喬 健,欒金鵬,許文良,王志偉,趙 碩,郭 鵬
吉林大學地球科學學院, 長春 130061
佳木斯地塊位于中亞造山帶和環(huán)太平洋構造域疊加與轉換的關鍵部位,該地塊南北兩側分別延入俄羅斯遠東的興凱地塊和布列亞地塊,前人稱之為布列亞—佳木斯—興凱地塊。在古生代期間,該地塊經歷了古亞洲洋構造域演化,以及微陸塊之間復雜的拼貼演化過程。因此,佳木斯地塊的古生代構造演化對揭示中亞造山帶東段古生代構造演化歷史具有重要意義[1-4]。
近年來,隨著對佳木斯地塊研究的不斷深入,國內外學者對其演化歷史達成了一些共識。比如基于佳木斯地塊東南部廣泛出露的花崗質巖石以及火山巖年代學的研究結果,可將佳木斯地塊南部的古生代巖漿作用劃分為4期:晚寒武世(~492 Ma)、晚泥盆世(~388 Ma)、早二疊世(~288 Ma)和晚二疊世(~259 Ma)[2-3, 5-7]。然而,佳木斯地塊北部古生代地質體研究程度較低,尤其是缺少關于古生代地層的研究。佳木斯地塊古生代地層主要分布在佳木斯地塊東南緣,尤以晚古生代地層發(fā)育為特征。泥盆紀到石炭紀,以一套穩(wěn)定的被動陸緣海相碎屑巖和碳酸鹽巖建造沉積為主[8]。二疊紀期間,該區(qū)形成了一套具有活動陸緣背景的鈣堿性火成巖建造[9]。與晚古生代地層研究相比,對佳木斯地塊上早古生代地層的研究幾乎處于空白。首先,佳木斯地塊上是否存在早古生代地層,目前仍然是一個存在爭論的問題;其次,前人根據巖石組合,將佳木斯地塊北部的金銀庫組確定為早古生代沉積,但仍然缺乏年代學證據[8]。為了解決上述問題,本文選擇出露于佳木斯地塊北部的金銀庫組和侵入其中的火成巖脈體為研究對象,通過LA-ICP-MS / SIMS鋯石U-Pb定年以及Hf同位素分析,查明了金銀庫組和侵入其中的花崗細晶巖以及輝綠巖脈體的形成時代,結合野外地質證據和前人研究成果,探討了金銀庫組的沉積物源與環(huán)境。
中國東北地區(qū)位于中亞造山帶的東段,由多個微陸塊(自西向東包括額爾古納地塊、興安地塊、松嫩—張廣才嶺地塊、佳木斯地塊和興凱地塊)組成[1, 10-12]。佳木斯地塊是其中的微陸塊之一。佳木斯地塊西部和南部分別以嘉蔭—牡丹江斷裂、敦化—密山斷裂為界,主要由先前被認為代表古老基底的麻山群和黑龍江群以及古生代花崗巖及火山巖所組成[13-19]。此外,區(qū)內還出露有大面積的中生代晚期—新生代火山-沉積巖系[4, 8](圖1)。然而,近年來的研究表明:麻山群實則是與泛非事件相聯系的花崗片麻巖,并不能代表該陸塊的古老基底[14-15, 20];而出露于地塊西緣原定下元古界的黑龍江群也并非為一套連續(xù)沉積地層,而是由一系列變質-火山巖于早--中侏羅世構造就位的“構造混雜巖”[5]。
前人通過古生物地層學以及少量的同位素年代學研究認為,佳木斯地塊上古生代地層主要包括:早寒武世金銀庫組,泥盆紀黑臺組、老禿頂子組和七里嘎山組,石炭紀北興組、光慶組、珍子山組、塔頭河組,二疊紀二龍山組、平陽鎮(zhèn)組、城山組[8]。古生代地層主要分布于該區(qū)中部和南部(圖1),大致可分為兩種地層類型:一是淺海相碎屑-碳酸鹽巖建造夾少量基性和酸性火山巖;二是超覆于產出的淺海相或海陸交互相碎屑-碳酸鹽巖建造。佳木斯地塊中的古生代巖漿作用主要分布于地塊中部和西南部,可劃分為4期:晚寒武世、晚泥盆世、早二疊世和晚二疊世[2, 4-5, 21]。
本文研究的變沉積巖位于佳木斯地塊北部蘿北縣,為前人確定的寒武紀金銀庫組和侵入其中的花崗細晶巖和輝綠巖脈巖(130°55′25.45″E,47°37′8.05″N),采樣位置如圖2所示。
佳木斯地塊北部石灰窯地區(qū)金銀庫組以淺海相碳酸鹽巖沉積為主,并夾有陸源細碎屑巖,可同毗鄰俄羅斯興凱地塊含化石的普羅霍拉組對比,前人認為該地層形成于震旦紀或早寒武世。石灰窯地區(qū)金銀庫組,巖性主要為灰色大理巖夾少量炭質石英巖和絹云母片巖,總厚度為134.8 m,出露面積約0.008 km2 [8]。樣品(16XH15-1)為大理巖夾層中的絹云母片巖,呈灰白色,鱗片變晶結構,片狀構造,礦物成分包括絹云母、白云母、石英、斜長石(圖3a)。樣品(HYC15-2)為侵入金銀庫組的花崗細晶巖,全晶質細粒結構,塊狀構造,主要礦物為斜長石、堿性長石和石英,副礦物可見黑色不透明磁鐵礦和鋯石等,碳酸鹽化強烈(圖3b)。樣品(HYC15-3)為侵入金銀庫組的輝綠巖,暗綠色,輝綠結構,塊狀構造,主要礦物成分為斜長石和單斜輝石,碳酸鹽化強烈(圖3c,d)。
據文獻[8]修編。圖2 石灰窯地區(qū)金銀庫組地質剖面圖Fig.2 Geological cross-section of the Jinyinku Formation in the Shihuiyao area
