高直 孔維賓
摘 要:針對存在未知時變慣量不確定性、外部干擾力矩和執(zhí)行機構(gòu)衰退故障的非剛體航天器系統(tǒng),研究了非剛體航天器自適應(yīng)優(yōu)化容錯控制問題。首先,為了根據(jù)誤差變量優(yōu)化控制增益,設(shè)計一種動態(tài)增益調(diào)整函數(shù)實時優(yōu)化控制增益;然后,基于非線性魯棒控制方法、動態(tài)增益函數(shù)調(diào)整方法、自適應(yīng)方法、容錯控制理論與參數(shù)估計方法,提出一種新穎的自適應(yīng)優(yōu)化姿態(tài)跟蹤容錯控制器。所設(shè)計的控制器克服了執(zhí)行器故障、慣量不確定性以及外界干擾的影響,保證航天器姿態(tài)及角速度能夠跟蹤時變的參考軌跡,實現(xiàn)跟蹤誤差系統(tǒng)最終一致有界穩(wěn)定;最后,數(shù)字仿真結(jié)果驗證了所提出方法的有效性,而且與已有控制方法相比,該方法具有更高的控制精度和穩(wěn)定性。
關(guān)鍵詞:未知時變慣量;執(zhí)行機構(gòu)衰退;非剛體航天器;優(yōu)化容錯控制;動態(tài)調(diào)整函數(shù)
DOIDOI:10.11907/rjdk.181545
中圖分類號:TP319
文獻(xiàn)標(biāo)識碼:A 文章編號:1672-7800(2018)010-0148-05
英文摘要Abstract:This paper investigates an adaptive optimal fault-tolerant control problem for non-rigid spacecraft attitude maneuver with unknown time-varying inertia,external disturbance and actuator fading.Firstly,a dynamic gain adjustment function is designed to optimize the control gain according to the error variables.Secondly,based on nonlinear robust control,the dynamic adjustment function,adaptive approach,fault-tolerant control theory and parameter estimation method,a novel adaptive optimal attitude tracking fault-tolerant controller is proposed.The proposed controller overcomes the influence of actuator fault,inertia uncertainty and external disturbance, andit can guarantee the attitude and angular velocity to track the reference time-varying trajectory and guarantee that the uniformly ultimately bounded stability of the error system is achieved.Finally,simulation results validate the effectiveness of the presented control algorithm and demonstrate higher control precision and better performance of the designed control approach compared with existing methods.
英文關(guān)鍵詞Key Words:unknown time-varying inertia;actuator fading;non-rigid spacecraft;optimal fault-tolerant control;dynamic adjustment function
0 引言
航天器執(zhí)行在軌維護、空間通信和對地觀測等航天任務(wù)時,要求能夠快速準(zhǔn)確地跟蹤參考姿態(tài)軌跡。近年來,航天器的姿態(tài)控制問題得到廣泛關(guān)注,國內(nèi)外學(xué)者在該領(lǐng)域取得了大量研究成果[1-9]。
此外,伴隨著航天器在軌任務(wù)的多樣化與復(fù)雜化,對其姿態(tài)控制系統(tǒng)的安全性及可靠性也提出了更高要求。其要求當(dāng)航天器執(zhí)行機構(gòu)及系統(tǒng)內(nèi)部元器件發(fā)生故障時,能夠?qū)崿F(xiàn)對這些故障的容錯控制,從而提高航天器的自主性。由于航天器長期工作在強輻射和高低溫的惡劣環(huán)境下,長時間工作將使機載元器件逐漸老化,最終導(dǎo)致執(zhí)行機構(gòu)產(chǎn)生功能性衰退及其它故障,進(jìn)而影響系統(tǒng)穩(wěn)定性。因此,航天器容錯控制問題已成為近年來的研究熱點之一[10-13]。文獻(xiàn)[11]、[12]在慣量為定常條件下考慮系統(tǒng)容錯控制問題。文獻(xiàn)[11]針對執(zhí)行機構(gòu)損失部分效能的情況,設(shè)計一種自適應(yīng)反步控制策略,使航天器在存在干擾的環(huán)境中達(dá)到姿態(tài)穩(wěn)定;文獻(xiàn)[12]在不考慮外界干擾的情況下,針對執(zhí)行機構(gòu)功能衰退故障設(shè)計一種自適應(yīng)容錯姿態(tài)控制邏輯;文獻(xiàn)[13]針對具有未知常數(shù)慣量不確定性和外界干擾的航天器,設(shè)計一種有限時間自適應(yīng)滑模姿態(tài)跟蹤控制器,使航天器姿態(tài)能夠在有限時間內(nèi)跟蹤上期望姿態(tài)。
與此同時,航天器在執(zhí)行任務(wù)時,由于受燃料持續(xù)消耗、液體晃動、太陽帆板運動等客觀因素影響,航天器慣量是未知且時變的[14-15],而且由于太空環(huán)境的多樣性,在軌運行的航天器不可避免地會受到外界干擾力矩影響[16-17]。然而,上述容錯控制策略僅考慮存在時變慣量、執(zhí)行機構(gòu)性能損失和外界干擾等情況下的剛體航天器姿態(tài)容錯控制問題。受上述問題啟發(fā),本文針對非剛體航天器在軌運行時同時受到慣量未知時變性、外界持續(xù)干擾以及執(zhí)行機構(gòu)部分失效等影響,設(shè)計一種姿態(tài)跟蹤機動的自適應(yīng)優(yōu)化容錯控制律,使航天器姿態(tài)及角速度跟蹤上參考軌跡。所提出的控制律結(jié)構(gòu)簡單,易于工程實現(xiàn),理論分析和數(shù)值仿真驗證了該控制策略的有效性,且該方法可同時用于剛體航天器的自適應(yīng)姿態(tài)跟蹤容錯控制,在控制律設(shè)計部分對此進(jìn)行詳細(xì)說明。
1 問題描述
1.1 航天器系統(tǒng)模型
4 結(jié)語
