李志明,張 雋,鮑云杰,曹婷婷,徐二社,芮曉慶,陳紅宇,楊 琦,張慶珍
1.中國石化石油勘探開發(fā)研究院無錫石油地質(zhì)研究所,江蘇 無錫 214126 2.頁巖油氣富集機(jī)理與有效開發(fā)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214126 3.國家能源頁巖油研發(fā)中心,江蘇 無錫 214126 4.中國石化油氣成藏重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214126
渤南洼陷是渤海灣盆地濟(jì)陽坳陷沾化凹陷中部的一個(gè)三級(jí)負(fù)向構(gòu)造單元[1],古近紀(jì)、新近紀(jì)期間始終處于凹陷的沉積中心部位,是凹陷主要生油洼陷之一[2]。洼陷內(nèi)烴源巖主要位于沙河街組的沙四上亞段、沙三段下亞段和沙一段,而優(yōu)質(zhì)烴源巖主要發(fā)育在沙一段[3]。在前期常規(guī)油氣勘探過程中,渤南洼陷4口鉆井在沙一段富有機(jī)質(zhì)烴源巖層鉆獲工業(yè)油流,其中義21井(2 676.0~2 764.2 m)曾獲日產(chǎn)油35 t、氣0.168 m3[4],累積產(chǎn)油量為1.04×104t,累積產(chǎn)氣量為26.08×104m3[5],展示出渤南洼陷沙一段具有一定的頁巖油勘探潛力。針對(duì)沙一段,前人重點(diǎn)圍繞烴源評(píng)價(jià)基礎(chǔ)參數(shù)進(jìn)行過統(tǒng)計(jì)研究[1-3,6-7],對(duì)礦物組成與孔隙度特征[1]也稍有論述,但專門針對(duì)其巖石學(xué)特征以及孔隙結(jié)構(gòu)特征的系統(tǒng)研究尚屬空白。為此,筆者以羅63井和義21井沙一段取心段為例,通過對(duì)取心段烴源巖樣品開展系統(tǒng)的熱解、全巖與黏土礦物X射線衍射、有機(jī)巖石學(xué)、成熟度、孔隙度、氬離子拋光+掃描電鏡以及蓋層微孔隙結(jié)構(gòu)等分析,來研究沾化凹陷渤南洼陷沙一段湖相富有機(jī)質(zhì)烴源巖的巖石學(xué)與孔隙結(jié)構(gòu)特征,以期為該層段頁巖油勘探開發(fā)評(píng)價(jià)提供依據(jù)與奠定基礎(chǔ)。
渤南洼陷為一北陡南緩、東陡西緩的斷陷湖盆,北以埕東斷裂為界與埕子口凸起相連,西以義東斷裂為界與義和莊凸起相鄰,南部緊靠陳家莊凸起,東側(cè)為孤東斷裂,與孤北洼陷相連[8-9];內(nèi)部由北向南依次劃分為北部陡坡帶、渤南深洼帶、渤深4斷階帶和南部緩坡帶,研究井義21井和羅63井分別位于渤深4斷階帶和南部緩坡帶(圖1)。
古新世后,研究區(qū)在區(qū)域隆起背景上拉開了斷陷作用的序幕[10],經(jīng)歷了始新世—漸新世裂陷沉積階段和中新世以來的整體坳陷階段。在此背景下湖盆范圍經(jīng)歷了3次較大規(guī)模的擴(kuò)大—縮小—再擴(kuò)大—再縮小的過程[3],沙一段形成于物源供給不充分的咸水—半咸水的半深湖—深湖相沉積環(huán)境,其上部以灰質(zhì)泥巖、頁巖為主,下部以泥質(zhì)灰?guī)r為主[4]。沙一段厚度主要為50.0~450.0 m,現(xiàn)今最大埋深約3 200.0 m,一般處于2 200.0~2 800.0 m。埋藏史與熱演化史研究表明沙一段現(xiàn)今主要處于低成熟階段[7],洼陷帶局部地區(qū)進(jìn)入成熟演化階段[1]。洼陷內(nèi)各類斷層發(fā)育,不僅控制了層序的發(fā)育[11],也成為溝通古近系烴源層系與新近系主力儲(chǔ)層的重要紐帶[12-15]。同時(shí),受斷裂作用等影響,洼陷古近系內(nèi)發(fā)育泥頁巖裂縫型油藏[16-19],曾一度成為沾化凹陷油氣勘探的領(lǐng)域之一。
據(jù)文獻(xiàn)[8-9]修改。圖1 渤南洼陷構(gòu)造位置、構(gòu)造單元與研究井位置Fig.1 Tectonic location, units and well locations of Well Yi 21 and Luo 63 in Bonan sag
研究井羅63井沙一段現(xiàn)今埋藏深度為2 295.0~2 405.5 m,厚度為110.5 m,沙一段取心深度范圍2 383.6~2 391.9 m,屬沙一段下部層段;取心段巖心長8.3 m,采集烴源巖樣品10件,采樣間距為0.4~1.8 m。義21井沙一段現(xiàn)今埋藏深度為2 359.0~2 773.0 m,厚度414.0 m,取心深度段2 681.8~2 771.3 m,與常規(guī)油氣勘探中試獲油井段(2 676.0~2 764.2 m)部分重疊,也屬沙一段下部層段;該井取心段巖心長89.6 m,采集烴源巖樣品40件,采集間距一般在2.0 m左右。
兩鉆井取心段烴源巖樣品的各項(xiàng)分析測(cè)試均在中國石化石油勘探開發(fā)研究院無錫石油地質(zhì)研究所實(shí)驗(yàn)研究中心完成。其中,熱解分析依據(jù)GB/T18602-2012檢測(cè),全巖和黏土礦物X射線衍射分析依據(jù)SY/T5163-2010檢測(cè),有機(jī)巖石學(xué)分析依據(jù)SY/T6414-1999檢測(cè),鏡質(zhì)體反射率Ro依據(jù)SY/T5124-2012檢測(cè),F(xiàn)AMM分析依據(jù)Q/SHWX0017-2006檢測(cè),孔隙度依據(jù)GB/T29172-2012檢測(cè),氬離子+掃面電鏡與能譜分析GB/T18606-2001和SY/T5162-1997檢測(cè),蓋層微孔結(jié)構(gòu)分析依據(jù)Q/SH0302-2009檢測(cè)。
