杜薇 李毅剛
半乳糖凝集素3(Galectin 3, Gal-3)是β半乳糖凝集素家族中的成員之一,在上皮細(xì)胞、炎癥細(xì)胞等多種細(xì)胞中均有表達(dá),可介導(dǎo)多種生物學(xué)及病理生理學(xué)過程[1-3]。Gal-3在心血管疾病中發(fā)揮重要作用[4],其與心力衰竭[5]、動(dòng)脈粥樣硬化[6]、肥厚型心肌病[7]等疾病的發(fā)生發(fā)展及預(yù)后密切相關(guān)。近年來,Gal-3作為炎癥及纖維化的新型生物學(xué)指標(biāo),其與心房顫動(dòng)(簡(jiǎn)稱房顫)的發(fā)生發(fā)展、診斷治療、預(yù)后評(píng)估等方面的研究亦取得了顯著進(jìn)展。在此,筆者對(duì)目前Gal-3與房顫的相關(guān)研究進(jìn)展作一綜述。
既往動(dòng)物試驗(yàn)證實(shí)Gal-3在肝[8]、腎[9]、肺[10]、心臟[11]等多種器官纖維化過程中發(fā)揮重要作用。目前多項(xiàng)研究表明,Gal-3與房顫[12]、心力衰竭[13]、擴(kuò)張型心肌病[14]等多種心血管疾病的心肌纖維化程度亦具有相關(guān)性。
關(guān)于Gal-3致心肌纖維化的分子生物學(xué)機(jī)制,目前已有眾多的研究與猜想。研究顯示,Gal-3可以有選擇性地激活巨噬細(xì)胞[15],而激活的巨噬細(xì)胞可進(jìn)一步分泌Gal-3,同時(shí),Gal-3通過旁分泌作用特異性作用于心肌細(xì)胞的細(xì)胞外基質(zhì)(extracellular matrix, ECM),與其中某些蛋白如細(xì)胞表面受體、膠原蛋白、彈性蛋白、纖連蛋白相結(jié)合,參與膠原蛋白的成熟、外化和交聯(lián)過程[11]。在此過程中,Gal-3被激活并和其它Gal-3殘基結(jié)合成二聚體,形成網(wǎng)狀結(jié)構(gòu),從而使細(xì)胞外基質(zhì)堆積、組織僵硬度增加[16]。
同時(shí),Gal-3可募集單核細(xì)胞、巨噬細(xì)胞、肌成纖維細(xì)胞、成纖維細(xì)胞至心肌組織內(nèi),與上述細(xì)胞一同定位于纖維化部位,促進(jìn)該處炎癥細(xì)胞浸潤(rùn),并誘導(dǎo)一系列炎癥因子如轉(zhuǎn)化生子因子β(TGF-β)、白細(xì)胞介素1(IL-1)、白細(xì)胞介素2(IL-2)的釋放,加速成纖維細(xì)胞的增殖以及轉(zhuǎn)化,直接誘導(dǎo)I型膠原蛋白在細(xì)胞外基質(zhì)中沉積[17-18]。
另外,Gal-3可通過TGF-β進(jìn)一步發(fā)揮其促炎、促纖維化的作用。Gal-3五聚體可與TGF-β受體氨基端多聚乙酰氨基乳糖結(jié)構(gòu)域(LacNac)結(jié)合,使TGF-β受體滯留在肌成纖維細(xì)胞表面并內(nèi)化,由此增強(qiáng)TGF-β及其下游通路的作用[19]。動(dòng)物實(shí)驗(yàn)表明,Gal-3可能通過激活TGF-β/Smad3通路介導(dǎo)的肌成纖維細(xì)胞增殖來促進(jìn)心肌和血管纖維化形成[20]。
目前有研究證實(shí),腎素-血管緊張素-醛固酮系統(tǒng)與Gal-3在介導(dǎo)心肌纖維化中存在共同的信號(hào)通路。在一種雙轉(zhuǎn)基因小鼠模型中,實(shí)驗(yàn)組小鼠高表達(dá)醛固酮合酶以及腎素基因,高醛固酮水平增加了心肌的巨噬細(xì)胞浸潤(rùn),并促進(jìn)了心肌中Gal-3、骨橋蛋白、單核細(xì)胞趨化蛋白1(MCP-1) mRNA的表達(dá),提示醛固酮在刺激巨噬細(xì)胞分泌Gal-3以及穩(wěn)定纖維化-抗纖維化平衡中發(fā)揮重要作用[21]。
目前已有多項(xiàng)研究顯示炎癥及纖維化在房顫發(fā)生、發(fā)展過程中的關(guān)鍵作用。Frustaci等[22]通過對(duì)孤立性房顫患者右房心肌活檢發(fā)現(xiàn)房顫的發(fā)生與炎癥反應(yīng)及纖維化有關(guān)。Li等[23]對(duì)犬房顫模型的心房組織切片時(shí)發(fā)現(xiàn)心房肌細(xì)胞壞死、間質(zhì)膠原沉積、心肌組織纖維化明顯。Boldt等[24]發(fā)現(xiàn)繼發(fā)于二尖瓣病變的房顫患者心肌組織中膠原沉積增加。Xu等[25]發(fā)現(xiàn)心肌細(xì)胞外基質(zhì)的容積以及組分與房顫狀態(tài)有關(guān)。而Gal-3作為新近發(fā)現(xiàn)的重要的促炎、促纖維化因子,其與房顫的發(fā)生發(fā)展、病情評(píng)估以及手術(shù)預(yù)后均有著密切聯(lián)系。