本文基于非線性系統(tǒng)魯棒控制方法、自適應(yīng)方法、動態(tài)增益調(diào)整優(yōu)化方法及參數(shù)估計方法,設(shè)計了一種姿態(tài)機動自適應(yīng)優(yōu)化容錯控制方法,并通過對航天器跟蹤誤差系統(tǒng)的仿真研究,驗證了該方法的可行性及魯棒性。該控制器克服了執(zhí)行器衰退、慣量不確定性及外界干擾對系統(tǒng)穩(wěn)定性的影響,且具有結(jié)構(gòu)簡單、易于工程實現(xiàn)等優(yōu)點。
參考文獻(xiàn):
[1] ZOU A M,KUMAR K D,HOU Z G.Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks[J].IEEE Transactions on Neural Networks,2010,21(9):1457-1471.
[2] WU S H,RADICE G,GAO Y S,SUN Z W.Quaternion-based finite time control for spacecraft attitude tracking[J].Acta Astronautica,2011,69(1):48-58.
[3] 李波,胡慶雷,石忠,等.基于反步法與動態(tài)控制分配的航天器姿態(tài)機動控制[J].控制理論與應(yīng)用,2012,29(11):1419-1425.
[4] ZHU Z H,GUO Y.Adaptive fault-tolerant attitude tracking control for spacecraft formation with unknown inertia[J].International Journal of Adaptive Control and Signal Processing,2018,32(1):13-26.
[5] 殷春武,侯明善,李明翔.姿態(tài)變化一致有界的姿態(tài)穩(wěn)定控制器設(shè)計[J].控制與決策,2016,31(8):1493-1498.
[6] CONG B L,LIU X D,CHEN Z.Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers[J].Aerospace Science and Technology,2013,30(1):1-7.
[7] ZHU Z H,GUO Y.Distributed attitude coordination tracking control for spacecraft formation with time-varying delays[J].Transactions of the Institute of Measurement and Control,2018,40(6):2082-2087.
[8] TIWARI P M,JANARDHANAN S,NABI M U.Rigid spacecraft attitude control using adaptive integral second order sliding mode[J].Aerospace Science and Technology,2015,42:50-57.
[9] HUO B Y,XIA YQ,LU KF,F(xiàn)U M Y.Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft[J].Journal of the Franklin Institute,2015,352(10):4225-4246.
[10] 李濤,張斌,喬建忠.執(zhí)行機構(gòu)部分失效的撓性航天器多界依賴容錯控制[J].控制理論與應(yīng)用,2017,34(3):383-392.
[11] HU Q L,XIAO B,ZHANG Y M.Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness[J].Journal of Guidance Control and Dynamics,2011,34(3):927-932.
[12] HAN Y,BIGGS J D,CUI N G.Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures[J].Journal of Guidance Control and Dynamics,2015,38(10):2033-2042.
[13] XIAO B,HU Q L,Zhang Y M.Finite-time attitude tracking of spacecraft with fault-tolerant capability[J].IEEE Transactions on Control Systems Technology,2015,23(4):1338-1350.
[14] SIDI M J.Spacecraft dynamics and control:a practical engineering approach[M].New York:Cambridge University Press,1997.
[15] WALLSGROVE R J,AKELLA M R.Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J].Journal of Guidance Control and Dynamics,2005,28(5):957-963.
[16] 李隆,侯建文,史小平,等.航天器姿態(tài)跟蹤系統(tǒng)自適應(yīng)滑??刂芠J].電機與控制學(xué)報,2015,19(2):96-108.
[17] PARK Y.Robust and optimal attitude control of spacecraft with disturbances[J].International Journal of Systems Science,2015,46(7):1222-1233.
[18] THAKUR D,SRIKANT S,AKELLA M R.Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J].Journal of Guidance Control and Dynamics,2015,38(1):41-51.
[19] QU Z H,DAWSON D M,LIM S Y,DORSEY J F.A new class of robust control laws for tracking of robots[J].International Journal of Robotics Research,1994,13(4):355-363.
[20] 王衛(wèi)杰,任元,李怡勇,等.航天器非線性魯棒自適應(yīng)姿態(tài)機動控制律[J].系統(tǒng)工程與電子技術(shù),2015,37(1):135-140.
[21] CAI W C,LIAO X H,SONG D Y.Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J].Journal of Guidance Control and Dynamics,2008,31(5):1456-1463.
(責(zé)任編輯:黃 ?。?/p>