對(duì)羅63井和義21井沙一段取心段采集烴源巖樣品的熱解分析結(jié)果進(jìn)行統(tǒng)計(jì)(圖2)表明:羅63井沙一段取心段烴源巖樣品w(TOC)為3.29%~7.21%,平均4.70%(樣品數(shù)n=10),生烴潛量w(S1+S2)為24.00~66.88 mg/g,平均36.75 mg/g(n=10);義21井沙一段取心段烴源巖樣品w(TOC)為2.86%~10.48%,平均5.02%(n=40),w(S1+S2)為17.58~85.39 mg/g,平均36.92 mg/g (n=40)。顯然,兩鉆井沙一段取心段烴源巖的基本地球化學(xué)特征與前人[1-3,6-7]報(bào)道的結(jié)果相近,屬典型的富有機(jī)質(zhì)優(yōu)質(zhì)烴源巖。
圖2 渤南凹陷羅63井和義21井沙一段取心段烴源巖有機(jī)碳與生烴潛量圖解Fig.2 Diagram showing the TOC vs S1+S2 of source rock, the First Member of Shahejie Formation of cored interval from Well Luo 63 and Yi 21 at different depth in Bonan sag
考慮到東部富油凹陷優(yōu)質(zhì)烴源巖的實(shí)測(cè)鏡質(zhì)體反射率存在明顯的抑制現(xiàn)象[20-22],故本文利用目前能有效解決鏡質(zhì)體反射率抑制問題的方法——FAMM (fluorescence alteration of multiple macerals)技術(shù)[23-24],對(duì)義21井和羅63井沙一段樣品進(jìn)行了成熟度厘定(表1)。顯然實(shí)測(cè)鏡質(zhì)體反射率抑制程度顯著,義21井沙一段取心段烴源巖有機(jī)質(zhì)真實(shí)成熟度(等效鏡質(zhì)體反射率Reqv)為0.75%~0.80%,而羅63井沙一段取心段烴源巖有機(jī)質(zhì)真實(shí)成熟度為0.75%左右;說明兩口井沙一段取心段烴源巖處于中—低成熟度熱演化階段。
表1渤南凹陷義21井和羅63井沙一段烴源巖鏡質(zhì)體反射率與FAMM分析成熟度結(jié)果
Table1MaturityresultsdeterminedbyvitrinitereflectanceandFAMMofsourcerock,theFirstMemberofShahejieFormationfromWellYi21andLuo63inBonansag
樣品編號(hào)巖性深度/m層位Ro/%Reqv/%L63-1灰色灰質(zhì)泥巖2383.9E1s0.470.75Y21-1褐色灰質(zhì)頁巖2681.4E1s0.500.75Y21-12褐色灰質(zhì)頁巖2715.8E1s0.520.78Y21-24褐色灰質(zhì)頁巖2737.0E1s0.570.80Y21-39灰褐色泥質(zhì)灰?guī)r2771.0E1s0.560.80
注:烴源巖鏡質(zhì)體反射率Ro和FAMM 等效鏡質(zhì)體反射率Reqv分析均在中國石化石油勘探開發(fā)研究院無錫石油地質(zhì)研究所實(shí)驗(yàn)地質(zhì)研究中心完成。
根據(jù)羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖典型樣品的全巖和黏土礦物X射線衍射分析結(jié)果,將鉀長石和斜長石歸并為長石,將方解石、白云石、鐵白云石、菱鐵礦以及文石統(tǒng)一歸并為碳酸鹽礦物。石英、長石、碳酸鹽礦物以及黃鐵礦質(zhì)量分?jǐn)?shù)之和統(tǒng)稱脆性礦物總量。羅63井和義21井沙一段取心段不同深度段富有機(jī)質(zhì)烴源巖的礦物組成特征如表2和表3、圖3和圖4所示。
由表2和表3以及圖3和圖4可見:羅63井和義21井沙一段取心段不同深度段富有機(jī)質(zhì)烴源巖的礦物組成變化較大;并且相對(duì)羅63井沙一段取心段富有機(jī)質(zhì)烴源巖而言,義21井沙一段取心段富有機(jī)質(zhì)烴源巖碳酸鹽礦物質(zhì)量分?jǐn)?shù)明顯低些,而黏土礦物、石英以及長石質(zhì)量分?jǐn)?shù)則相對(duì)高些;黃鐵礦和石膏的質(zhì)量分?jǐn)?shù)兩口井的均值盡管基本相近,但義21井含黃鐵礦和石膏的樣品幾率高。具體如下:
羅63井沙一段取心段富有機(jī)質(zhì)烴源巖,其礦物主要由碳酸鹽礦物、黏土礦物和石英組成,另含少量長石、黃鐵礦和石膏。其中,碳酸鹽礦物質(zhì)量分?jǐn)?shù)為37.2%~81.4%,平均54.3%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)呈明顯增高趨勢(shì)。研究表明咸水湖以發(fā)育碳酸鹽礦物為標(biāo)志[25],沙一段烴源巖碳酸鹽礦物質(zhì)量分?jǐn)?shù)高應(yīng)與其形成于物源供給不充分的咸水—半咸水的半深湖—深湖相沉積環(huán)境[4]有關(guān)。黏土礦物質(zhì)量分?jǐn)?shù)為4.5%~36.5%,平均23.7%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)呈明顯降低趨勢(shì)。