2.1Gal-3與房顫發(fā)病預(yù)測(cè) 已有多項(xiàng)研究肯定了Gal-3在預(yù)測(cè)不同人群罹患房顫風(fēng)險(xiǎn)中的作用。Szadkowska等[26]發(fā)現(xiàn)對(duì)于接受經(jīng)皮冠狀動(dòng)脈介入治療(PCI)的初發(fā)急性心肌梗死患者,血漿中Gal-3濃度>16 ng/ml與住院期間新發(fā)房顫情況獨(dú)立相關(guān)。Alexandre等[27]在一項(xiàng)關(guān)于29例行冠狀動(dòng)脈搭橋手術(shù)患者的病例對(duì)照研究中發(fā)現(xiàn),患者術(shù)前血漿Gal-3水平與術(shù)后房顫發(fā)生有關(guān),但是否具有預(yù)測(cè)價(jià)值尚需進(jìn)一步驗(yàn)證。此外,Van Der Velde團(tuán)隊(duì)[4]通過對(duì)5 958人的普通人群平均隨訪12.5年,發(fā)現(xiàn)動(dòng)態(tài)監(jiān)測(cè)Gal-3濃度與單次測(cè)定Gal-3濃度相比,前者對(duì)人群新發(fā)房顫的預(yù)測(cè)準(zhǔn)確性更高。
然而,Ho等[28]的一項(xiàng)有關(guān)3 306名弗雷明漢后代群體(the Framingham offspring cohort)的前瞻性研究指出,在僅校正年齡與性別因素后,Gal-3濃度與人群房顫發(fā)生風(fēng)險(xiǎn)有關(guān);而在校正年齡、性別及已知的房顫相關(guān)危險(xiǎn)因素(如身體質(zhì)量指數(shù)、高血壓、糖尿病、吸煙、心肌梗死史、心力衰竭)后,Gal-3則不能預(yù)測(cè)房顫發(fā)生風(fēng)險(xiǎn)。進(jìn)一步研究顯示,在已知的房顫相關(guān)危險(xiǎn)因素中加入對(duì)Gal-3濃度的評(píng)估,亦不能增加對(duì)房顫發(fā)生風(fēng)險(xiǎn)預(yù)測(cè)的準(zhǔn)確性。因此,Gal-3對(duì)人群中房顫發(fā)病的預(yù)測(cè)價(jià)值仍需進(jìn)一步佐證。
2.2Gal-3與房顫病情評(píng)估 有研究表明血漿中Gal-3濃度可用以評(píng)估房顫患者心臟重構(gòu)的程度。Yalcin等[12]通過延遲增強(qiáng)心臟磁共振成像(DE-MRI)對(duì)陣發(fā)性房顫患者的心房纖維化程度進(jìn)行評(píng)估,同時(shí)通過超聲心動(dòng)圖記錄患者左房、右房、全心房?jī)?nèi)電機(jī)械延遲時(shí)間(atrial electromechanical delay, AEMD)以評(píng)價(jià)其心臟電重構(gòu)程度。結(jié)果表明Gal-3與陣發(fā)性房顫患者心房結(jié)構(gòu)重構(gòu)和電重構(gòu)程度密切相關(guān)。該團(tuán)隊(duì)的另一項(xiàng)病例對(duì)照研究則進(jìn)一步證實(shí)了Gal-3與房顫患者心房結(jié)構(gòu)重構(gòu)密切相關(guān)[29]。此外,劉璀等[30]發(fā)現(xiàn)Gal-3與孤立性房顫患者的心肌纖維化亦具有相關(guān)性。然而,Osman 等[31]發(fā)現(xiàn)房顫患者血漿中Gal-3濃度雖顯著高于正常竇性心律者,但血漿中Gal-3濃度與左房容積指數(shù)無明顯關(guān)聯(lián),提示Gal-3可作為房顫患者心房重構(gòu)的早期臨床指標(biāo),但關(guān)聯(lián)性不強(qiáng)。
針對(duì)不同種類的房顫人群(如初發(fā)房顫、陣發(fā)性房顫、房顫合并代謝綜合征等),血漿中Gal-3濃度與疾病的評(píng)估亦有所研究。Chen等[32]發(fā)現(xiàn)高Gal-3濃度與高齡、女性、高超敏C反應(yīng)蛋白濃度以及低血肌酐濃度同為初發(fā)房顫的獨(dú)立相關(guān)因素。Selcoki等[33]發(fā)現(xiàn)Gal-3可作為陣發(fā)性房顫病情評(píng)估的新型生物學(xué)指標(biāo)。Ionin等[34]則發(fā)現(xiàn)血漿中Gal-3與醛固酮水平為高血壓合并肥胖患者罹患房顫的獨(dú)立危險(xiǎn)因素。
2.3Gal-3與房顫手術(shù)預(yù)后 Gal-3對(duì)于房顫射頻消融手術(shù)預(yù)后的評(píng)估價(jià)值目前尚存在爭(zhēng)論。Clementy等[35]通過對(duì)160名房顫患者射頻消融術(shù)后隨訪12個(gè)月發(fā)現(xiàn),Gal-3濃度與左房?jī)?nèi)徑(left atrial diameter, LAD)同為預(yù)測(cè)房顫射頻消融術(shù)后復(fù)發(fā)的獨(dú)立危險(xiǎn)因素。Wu等[36]發(fā)現(xiàn)血漿中Gal-3濃度與LAD對(duì)孤立性房顫患者射頻消融術(shù)后房顫復(fù)發(fā)情況同樣有預(yù)測(cè)價(jià)值,且Gal-3與LAD聯(lián)合應(yīng)用的預(yù)測(cè)價(jià)值較單一指標(biāo)更高。此外,Takemoto等[37]發(fā)現(xiàn)房顫患者術(shù)前冠狀竇內(nèi)血Gal-3濃度為預(yù)測(cè)其射頻消融術(shù)后房顫復(fù)發(fā)的獨(dú)立危險(xiǎn)因素。
