[J]. Acta Neuropathol,2011,122(1):1-9.
[3] ATTWELL D,MISHRA A,HALL C N,et al. What is a pericyte?[J]. J Cereb Blood Flow Metab,2016,36(2):451-455.
[4] FERNáNDEZ-KLETT F,POTAS J R,HILPERT D,et al. Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke[J]. J Cereb Blood Flow Metab,2013,33(3):428-439.
[5] ARMULIK A,ABRAMSSON A,BETSHOLTZ C.Endothelial/pericyte interactions[J]. Circ Res,2005,97(6):512-523.
[6] HALL C N,REYNELL C,GESSLEIN B,et al.Capillary pericytes regulate cerebral blood fl ow in health and disease[J]. Nature,2014,508(7494):55-60.
[7] TAN C O,MEEHAN W P 3RD,IVERSON G L,et al. Cerebrovascular regulation,exercise,and mild traumatic brain injury[J]. Neurology,2014,83(18):1665-1672.
[8] KENNEY K,AMYOT F,HABER M,et al.Cerebral vascular injury in traumatic brain injury[J].Exp Neurol,2016,275 Pt 3:353-366.
[9] FANTINI S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, fl ow velocity,and oxygen consumption:Implications for functional neuroimaging and coherent hemodynamics spectroscopy(CHS)[J]. Neuroimage,2014,85 Pt 1:202-221.
[10] FERNáNDEZ-KLETT F,OFFENHAUSER N,DIRNAGL U,et al. Pericytes in capillaries are contractile in vivo,but arterioles mediate functional hyperemia in the mouse brain[J/OL]. Proc Natl Acad Sci U S A,2010,107(51):22290-22295. http://doi.org/10.1073/pnas.1011321108.
[11] HOSSMANN K A. Pathophysiology and therapy of experimental stroke[J]. Cell Mol Neurobiol,2006,26(7-8):1057-1083.
[12] OKADA R,WU Z,ZHU A,et al. Cathepsin D de fi ciency induces oxidative damage in brain pericytes and impairs the blood-brain barrier[J]. Mol Cell Neurosci,2015,64:51-60.
[13] DANEMAN R,ZHOU L,KEBEDE A A,et al.Pericytes are required for blood-brain barrier integrity during embryogenesis[J]. Nature,2010,468(7323):562-566.
[14] MONTAGNE A,BARNES S R,SWEENEY M D,et al. Blood-brain barrier breakdown in the aging human hippocampus[J]. Neuron,2015,85(2):296-302.
[15] LIU S,AGALLIU D,YU C,et al. The role of pericytes in blood-brain barrier function and stroke[J].Curr Pharm Des,2012,18(25):3653-3662.
[16] WINKLER E A,BELL R D,ZLOKOVIC B V.Central nervous system pericytes in health and disease[J]. Nat Neurosci,2011,14(11):1398-1405.
[17] HELLSTR?M M,GERHARDT H,KALéN M,et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis[J]. J Cell Biol,2001,153(3):543-553.
[18] WINKLER E A,BELL R D,ZLOKOVIC B V.Pericyte-speci fi c expression of PDGF beta receptor in mouse models with normal and de fi cient PDGF beta receptor signaling[J/OL]. Mol Neurodegener,2010,5:32. https://doi.org/10.1186/1750-1326-5-32.
[19] DORE-DUFFY P,KATYCHEV A,WANG X,et al.CNS microvascular pericytes exhibit multipotential stem cell activity[J]. J Cereb Blood Flow Metab,2006,26(5):613-624.
[20] GUIMAR?ES-CAMBOA N,CATTANEO P,SUN Y,et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo[J]. Cell Stem Cell,2017,20(3):345-359. e5.
[21] DELLAVALLE A,MAROLI G,COVARELLO D,et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fi bres and generate satellite cells[J]. Nat Commun,2011,2:499.
[22] XU J,GONG T,HENG B C,et al. A systematic review:differentiation of stem cells into functional pericytes[J]. FASEB J,2017,31(5):1775-1786.
[23] WONG S P,ROWLEY J E,REDPATH A N,et al. Pericytes,mesenchymal stem cells and their contributions to tissue repair[J]. Pharmacol Ther,2015,151:107-120.
[24] Fernández-Klett F,Priller J. Diverse functions of pericytes in cerebral blood fl ow regulation and ischemia[J]. J Cereb Blood Flow Metab,2015,35(6):883-887.
[25] KAMOUCHI M,AGO T,KURODA J,et al. The possible roles of brain pericytes in brain ischemia and stroke[J]. Cell Mol Neurobiol,2012,32(2):159-165.
[26] YANG S,JIN H,ZHU Y,et al. Diverse functions and mechanisms of pericytes in ischemic stroke[J].Curr Neuropharmacol,2017,15(6):892-905.
[27] NAKAMURA K,ARIMURA K,NISHIMURA A,et al. Possible involvement of basic FGF in the upregulation of PDGFRβ in pericytes after ischemic stroke[J/OL]. Brain Res,2016,1630:98-108. https://doi.org/10.1016/j.brainres.2015.11.003
[28] LI Q,LIU X,RUAN H,et al. Pericytes:potential target for hemorrhagic stroke prevention and treatment[J]. Curr Drug Deliv,2017,14(6):816-831.
[29] LI Y,SMITH D,LI Q,et al. Antibody-mediated retinal pericyte injury:implications for diabetic retinopathy[J/OL]. Invest Ophthalmol Vis Sci,2012,53(9):5520-5526. http://doi.org/10.1167/iovs.12-10010
[30] GUREL Z,ZARO B W,PRATT M R,et al.Identi fi cation of O-GlcNAc modi fi cation targets in mouse retinal pericytes:implication of p53 in pathogenesis of diabetic retinopathy[J/OL]. Plos One,2014,9(5):e95561. http://doi.org/10.1371/journal.pone.0095561
[31] ARBOLEDA-VELASQUEZ J F,VALDEZ C N,MARKO C K,et al. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy[J]. Curr Diab Rep,2015,15(2):573.
[32] DING X,ZHANG M,GU R,et al. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes[J]. Graefes Arch Clin Exp Ophthalmol,2017,255(4):777-788.
[33] WINKLER E A,SAGARE A P,ZLOKOVIC B V.The pericyte:a forgotten cell type with important implications for Alzheimer's disease?[J]. Brain Pathol,2014,24(4):371-386.
[34] GIANNONI P,ARANGO-LIEVANO M,NEVES I D,et al. Cerebrovascular pathology during the progression of experimental Alzheimer's disease[J/OL]. Neurobiol Dis,2016,88:107-117. https://doi.org/10.1016/j.nbd.2016.01.001
[35] KOFLER N M,CUERVO H,UH M K,et al.Combined de fi ciency of Notch1 and Notch3 causes pericyte dysfunction,models CADASIL,and results in arteriovenous malformations[J/OL]. Sci Rep,2015,5:16449. http://doi.org/10.1038/srep16449.
[36] CRAGGS L J,F(xiàn)ENWICK R,OAKLEY A E,et al.Immunolocalization of platelet-derived growth factor receptor-β(PDGFR-β)and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy(CADASIL)[J].Neuropathol Appl Neurobiol,2015,41(4):557-570.
[37] GHOSH M,BALBI M,HELLAL F,et al. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Ann Neurol,2015,78(6):887-900.
[38] DZIEWULSKA D,LEWANDOWSKA E. Pericytes as a new target for pathological processes in CADASIL[J]. Neuropathology,2012,32(5):515-521.
[39] HILL R A,TONG L,YUAN P,et al. Regional blood fl ow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes[J]. Neuron,2015,87(1):95-110.