黏土礦物主要由伊/蒙混層(相對(duì)質(zhì)量分?jǐn)?shù)為37.0%~65.0%,平均53.0%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)變化不明顯)、伊利石(相對(duì)質(zhì)量分?jǐn)?shù)為21.0%~37.0%,平均27.7%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)變化不明顯)組成;次為高嶺石(相對(duì)質(zhì)量分?jǐn)?shù)為4.0%~41.0%,平均15.7%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)呈降低趨勢(shì))及少量綠泥石(相對(duì)質(zhì)量分?jǐn)?shù)為0.0%~5.0%,平均3.6%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)呈降低趨勢(shì))。石英質(zhì)量分?jǐn)?shù)為8.4%~23.4%,平均16.1%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)也呈降低趨勢(shì)。長石質(zhì)量分?jǐn)?shù)為1.7%~5.8%,平均3.5%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)也呈降低趨勢(shì)。黃鐵礦質(zhì)量分?jǐn)?shù)為0.0%~9.0%,平均1.4%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)變化無規(guī)律。石膏質(zhì)量分?jǐn)?shù)為0.0%~8.4%,平均為1.0%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)變化也無規(guī)律。脆性礦物(石英+長石+碳酸鹽礦物+黃鐵礦)質(zhì)量分?jǐn)?shù)為60.0%~95.5%,平均75.3%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)呈現(xiàn)增高趨勢(shì)(圖5)。
表2渤南凹陷羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖全巖礦物組成統(tǒng)計(jì)
Table2Statisticallistshowingthemineralcomponentsoffullrockofsourcerockrichinorganicmatter,theFirstMemberofShahejieFormationofcoredintervalfromWellLuo63andYi21atdifferentdepthinBonansag
井號(hào)礦物組成質(zhì)量分?jǐn)?shù)/%平均質(zhì)量分?jǐn)?shù)/%井號(hào)礦物組成質(zhì)量分?jǐn)?shù)/%平均質(zhì)量分?jǐn)?shù)/%羅63井黏土礦物4.5~36.523.7義21井黏土礦物9.9~54.530.5(n=10)石英8.4~23.416.1(n=40)石英9.0~45.122.8長石1.7~5.83.5長石1.8~11.96.1碳酸鹽37.2~81.454.3碳酸鹽8.0~74.438.1黃鐵礦0.0~9.01.4黃鐵礦0.0~4.31.6石膏0.0~8.41.0石膏0.0~6.50.9
圖3 渤南凹陷羅63井和義21井沙一段取心段不同深度段富有機(jī)質(zhì)烴源巖全巖礦物組成Fig.3 Diagram showing the mineral components of full rock of source rock rich in organic matter , the First Member of Shahejie Formation of cored interval from Well Luo 63 and Yi 21 at different depth in Bonan sag
Table3Statisticallistshowingtheclaymineralrelativecontentsofsourcerockrichinorganicmatter,theFirstMemberofShahejieFormationofcoredintervalfromWellLuo63andYi21atdifferentdepthinBonansag
井號(hào)礦物組成質(zhì)量分?jǐn)?shù)/%平均質(zhì)量分?jǐn)?shù)/%井號(hào)礦物組成質(zhì)量分?jǐn)?shù)/%平均質(zhì)量分?jǐn)?shù)/%羅63井伊/蒙混層37.0~65.053.0義21井伊/蒙混層48.0~72.057.0(n=10)伊利石21.0~37.027.7(n=40)伊利石17.0~40.029.3高嶺石4.0~41.015.7高嶺石4.0~14.09.9綠泥石0.0~5.03.6綠泥石2.0~6.03.8