然而Kornej團(tuán)隊(duì)[38]一項(xiàng)關(guān)于105名房顫患者的前瞻性研究則否定了Gal-3在預(yù)測(cè)房顫射頻消融術(shù)后復(fù)發(fā)中的意義。研究者發(fā)現(xiàn)Gal-3濃度與人群身體質(zhì)量指數(shù)有關(guān)而非房顫本身,且Gal-3濃度在射頻消融手術(shù)前后無明顯差異。同時(shí),血漿中Gal-3濃度與房顫早期(術(shù)后1周內(nèi))復(fù)發(fā)或晚期(術(shù)后3~6個(gè)月內(nèi))復(fù)發(fā)無關(guān)。對(duì)此作者表示,Gal-3與細(xì)胞外基質(zhì)轉(zhuǎn)化以及炎癥、纖維化等多種生物學(xué)過程有關(guān),血中Gal-3濃度可能是年齡、性別、基礎(chǔ)疾病、房顫類型等多種因素的綜合反映。此外,Begg等[39]表示血漿中Gal-3濃度對(duì)房顫患者直流電復(fù)律術(shù)后的預(yù)后同樣沒有預(yù)測(cè)價(jià)值。
2.4Gal-3與房顫治療 已有研究表明某些特異性阻斷Gal-3作用的藥物在減緩心臟重構(gòu)、降低房顫負(fù)荷中發(fā)揮積極作用。
GM-CT是一種半乳甘露聚糖,可與Gal-3的糖識(shí)別結(jié)構(gòu)域結(jié)合,從而抑制Gal-3的作用[40]。在20例羊房顫模型中,體內(nèi)外試驗(yàn)表明GM-CT可減緩房顫所致的心房結(jié)構(gòu)重構(gòu)與電重構(gòu),且GM-CT可減輕房顫負(fù)荷,抑制陣發(fā)性房顫向持續(xù)性房顫的轉(zhuǎn)變[37]。此前有研究表明半乳糖凝集素1(Galectin 1, Gal-1)亦可促進(jìn)心臟肌成纖維細(xì)胞增殖[41],但在上述模型中,可有效抑制Gal-3的GM-CT劑量無法有效抑制Gal-1,提示GM-CT對(duì)Gal-3具有高選擇性,因此更具有臨床應(yīng)用價(jià)值[37]。
除GM-CT外,N-乙?;?絲氨酰-天門冬酰-賴氨酰-脯氨酸(Ac-SDKP)抑制Gal-3的作用亦被證實(shí)。Ac-SDKP是一種天然存在的具有抗炎、抗纖維化作用的多肽,可被血管緊張素轉(zhuǎn)化酶(ACE)水解,并介導(dǎo)血管緊張素轉(zhuǎn)化酶抑制劑(ACEI)發(fā)揮抗炎、抗纖維化的作用[42]。既往研究表明,Ac-SDKP可通過抑制由Gal-3誘導(dǎo)的巨噬細(xì)胞活化以及細(xì)胞因子分泌來發(fā)揮其抗炎作用[43]。Liu等[20]發(fā)現(xiàn)在成年雄性大鼠左室心肌組織中,局部注射Ac-SDKP可能通過抑制TGF-β/Smad3通路來部分或完全抑制Gal-3誘導(dǎo)的炎癥細(xì)胞浸潤(rùn)、成纖維細(xì)胞增殖、心肌間質(zhì)及周圍血管纖維化、心肌肥厚、心臟收縮-舒張功能障礙等過程,提示Ac-SDKP在治療由免疫或炎癥反應(yīng)(如病毒性心肌炎、心臟移植后排異反應(yīng)、心包炎等)介導(dǎo)的房顫或心力衰竭進(jìn)程中有一定治療價(jià)值。但本試驗(yàn)僅說明Ac-SDKP能通過心內(nèi)注射在心臟局部發(fā)揮治療作用,對(duì)于外周血循環(huán)中的治療作用尚需進(jìn)一步證實(shí)。
Gal-3作為新型炎癥及纖維化指標(biāo),是目前基礎(chǔ)及臨床研究的熱點(diǎn),其與房顫的發(fā)生發(fā)展、診斷治療、預(yù)后評(píng)估等方面的關(guān)系正受到廣泛關(guān)注。多中心大樣本臨床研究肯定了Gal-3在預(yù)測(cè)不同人群罹患房顫風(fēng)險(xiǎn)、評(píng)估房顫患者心臟重構(gòu)程度以及預(yù)測(cè)房顫患者射頻消融手術(shù)預(yù)后中的作用。然而,仍有研究顯示Gal-3與房顫發(fā)生或射頻消融術(shù)后房顫復(fù)發(fā)無關(guān)。因此,關(guān)于Gal-3在預(yù)測(cè)房顫發(fā)生以及射頻消融手術(shù)預(yù)后中的作用,仍需要大量的基礎(chǔ)以及臨床研究予以佐證。另一方面,目前動(dòng)物試驗(yàn)已證實(shí)Gal-3的藥物抑制劑在減緩心臟重構(gòu)、降低房顫負(fù)荷中的作用。抑制Gal-3的生成或者阻斷Gal-3的基因表達(dá),可以有效控制心肌纖維化并逆轉(zhuǎn)心肌重構(gòu)。因此,Gal-3抑制劑可能會(huì)為臨床上房顫預(yù)防以及特異性治療帶來新的曙光。