本文鋯石U-Pb定年樣品均在河北省廊坊區(qū)域地質調查研究所采用常規(guī)方法進行粉碎,并用浮選和電磁選方法進行分選;然后在雙目鏡下挑選出不同晶形、顆粒大小、磨蝕程度以及顏色的鋯石顆粒,進而確保所選鋯石的代表性。在此基礎上,將鋯石粘在雙面膠上,用無色透明的環(huán)氧樹脂澆灌固定,待環(huán)氧樹脂充分固化后拋光,使鋯石暴露出內部結構,從而進行透射光、反射光和陰極發(fā)光掃描電鏡顯微照像;根據鋯石陰極發(fā)光(CL)圖像,盡量選擇包裹體較少且吸收程度均勻的區(qū)域進行分析測試。
圖a、b和d為正交偏光,圖c為單偏光。Af.堿性長石;Ms.白云母;Pl.斜長石;Q.石英;Px.輝石。圖3 金銀庫組中代表性巖石的鏡下顯微照片Fig.3 Photomicrographs of selected samples from the Jinyinku Formation
樣品HYC15-3中的鋯石U-Pb同位素分析在中國科學院地質與地球物理研究所CAMECA IMS-1280二次離子質譜儀(SIMS)上進行,詳細分析方法見文獻[22]。樣品16XH15-1和HYC15-2中的鋯石U-Pb同位素分析在中國地質大學地質過程與礦產資源國家重點實驗室利用激光剝蝕電感耦合等離子體質譜(LA-ICP-MS)完成,詳細儀器操作條件及步驟見參考文獻[22-23]。實驗獲得的同位素比值數據利用ICPMSData Cal軟件(版本號: 7.0)進行處理,具體處理過程見參考文獻[22-23],年齡采用ISOPLOT軟件(版本號3.0)計算[24]。實驗獲得的數據采用Andersen 方法進行同位素比值的校正[25],以扣除普通Pb的影響。所給定的同位素比值和年齡的誤差(標準誤差)在1σ水平。鋯石的LA-ICP-MS U-Pb分析結果見表1。
鋯石Lu-Hf同位素測試在中國地質大學( 武漢) 地質過程與礦產資源國家重點實驗室的 Neptune Plus ( Thermo Fisher Scientific,德國) 多接收等離子質譜和Geo Las 2005 (Lambda Physik, 德國) 激光剝蝕系統(tǒng)(LA-MC-ICP-MS)上進行,分析點與U-Pb定年分析點為同一位置或為附近。儀器運行條件、詳細分析流程、數據校正方法及鋯石標準參考值詳見文獻[26]。
本文對上述3個代表性樣品中的112顆鋯石做了詳細的鋯石U-Pb年代學工作。為了保證統(tǒng)計的準確性,年齡小于1 000 Ma的鋯石采用其206Pb/238U年齡,年齡大于1 000 Ma的鋯石采用其207Pb/206Pb年齡,不一致性大于±10%的測試點被排除在外。除樣品HYC15-3中鋯石呈他形晶外,其余樣品中代表性鋯石大多呈自形晶或半自形晶,顆粒的長寬分別為80~250 μm和40~80 μm(圖4)。在陰極發(fā)光圖像中,樣品16XH15-1中的鋯石內部結構清晰,發(fā)育有明顯的震蕩環(huán)帶,結合其高的Th/U值(0.10~1.12,表1),暗示了它們均為典型的巖漿成因鋯石[27-30]。
樣品16XH15-1采自大理巖夾層中的絹云母片巖。70個有效測點的年齡值為(457±7)~(1 955±85)Ma(圖5a,表1),形成4個206Pb/238U年齡峰值:463 Ma(457~466 Ma,n=3);491 Ma(486~507 Ma,n=21);757 Ma(751~764 Ma,n=9);814 Ma(809~823 Ma,n=32)(圖5b)。最小年齡組給出了(463±8)Ma(MSWD=0.52,n=3)的206Pb/238U加權平均年齡,另有5顆鋯石具有561、583、718、1 288和1 955 Ma的年齡(表1)。
樣品HYC15-2采自侵入金銀庫組的花崗細晶巖。21個測點的206Pb/238U年齡值為263~283 Ma(表2),在U-Pb年齡諧和圖(圖5c)上,形成了(263±2)Ma (MSWD=0.2,n=19)和(283±4)Ma(MSWD=0,n=2)兩組206Pb/238U加權平均年齡。其中,最小年齡組(263±2)Ma代表了該花崗細晶巖的形成時代,即中二疊世,該結果也得到了鄰區(qū)同時代巖漿事件的印證[31];而283 Ma的年齡值應代表了捕獲鋯石的年齡。