圖4 渤南凹陷羅63井和義21井沙一段取心段不同深度段富有機(jī)質(zhì)烴源巖黏土礦物相對(duì)組成Fig.4 Diagram showing the clay mineral relative contents of source rock rich in organic matter , the First Member of Shahejie Formation of cored interval from well Luo 63 and Yi 21 at different depth in Bonan sag
義21井沙一段取心段富有機(jī)質(zhì)烴源巖,同樣其礦物主要由碳酸鹽礦物、黏土礦物和石英組成,另含少量長石、黃鐵礦和石膏。其中:碳酸鹽礦物質(zhì)量分?jǐn)?shù)為8.0%~74.4%,平均38.1%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)呈明顯增高趨勢(shì),高含碳酸鹽礦物的成因應(yīng)與羅63井一致;黏土礦物質(zhì)量分?jǐn)?shù)為9.9%~54.5%,平均30.5%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)呈明顯降低趨勢(shì)。黏土礦物主要由伊/蒙混層(相對(duì)質(zhì)量分?jǐn)?shù)為48.0%~72.0%,平均57.0%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)變化不明顯)、伊利石(相對(duì)質(zhì)量分?jǐn)?shù)為17.0%~40.0%,平均29.3%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)變化不明顯)組成,次為高嶺石(相對(duì)質(zhì)量分?jǐn)?shù)為4.0%~14.0%,平均9.9%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)呈降低趨勢(shì))及少量綠泥石(相對(duì)質(zhì)量分?jǐn)?shù)為2.0%~6.0%,平均3.8%,由取心段頂部至底部其相對(duì)質(zhì)量分?jǐn)?shù)呈降低趨勢(shì))。石英質(zhì)量分?jǐn)?shù)為9.0%~45.1%,平均22.8%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)也呈降低趨勢(shì);長石質(zhì)量分?jǐn)?shù)為1.8%~11.9%,平均6.1%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)也呈降低趨勢(shì);黃鐵礦質(zhì)量分?jǐn)?shù)為0.0%~4.3%,平均1.6%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)變化無規(guī)律;石膏質(zhì)量分?jǐn)?shù)為0.0%~6.5%,平均0.9%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)變化也無規(guī)律。脆性礦物(石英+長石+碳酸鹽礦物+黃鐵礦)質(zhì)量分?jǐn)?shù)為43.5%~90.1%,平均68.6%,由取心段頂部至底部其質(zhì)量分?jǐn)?shù)呈現(xiàn)明顯增高趨勢(shì)(圖5)。
縱上所述,羅63井和義21井沙一段取心段由頂部至底部,礦物組成質(zhì)量分?jǐn)?shù)總體呈現(xiàn)規(guī)律性變化,碎屑礦物石英、長石和黏土礦物呈降低趨勢(shì),而碳酸鹽礦物則呈明顯增大的特點(diǎn),脆性礦物總量也呈現(xiàn)顯著增高趨勢(shì),并且總量普遍大于60.0%。這表明羅63井和義21井沙一段取心段由頂部至底部,巖石類型由鈣質(zhì)或灰質(zhì)泥巖演變?yōu)槟噘|(zhì)灰?guī)r,巖石可壓裂改造性增高。因此,在泥頁巖油氣勘探開發(fā)過程中,必須注意巖性差異對(duì)可壓裂性的影響[26]。
圖5 渤南凹陷羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖脆性礦物總量Fig.5 Diagram showing the total contents of fragile minerals of source rock rich in organic matter, the First Member of Shahejie Formation of cored interval from well Luo 63 and Yi 21 at different depth in Bonan sag
綜合巖心觀察、光薄片鑒定統(tǒng)計(jì),按照層厚度將羅63井和義21井沙一段取心段烴源巖構(gòu)造類型分為層狀、紋層狀和塊狀3類,以層狀、紋層狀為主。
層狀構(gòu)造可細(xì)分為顯層狀構(gòu)造和隱層狀構(gòu)造2類:前者水平層理在巖心上清晰可見,厚度普遍大于1 mm;后者相鄰層成分差異較小,故巖心觀察僅隱約可見,而光薄片觀察則微觀水平紋層發(fā)育,或介形蟲碎片、黃鐵礦、有機(jī)質(zhì)條帶順層定向產(chǎn)出顯示層理(圖6a,6b)。紋層成分主要為泥質(zhì)、灰質(zhì)、泥灰質(zhì)或灰泥質(zhì),該類型約占35%。紋層狀構(gòu)造指水平層理密集產(chǎn)出而使巖石呈紋層狀構(gòu)造,層厚度多小于1.00 mm,并且相鄰層成分差異大,顏色往往深淺相間(圖6c,6d);紋層成分主要為泥質(zhì)、富有機(jī)質(zhì)層和灰質(zhì),鏡下觀察紋層最小厚度小于0.01 mm,厚度一般為0.02~0.20 mm,呈平直狀為主,該類型約占55%。塊狀構(gòu)造是指巖石成分均勻呈塊狀,組分和結(jié)構(gòu)不顯紋層構(gòu)造(圖6e,6f),代表懸浮物快速堆積、沉積物來不及分異而成。該類型約占10%。