1 Dumic J, Dabelic S, Fl?gel M. Galectin-3: an open-ended story[J]. Biochim Biophys Acta, 2006, 1760:616e635
2 Sharma UC,Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction[J]. Circulation, 2004, 110: 3 121
3 Pugliese G, Iacobini C, Pesce CM, et al. Galectin-3: an emerging all-out player in metabolic disorders and their complications[J]. Glycobiology, 2015, 25:136
4 Van Der Velde AR, Meijers WC, Ho JE, et al. Serial galectin-3 and future cardiovascular disease in the general population[J]. Heart, 2016, 102:1 134
5 Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community[J]. J Am Coll Cardiol, 2012, 60:1 249
6 Madrigal-Matute J, Lindholt JS, Fernandez-Garcia CE, et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis[J]. J Am Heart Assoc, 2014, 3:e 000 785
7 Yakar Tülüce S, Tülüce K, ?il Z, et al. Galectin-3 levels in patients with hypertrophic cardiomyopathy and its relationship with left ventricular mass index and function[J]. Anatol J Cardiol, 2016, 16: 344
8 Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis[J].Proc Natl Acad Sci, 2006, 103(13):5 060
9 Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis[J]. Am J Pathol, 2008, 172(2):288
10 Nishi Y, Sano H, Kawashima T, et al. Role of galectin-3 in human pulmonary fibrosis[J]. Allergol Int, 2007, 56(1): 57
11 Yu L, Ruifrok WP, Meissner M, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis[J]. Circ Heart Fail, 2013, 6:107
12 Yalcin MU, Gurses KM, Kocyigit D, et al.The association of serum galectin-3 levels with atrial electrical and structural remodeling[J]. J Cardiovasc Electrophysiol, 2015, 26:635
13 Zile MR, Jhund PS, Baicu CF, et al. Plasma biomarkers reflecting profibroticprocesses in heart failure with a preserved ejection fraction:data from the prospective comparison of ARNI with ARB on management of heart failure with preserved ejection fraction study[J]. Circ Heart Fail, 2016, 9(1)
14 Vergaro G, Del Franco A, Giannoni A, et al. Galectin-3 and myocardial fibrosis in nonischemic dilated cardiomyopathy[J]. Int J Cardiol, 2015, 184:96