樣品HYC15-3采自侵入金銀庫組的輝綠巖。18個有效測點的206Pb/238U年齡值為260~563 Ma(表2),在U-Pb年齡諧和圖(圖5d)上,形成了(267±3)Ma (MSWD=0.78,n=8)和(463±5)Ma(MSWD=0.82,n=9)兩組206Pb/238U加權平均年齡,同時,還有1個測點給出了(563±8)Ma的206Pb/238U諧和年齡值。其中,最小年齡組(267±3)Ma代表了該輝綠巖的形成時代,即中二疊世;而其他年齡值應代表了捕獲鋯石的年齡。
在對絹云母片巖(樣品16XH15-1)中鋯石進行LA-ICP-MS U-Pb定年的基礎上,對代表峰期年齡的碎屑鋯石進行了微區(qū)原位Hf同位素分析。分析結果表明,其176Hf/177Hf值為0.282 079~0.282 332,Hf(t)值為-13.9~-0.1,Hf同位素一階段模式年齡TDM1和二階段模式年齡TDM2分別為1 827~1 307 Ma和2 411~1 715 Ma(表3,圖6)。
263 Ma花崗細晶巖(樣品HYC15-2)中巖漿鋯石的176Hf/177Hf值為0.282 642~0.282 672,Hf(t)值為0.9~2.0,Hf同位素二階段模式年齡TDM2為1 110~1 047 Ma(表3,圖6),表明其原始巖漿應為新增生地殼部分熔融的產物。
表1佳木斯地塊北部金銀庫組絹云母片巖中鋯石LA-ICP-MSU-Pb分析結果
Table1LA-ICP-MSdetritalzirconU-PbdatingresultsforsericiteschistfromtheJinyinkuFormationinthenorthernJiamusimassif
樣品號wB/10-6ThUTh/U同位素比值年齡/Ma207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ16XH15-1-01118023310.510.065020.001141.216290.022300.134820.001197752480810815716XH15-1-0270720230.350.066300.001231.232780.022400.134290.001038162581610812616XH15-1-03214231230.690.067310.001411.260230.024260.135700.001588472282811820916XH15-1-0490423320.390.067450.001141.170280.020380.125290.001188522178710761716XH15-1-0587219130.460.065590.002011.137290.032730.125760.001327936677116764816XH15-1-06125925970.490.065270.001091.216580.023030.134260.001437832280811812816XH15-1-0753410820.490.064470.001341.200500.025700.134530.001417572880112814816XH15-1-0848625250.190.060290.001150.794200.018100.094600.001236142859410583716XH15-1-0995832140.300.058020.001160.639120.012960.079580.00077531285028494516XH15-1-1051516380.310.068760.001511.282470.028540.134540.001268923083813814716XH15-1-1135835750.100.057410.001160.629930.012920.079100.00069507304968491416XH15-1-1279431780.250.058530.001170.645090.013100.079500.00070550295058493416XH15-1-1364914820.440.065510.001431.238210.029270.136160.001347913381813823816XH15-1-1456516340.350.065580.001241.231170.023360.135640.001227932581511820716XH15-1-1557419200.300.083800.003652.014220.076230.174320.0037512888711202610362116XH15-1-1685722150.390.064580.001141.203030.021490.134290.001