利用煤油法對(duì)羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖樣品開展孔隙度分析,結(jié)果如圖7所示。其中:羅63井沙一段取心段烴源巖樣品孔隙度為0.60%~6.07%,普遍小于2.00%,平均值為2.09%(n=10),僅取心段底部的2個(gè)樣品孔隙度稍高,分別為3.62%和6.07%;義21井沙一段取心段烴源巖樣品孔隙度變化較大,為0.64%~20.63%,以低于4.00%者為主,平均值為4.43%(n=40),其中2 699.0 m~2 714.0 m深度段烴源巖孔隙度普遍高,為6.51%~20.63%。這與張善文等[1]利用煤油法對(duì)渤南洼陷38塊沙一段(1 000.0 m~3 000.0 m深度段)烴源巖樣品的孔隙度分析結(jié)果為2.70%~20.7%基本一致。對(duì)比分析發(fā)現(xiàn),不同構(gòu)造類型的富有機(jī)質(zhì)烴源巖,其孔隙度值存在較明顯的差異:具塊狀構(gòu)造的富有機(jī)質(zhì)烴源巖孔隙度最低;具有紋層構(gòu)造的富有機(jī)質(zhì)烴源巖其孔隙度最高;而具層狀構(gòu)造的富有機(jī)質(zhì)烴源巖,其孔隙度值居兩者之間。因此,高孔隙度發(fā)育段主要與烴源巖普遍發(fā)育紋層狀構(gòu)造、并且層理縫較發(fā)育有關(guān)。
圖6 渤南凹陷羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖典型構(gòu)造類型Fig.6 Diagram showing the typical structure type of source rock rich in organic matter , the First Member of Shahejie Formation of cored interval from Well Luo 63 and Yi 21 at different depth in Bonan sag
圖7 渤南凹陷羅63井和義21井沙一段取心段不同深度段富有機(jī)質(zhì)烴源巖孔隙度Fig.7 Diagram showing the porosity of source rock rich in organic matter, the First Member of Shahejie Formation of cored interval from Well Luo 63 and Yi 21 at different depth in Bonan sag
微納米級(jí)孔隙是頁巖油氣儲(chǔ)集的主要賦存空間。目前國內(nèi)外學(xué)者針對(duì)泥頁巖孔隙的劃分標(biāo)準(zhǔn)及方案尚未達(dá)成共識(shí)[27]。Louck等[28]將泥頁巖的孔隙類型劃分為三大類,即礦物基質(zhì)孔隙(包括粒間孔隙和粒內(nèi)孔隙)、有機(jī)質(zhì)孔隙和裂縫型孔隙。本文根據(jù)羅63井和義21井沙一段取心段典型富有機(jī)質(zhì)烴源巖樣品的光薄片與氬離子拋光+掃描電鏡分析結(jié)果,采用Louck等[27]的劃分方案,對(duì)沙一段孔隙類型進(jìn)行了研究,發(fā)現(xiàn)沙一段富有機(jī)質(zhì)烴源巖主要發(fā)育礦物基質(zhì)孔隙(即粒間孔隙和粒內(nèi)孔隙)和裂縫型孔隙兩大類,而有機(jī)質(zhì)孔隙不發(fā)育,這可能與沙一段富有機(jī)質(zhì)烴源巖成熟度主要處于中—低成熟階段有關(guān),并且該階段生烴過程中干酪根增孔形成的少量孔隙也會(huì)因被滯留油直接占據(jù),從而難以有效觀察到。粒間孔隙主要包括礦物顆粒之間的原生孔隙(圖8a)、晶間孔隙(圖8a、8b)以及粒間溶蝕孔隙(圖8c);粒內(nèi)孔隙主要包括長石或方解石礦物內(nèi)溶蝕孔隙(圖8c、8d、8e和8f)、黏土礦物集合體內(nèi)孔隙與縫隙(圖8d)以及草莓狀黃鐵礦顆粒內(nèi)晶間孔隙(8a),部分晶間孔隙和溶蝕孔隙可見被滯留油充填或半充填(圖8b、8f)。裂縫型孔隙則不受單個(gè)顆粒礦物控制,主要包括層理縫、構(gòu)造縫(圖8c、8e、8f、8g、8h和8i),并且普遍被滯留油充填與半充填(圖8g、8h、8i),微裂縫發(fā)育是成熟富有機(jī)質(zhì)頁巖中頁巖油富集的關(guān)鍵制約因素[29]。不同構(gòu)造類型的烴源巖中,主要孔隙類型不同,紋層構(gòu)造發(fā)育的泥頁巖中,主要孔隙類型以裂縫型孔隙為主,次為礦物基質(zhì)孔隙;而在塊狀構(gòu)造烴源巖中,則以礦物基質(zhì)孔隙(即粒間孔隙和粒內(nèi)孔隙)為主體,次為裂縫型孔隙;在層狀構(gòu)造的烴源巖中,兩種類型的孔隙均有一定程度的發(fā)育。