15 MacKinnon AC, Farnworth SL, Hodkinson PS, et al. Regulation of alternative macrophage activation by galectin-3[J]. J Immunol, 2008, 180:2 650
16 Rabinovich GA, Baum LG, Tinari N, et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response[J]. Trends Immunol, 2002, 23:313
17 Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction[J]. Circulation, 2004, 110:3 121
18 Lin YH, Lin LY,Wu YW, et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients[J]. Clinica Chimica Acta, 2009, 409:96
19 Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3[J]. Am J Respir Crit Care Med, 2012, 185:537
20 Liu YH, D′Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin[J]. Am J Physiol Heart Circ Physiol, 2009, 296(2):H404
21 Azibani F, Benard L, Schlossarek S, et al. Aldosterone inhibits antifibrotic factors in mouse hypertensive heart[J]. Hypertension, 2012, 59:1 179
22 Frustaci A, Chimenti C, Bellocci F, et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation[J]. Circulation, 1997, 96(4):1 180
23 Li D, Fareh S, Leung TK, et al. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort[J].Circulation, 1999, 100:87
24 Boldt A, Wetzel U, Lauschke J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease[J]. Heart, 2004, 90:400e405
25 Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation[J]. Circulation, 2004, 109:363e368
26 Szadkowska I, Wlazel RN, Migala M, et al. The association between galectin-3 and clinical parameters in patients with first acute myocardial infarction treated with primary percutaneous coronary angioplasty[J]. Cardiology Journal, 2013, 20(6):577
27 Alexandre J, Salouxb E, Chequel M, et al. Preoperative plasma aldosterone and the risk of atrial fibrillation after coronary artery bypass surgery: a prospective cohort study[J]. Journal of Hypertension, 2016, 34(12):2 449
28 Ho JE, Yin X, Levy D, et al. Galectin 3 and incident atrial fibrillation in the community[J]. Am Heart J, 2014, 167(5):729
29 Gurses KM, Yalcin MU, Kocyigit D, et al. Effects of persistent atrial fibrillation on serum galectin-3 levels[J]. Am J Cardiol, 2015, 115:647e651
30 劉璀, 董劍廷. 半乳凝集素-3與心房纖顫患者心肌纖維化的相關(guān)性研究[J].實(shí)用醫(yī)學(xué)雜志, 2015, 31(14):2 322