187612380210812716XH15-1-1755917830.310.065360.001361.228990.027590.135530.001647862781413819916XH15-1-18118923170.510.068410.001291.180380.022120.124140.000858812779110754516XH15-1-1966124600.270.056310.001250.617340.013400.079030.00059465354888490416XH15-1-20150429160.520.068070.001421.182570.025120.125730.001598712479312763916XH15-1-2147916140.300.066740.001561.255630.034740.134660.0017883036826168141016XH15-1-222004500.440.067520.001871.262070.035060.134870.001358544182916816816XH15-1-2380829350.280.056100.001140.615400.012960.079290.00089456274878492516XH15-1-2461042010.150.057520.001070.728910.018030.090970.001315113055611561816XH15-1-25103824570.420.065310.001221.123290.021280.123960.001097842576510753616XH15-1-26167423910.700.073000.001361.191790.021720.117840.0009210142479710718516XH15-1-27328834340.960.071230.001221.236000.022330.125540.001449641981710762816XH15-1-28101121180.480.067490.001241.257060.025450.134520.001438532582711814816XH15-1-2969020850.330.066600.001311.239880.025940.135100.001668252481912817916XH15-1-3073818970.390.063580.001361.184710.025700.135000.001367282979412816816XH15-1-3153918450.290.066520.001451.233380.026740.134570.001318232981612814716XH15-1-32220829940.740.067680.001271.260280.024970.134740.001298592582811815716XH15-1-3362226060.240.055400.001120.605230.012900.079100.00085428294818491516XH15-1-34119022070.540.066310.001341.236250.026280.135070.0015381626817128179
續(xù)表1
實線圓和橢圓表示年齡測點位置,虛線圓表示Hf同位素測點位置。圖4 金銀庫組中代表性碎屑鋯石和巖漿鋯石的CL圖像Fig.4 CL images of selected detrital and magmatic zircons from the Jinyinku Formation
圖5 金銀庫組中代表性樣品的鋯石U-Pb年齡諧和圖和頻數圖Fig.5 Zircon U-Pb concordia and probability diagrams for selected samples from the Jinyinku Formation
267 Ma輝綠巖(樣品HYC15-3)中,約267 Ma的巖漿鋯石的176Hf/177Hf值為0.282 393~0.282 799,Hf(t)值為-7.7~6.4,Hf同位素一階段模式年齡TDM1為994~802 Ma。該樣品中465 Ma捕獲鋯石的Hf(t)值為0.4和0.8,對應的Hf同位素一階段模式年齡TDM1和二階段模式年齡TDM2分別為1 054、1 035 Ma和1 294、1 270 Ma,表明其巖漿形成的過程中有古老地殼物質的加入(圖6,表3)。
表2 佳木斯地塊北部侵入金銀庫組火成巖中鋯石的U-Pb分析結果