利用蓋層微孔結(jié)構(gòu)分析方法(即壓汞和氮吸附聯(lián)合測(cè)定方法),對(duì)羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖樣品開展了孔隙孔徑分布特征分析,結(jié)果如圖9所示。分析結(jié)果表明不同深度樣品的孔隙孔徑分布特征具有較大差異,羅63井5件樣品的孔隙中值半徑為3.0~7 873.0 nm,義21井15件樣品的孔隙中值半徑為3.0~1 383.0 nm;同時(shí),除個(gè)別樣品孔隙半徑分布范圍較窄(如圖9所示的義21井2 769.0 m深度樣品),大多數(shù)樣品的孔隙孔徑分布范圍很寬,半徑從十幾微米至幾納米的孔隙均有分布,并且以宏孔為主,少量介孔和微量微孔。因此,盡管沙一段取心段富有機(jī)質(zhì)烴源巖的孔隙度總體不高,但其孔隙和裂縫的孔徑大于50.0 nm,這與氬離子拋光+掃描電鏡分析結(jié)果(圖8)揭示的,無論是粒間孔隙、晶間孔隙還是裂縫型孔隙,其孔徑以50.0 nm以上的宏孔為主相吻合。
圖9 渤南凹陷羅63井和義21井沙一段取心段不同深度段典型富有機(jī)質(zhì)泥頁巖孔隙半徑分布特征Fig.9 Pattern of pore radius of typical shale rich in organic matter , the First Member of Shahejie Formation of cored interval from well Luo 63 and Yi 21 at different depth in Bonan sag
1)羅63井和義21井沙一段取心段烴源巖屬典型富有機(jī)質(zhì)烴源巖,處于中—低成熟度演化階段。
2)羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖主要由碳酸鹽礦物、黏土礦物和石英組成,另含少量長石、黃鐵礦和石膏,其中黏土礦物主要由伊/蒙混層和伊利石組成。由取心段頂部至底部,碳酸鹽礦物質(zhì)量分?jǐn)?shù)明顯增高,而黏土礦物、石英和長石質(zhì)量分?jǐn)?shù)則顯著降低,呈現(xiàn)由鈣質(zhì)或灰質(zhì)泥巖演變?yōu)槟噘|(zhì)灰?guī)r的特征;脆性礦物質(zhì)量分?jǐn)?shù)也呈現(xiàn)顯著增高趨勢(shì),巖石可壓裂改造性增高。巖石構(gòu)造類型包括層狀、紋層狀和塊狀3類。
3)羅63井和義21井沙一段取心段富有機(jī)質(zhì)烴源巖孔隙度平均值分別為2.09%和4.43%,具紋層狀構(gòu)造的烴源巖具有相對(duì)高的孔隙度。主要發(fā)育礦物基質(zhì)孔隙(即粒間孔隙和粒內(nèi)孔隙)和裂縫型孔隙兩大類,而有機(jī)孔隙不發(fā)育。孔隙半徑從十幾微米至幾納米的孔隙均有分布,但以發(fā)育孔徑50.0 nm以上的宏孔為主。
[1] 張善文,王永詩,張林曄,等. 濟(jì)陽坳陷渤南洼陷頁巖油氣形成條件研究[J]. 中國工程科學(xué),2012, 14(6): 49-55.
Zhang Shanwen, Wang Yongshi, Zhang Linye, et al. Formation Conditions of Shale Oil and Gas in Bonan Sub-Sag, Jiyang Depression [J]. China Engineering Sciences, 2012, 14(6): 49-55.
[2] 侯讀杰,張善文,肖建新,等. 陸相斷陷湖盆優(yōu)質(zhì)烴源巖形成機(jī)制與成藏貢獻(xiàn)-以濟(jì)陽坳陷為例[M]. 北京:地質(zhì)出版社,2008:134-138.
Hou Dujie, Zhang Shanwen, Xiao Jianxin, et al. The Forming Mechanism and Contribution to Reservoirs of High Grade Source Rocks in Continental Fault Depression with Lacustrine Sedimentation: A Case Study of Jiyang Depression[M]. Beijing: Geological Publishing House, 2008: 134-138.
[3] 侯讀杰,張善文,肖建新,等. 濟(jì)陽坳陷優(yōu)質(zhì)烴源巖特征與隱蔽油氣藏的關(guān)系分析[J]. 地學(xué)前緣,2008,15(2):137-146.
Hou Dujie, Zhang Shanwen, Xiao Jianxin, et al. The Excellent Source Rocks and Accumulation of Stratigraphic and Lithologic Traps in the Jiyang Depression, Bohai Bay Basin, China [J]. Earth Science Frontiers, 2008, 15(2): 137-146.
[4] 王永詩,李政,鞏建強(qiáng),等. 濟(jì)陽坳陷頁巖油氣評(píng)價(jià)方法: 以沾化凹陷羅家地區(qū)為例[J]. 石油學(xué)報(bào),2013,34(1):83-91.
Wang Yongshi, Li Zheng, Gong Jianqiang, et al. Discussion on an Evaluation Method of Shale Oil and Gas in Jiyang Depression: A Case Study on Luojia Area in Zhanhua Sag [J]. Acta Petrolei Sinica, 2013, 34(1):83-91.