31 Osman S, Furkan UE, Mehmet AV, et al. Novel fibro-inflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation[J]. Med Sci Monit, 2014, 20:463
32 Chen D, Procter N, Goh V, et al. New onset atrial fibrillation is associated with elevated galectin-3 levels[J]. International Journal of Cardiology, 2016, 223:48
33 Selcoki Y, Aydin Hi, Celik TH, et al. Galectin-3: A biochemical marker to detect paroxysmal atrial fibrillation[J]. Clin Invest Med, 2016, 39(6):27 528
34 Ionin V, Zaslavskaya EL, Belyaeva OD, et al. New risk factors for atrial fibrillation in patients with hypertension and obesity[J]. Journal of Hypertension, 2016, 34(Suppl 2):e23
35 Clementy N, Benhenda N, Piver E, et al. Serum galectin-3 levels predict recurrences after ablation of atrial fibrillation[J]. Scientific Reports, 2016, 6:34 357
36 Wu XY, Li SN, Wen SN, et al. Plasma galectin-3 predicts clinical outcomes after catheter ablation in persistent atrial fibrillation patients without structural heart disease[J]. Europace, 2015, 17(10):1 541
37 Takemoto Y, Ramirez RJ, Yokokawa M, et al. Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes[J]. JACC Basic Transl Sci, 2016, 1(3):143
38 Kornej J, Schmidl J, Ueberham L, et al. Galectin-3 in patients with atrial fibrillation undergoing radiofrequency catheter ablation[J]. PLoS ONE, 2015, 10(4):e0123 574
39 Begg GA, Lip GY, Plein S, et al. Circulating biomarkers of fibrosis and cardioversion of atrial fibrillation: a prospective, controlled cohort study[J].Clin Biochem, 2017, 50(1-2):11
40 Traber PG, Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors[J]. PLoS One, 2013, 8:e83481
41 Lin YT, Chen JS, Wu MH, et al. Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts[J]. J Invest Dermatol, 2015, 135:258
42 Peng H, Carretero OA, Liao TD,et al. Role of Ac-SDKP in the antifibrotic effect of angiotensin-converting enzyme inhibitors in hypertension-induced target organ damage[J]. Hypertension, 2007, 49:1
43 Rhaleb NE, Peng H, Harding P, et al. Effect of N-acetyl-seryl-aspartyl-lysyl-proline on DNA and collagen synthesis in rat cardiac fibroblasts[J]. Hypertension, 2001, 37: 827