注:HYC15-2為花崗細晶巖(LA-ICP-MS);HYC15-3為輝綠巖(SIMS)。
表3佳木斯地塊北部金銀庫組變沉積巖和侵入巖鋯石Lu-Hf同位素分析結果
Table3Lu-HfisotopicdataformetasedimentaryandintrusiverocksfromtheJinyinkuFormationinthenorthernJiamusimassif
樣品號t/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf2σεHf(0)εHf(t)2σTDM1(Hf)/MaTDM2(Hf)/MafLu/Hf16XH15-1-014570.0361370.0012660.2823130.000034-16.2-6.61.213351851-0.9616XH15-1-024660.0270520.0009360.2822870.000030-17.1-7.21.113591896-0.9716XH15-1-034920.0216510.0007940.2822340.000026-19.0-8.50.914271995-0.9816XH15-1-044940.0353710.0012250.2823320.000030-15.6-5.11.113071785-0.9616XH15-1-054940.0114350.0004040.2822600.000025-18.1-7.40.913781929-0.9916XH15-1-064980.0325710.0011230.2821550.000048-21.8-11.21.715512176-0.9716XH15-1-078150.0510470.0018730.2822820.000034-17.3-0.31.214001729-0.9416XH15-1-088140.0422610.0016100.2822850.000054-17.2-0.11.913871715-0.9516XH15-1-095830.0195520.0007030.2822570.000036-18.2-5.61.313931888-0.9816XH15-1-104910.0091620.0002830.2821450.000022-22.2-11.50.815312185-0.9916XH15-1-118230.0375690.0013600.2821450.000030-22.2-4.81.115752013-0.9616XH15-1-124900.0200570.0007190.2821810.000045-20.9-10.31.614982113-0.9816XH15-1-135610.0179100.0006610.2822320.000026-19.1-7.00.914261955-0.9816XH15-1-148130.0135150.0004670.2821690.000028-21.3-3.61.015051934-0.9916XH15-1-154870.0358500.0012740.2822950.000027-16.9-6.61.013611874-0.9616XH15-1-164930.0243750.0008420.2820790.000025-24.5-11.20.916442341-0.9716XH15-1-178160.0416470.0014740.2819690.000048-28.4-13.91.718272411-0.9616XH15-1-184890.0115430.0003770.2821700.000022-21.3-10.70.815002132-0.9916XH15-1-197610.0203340.0007670.2822650.000039-17.9-1.51.413841763-0.98HYC15-2-012680.0377800.0017310.2826650.000033-3.81.80.88481062-0.95HYC15-2-022630.0356010.0015730.2826630.000027-3.81.70.88471063-0.95HYC15-2-032690.0442900.0019320.2826570.000053-4.11.50.88631079-0.94HYC15-2-042670.0227900.0010230.2826450.000040-4.51.20.78601094-0.97HYC15-2-052690.0469700.0020110.2826560.