[5] 朱德順,王勇,朱德燕,等. 渤南洼陷沙一段夾層型頁巖油界定標(biāo)準(zhǔn)及富集主控因素[J]. 油氣地質(zhì)與采收率,2015,22(5):15-20.
Zhu Deshun, Wang Yong, Zhu Deyan, et al. Analysis on Recognition Criteria and Enrichment Factors of Interlayer Shale Oil of Es1in Bonan Sub-Sag [J]. Petroleum Geology and Recovery Efficiency, 2015, 22(5):15-20.
[6] 朱光有,金強(qiáng),郭長春,等. 渤海灣盆地東營--沾化凹陷油氣聚集的差異性及控制因素[J]. 石油實(shí)驗(yàn)地質(zhì),2003,25(4):353-356.
Zhu Guangyou, Jin Qiang, Guo Changchun, et al. Differences of Hydrocarbon Accumulations in the Dongying and the Zhanhua Depressions of the Bohaiwan Basin and Their Control Factors [J]. Petroleum Geoloogy & Experiment, 2003,25(4):353-356.
[7] 羅勝元. 沾化凹陷渤南洼陷超壓系統(tǒng)與油氣成藏研究[D]. 武漢:中國地質(zhì)大學(xué),2014: 20-42.
Luo Shengyuan. Study on the Overpressure Characteristic and Hydrocarbon Accumulation in Bonan Depression, Zhanhua Sub-Basin [D]. Wuhan: China University of Geosciences, 2014: 20-42.
[8] 宋國奇,劉華,蔣有錄,等. 沾化凹陷渤南洼陷沙河街組原油成因類型及分布特征[J]. 石油實(shí)驗(yàn)地質(zhì),2014,36(1):33-38,45.
Song Guoqi, Liu Hua, Jiang Youlu, et al. Genetic Types and Distribution Characteristics of Crude Oils from Shahejie Formation in Bonan Sub-Sag, Jiyang Depression [J]. Petroleum Geology & Experiment, 2014, 36(1): 33-38, 45.
[9] 劉華, 蔣有錄,谷國翠,等. 沾化凹陷渤南洼陷古近系壓力特征及成因機(jī)制[J]. 中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,37(4):46-51.
Liu Hua, Jiang Youlu, Gu Guocui, et al. Pressure Characteristics and Formation Mechanisms of Paleogene in Bonan Sag, Zhanhua Depression [J]. Journal of China University of Petroleum, 2013, 37(4):46-51.
[10] 戴俊生,陸克政,漆家福,等. 渤海灣盆地早第三紀(jì)構(gòu)造樣式的演化[J]. 石油學(xué)報(bào),1998,19(4):16-20.
Dai Junsheng, Lu Kezheng, Qi Jiafu, et al. The Evolution of the Paleogene Structural Styles in Bohai Gulf Basin [J]. Acta Petrolei Sinica, 1998, 19(4):16-20.
[11] 張凡芹,王偉鋒,戴俊生. 沾化凹陷斷層活動(dòng)性及其對(duì)層序發(fā)育的控制作用[J]. 石油與天然氣地質(zhì),2003,24(3):253-258.
Zhang Fanqin, Wang Weifeng, Dai Junsheng. Fault Activities and Their Controls on the Development Lithologic Sequences in Zhanhua Sag [J]. Oil & Gas Geology, 2003,24(3):253-258.
[12] 劉培,蔣有錄,劉華,等. 渤海灣盆地沾化凹陷斷層活動(dòng)與新近系油氣成藏關(guān)系[J]. 天然氣地球科學(xué),2013,24(3):541-547.
Liu Pei, Jiang Youlu, Liu Hua, et al. The Relationship Between Fault-Activity and Hydrocarbon Accumulation of Neogene in Zhanhua Depression, Bohai Bay Basin [J]. Natural Gas Geoscience, 2013, 24(3):541-547.
[13] 周心懷,牛成民,藤長宇. 環(huán)渤中地區(qū)新構(gòu)造運(yùn)動(dòng)期斷裂活動(dòng)與油氣成藏關(guān)系 [J]. 石油與天然氣地質(zhì),2009,30(4):469-482.
Zhou Xinhuai, Niu Chengmin, Teng Changyu. Relationship Between Faulting and Hydrocarbon Pooling During the Neotectonic Movement Around the Central Bohai Bay [J]. Oil & Gas Geology, 2009, 30(4): 469-482.
[14] 池英柳,楊池銀,周建生. 渤海灣盆地新生代斷裂活動(dòng)與含油氣系統(tǒng)形成[J]. 勘探家,2000, 5(3):41-48.
Chi Yingliu, Yang Chiyin, Zhou Jiansheng. Cenozoic Faulting and Its Influence on the Formation of Petroleum Systems in Bohai Bay Basin [J]. Petroleum Explorationist, 2000, 5(3): 41-48.
[15] 羅文生,張善文,王永詩,等. 渤南洼陷古近系-新近系斷層活動(dòng)與油氣成藏[J]. 油氣地質(zhì)與采收率,2007,14(3):34-37.
Luo Wensheng, Zhang Shanwen, Wang Yongshi, et al. Fault Activity and Hydrocarbon Accumulation in Tertiary of Bonan Sub-Sag [J]. Petroleum Geology and Recovery Efficiency, 2007, 14(3): 34-37.
[16] 王志剛. 沾化凹陷裂縫型泥質(zhì)巖油藏研究[J]. 石油勘探與開發(fā),2003,30(1):41-43.
Wang Zhigang. A Study of Shale-Fractured Reservoirs in Zhanhua Sag [J]. Petroleum Exploration and Development, 2003,30(1):41-43.
[17] 徐福剛,李琦,康仁華,等. 沾化凹陷泥巖裂縫油氣藏研究[J]. 礦物巖石,2003,23(1):74-76.
Xu Fugang, Li Qi, Kang Renhua, et al.The Characteristics of Fractured Shale Reservoir in Zhanhua Depression [J]. Journal of Mineral and Petrology, 2003,23(1):74-76.
[18] 智鳳琴,李琦,樊德華,等. 沾化凹陷泥巖裂縫油氣藏油氣運(yùn)移聚集研究[J].油氣地質(zhì)與采收率,2004,11(5):27-29.
Zhi Fengqin, Li Qi, Fan Dehua, et al. Study on Migration and Accumulation of Oil and Gas in Fractured Shale Reservoir in Zhanhua Sag [J]. Petroleum Geology and Recovery Efficiency, 2004,11(5):27-29.
[19] 劉魁元,孫喜新,李琦,等. 沾化凹陷泥質(zhì)巖儲(chǔ)層中裂縫類型及其成因研究[J]. 石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2004, 28(4):12-15.
Liu Kuiyuan, Sun Xixin, Li Qi, et al. Fracture Pattern and Genesis of Mudstone Reservoir in Zhanhua Depression [J]. Journal of China University of Petroleum(Edition of Natural Sciences), 2004, 28(4): 12-15.
[20] 張美珍,李志明,秦建中,等. 東營凹陷有效烴源巖成熟度評(píng)價(jià)[J]. 西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,23(3):12-16.
Zhang Meizhen, Li Zhiming, Qin Jianzhong, et al. Assessment of the Thermal Maturity of the Effective Hydrocarbon Source Rocks in Dongying Depression [J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2008, 23(3):12-16.
[21] 李志明,秦建中,徐旭輝,等. 鏡質(zhì)體反射率抑制與烴源巖質(zhì)量關(guān)系: 以渤海灣盆地東營凹陷烴源巖為例[J]. 石油實(shí)驗(yàn)地質(zhì),2008,30(3):276-280.
Li Zhiming, Qin Jianzhong, Xu Xuhui, et al. The Relationship Between Vitrinite Reflectance Suppression and Source Rock Quality: A Case Study on Source Rocks from the Dongying Sag, Bohai Bay Basin [J]. Petroleum Geology & Experiment, 2008, 30(3):276-280.
[22] 李志明,張雋,余曉露,等. 南襄盆地泌陽凹陷烴源巖成熟度厘定及其意義[J]. 石油實(shí)驗(yàn)地質(zhì),2013,35(1):76-80.
Li Zhiming, Zhang Jun, Yu Xiaolu, et al. Determination of Maturity for Source Rocks in Biyang Sag of Nanxiang Basin and Its Significance [J]. Petroleum Geology & Experiment, 2013, 35(1):76-80.
[23] Wilkiins R W T, Wilmshurst J R, Russell N J, et al. Fluorescence Alteration and the Suppression of Vitrinite Reflectance[J]. Organic Geochemistry, 1992, 18:629-640.
[24] Wilkiins R W T, Wilmshurst J R, Hladky G, et al. Should Fluorescence Alteration Replace Vitrinite Reflectance as a Major Tool for Thermal Maturity Determination in Oil Exploration? [J]. Organic Geochemistry , 1995, 22:191-209.
[25] 趙澄林. 沉積學(xué)原理[M]. 北京:石油工業(yè)出版社,2001: 75.
Zhao Chenglin. Principles of Sedimentology[M]. Beijing: Petroleum Industry Press, 2001: 75.
[26] 王冠民,熊周海,張婕. 巖性差異對(duì)泥頁巖可壓裂性的影響分析[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2016,46(4):1080-1089.
Wang Guanmin, Xiong Zhouhai, Zhang Jie. The Impact of Lithology Differences to Shale Fracturing [J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1080-1089.
[27] 崔景偉,鄒才能,朱如凱,等. 頁巖孔隙研究新進(jìn)展[J]. 地球科學(xué)進(jìn)展,2012,27(2):1319-1325.
Cui Jingwei, Zou Caineng, Zhu Rukai, et al. New Advances in Shale Porosity Research [J]. Advances in Earth Science, 2012, 27(2): 1319-1325.
[28] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores [J]. AAPG, 2012, 96(6):1071-1098.
[29] 李志明,芮曉慶,黎茂穩(wěn),等. 北美典型混合頁巖油氣系統(tǒng)特征和啟示[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2015,45(4):1060-1072.
Li Zhiming, Rui Xiaoqing, Li Maowen, et al. Characteristics of Typical Hybrid Shale-Oil System in North American and Its Implications [J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1060-1072.