000011-4.11.40.78671082-0.94HYC15-2-062650.0381010.0017040.2826420.000041-4.61.00.78791106-0.95HYC15-2-072670.0469720.0019920.2826420.000099-4.60.90.78871110-0.94HYC15-2-082650.0362790.0015950.2826480.000032-4.41.20.78691093-0.95HYC15-2-092660.0281190.0012670.2826700.000081-3.62.00.78301047-0.96HYC15-2-102640.0515790.0021570.2826720.000057-3.61.90.88481053-0.94HYC15-3-012650.0244840.0012360.2826970.000031-2.73.00.7791994-0.96HYC15-3-024650.0144400.0005710.2825120.000112-9.20.80.610351270-0.98HYC15-3-032650.0179480.0007460.2823930.000040-13.4-7.70.712061585-0.98HYC15-3-044650.0190820.0007220.2825010.000091-9.60.40.710541294-0.98HYC15-3-052670.0209290.0009670.2827670.000011-0.25.50.8687853-0.97HYC15-3-062710.0210540.0010390.2827800.0000810.36.00.7670829-0.97HYC15-3-072670.0427530.0019200.2827950.0000980.86.40.8663806-0.94HYC15-3-082600.0481020.0021160.2827990.0001990.96.40.9662802-0.94HYC15-3-092670.0369250.0016390.2827620.000059-0.35.20.9706869-0.95HYC15-3-102700.0523840.0022360.2827540.000020-0.64.80.8730892-0.93
圖6 金銀庫組中碎屑鋯石和侵入其中巖漿鋯石的(ε)Hf (t)-t圖解Fig.6 Plot ofHf (t) values vs. U-Pb ages of detrital and magmatic zircons from selected samples in the Jinyinku Formation
東北早古生代地層的研究程度較低,主要原因是其出露范圍小,多呈殘留體分布在大面積花崗巖中,并且缺少系統(tǒng)的年代學研究。蘿北縣東部石灰窯地區(qū)小范圍出露大理巖,前人通過系統(tǒng)的野外地質研究將其劃歸到金銀庫組[8]。通過與毗鄰俄羅斯興凱地塊含化石的普洛霍拉組對比,認為其形成時代為早寒武世,這是佳木斯地塊上前人確定的唯一一處早古生代地層,但由于缺少指示性化石以及精準年代學研究,關于其形成時代長期存在爭議。因此,本文通過對金銀庫組中的變沉積巖和侵入其中火成巖中的鋯石U-Pb精確定年,同時結合野外地質接觸關系以及佳木斯地塊上發(fā)育的地質體的年代學研究結果,以便限定其形成時代。
研究區(qū)巖性主要為大理巖,呈規(guī)則條帶構造,中間含原巖為泥質巖的片巖夾層,巖石成分均一,上下呈過渡關系。由于大理巖中缺少碎屑鋯石,本次樣品采自大理巖夾層中以陸緣碎屑成分為主的絹云母片巖。樣品16XH15-1中最年輕的一組碎屑鋯石加權平均年齡為463 Ma,代表了金銀庫組的最大沉積年齡不早于463 Ma。侵入到金銀庫組的花崗細晶巖和輝綠巖分別具有263和267 Ma的結晶年齡,進而限定了金銀庫組的沉積上限,表明金銀庫組形成時代不晚于267 Ma。此外,研究區(qū)基底的巖心年代學研究表明,埋深3 478 m的基底花崗巖形成于430 Ma[32],并且424~430 Ma巖漿作用也廣泛出露在鄰區(qū)松嫩—張廣才嶺地塊的東部[33]和佳木斯地塊的北部[34]。由于樣品16XH15-1中缺乏約430 Ma的碎屑鋯石,因此,我們認為金銀庫組形成于463~430 Ma,即金銀庫組形成于晚奧陶世至早志留世。
鋯石以較高的封閉溫度和高硬度為特點,使得其在經歷各種地質過程中仍然保持穩(wěn)定的U-Pb-Hf同位素體系。因此,在巖漿活動相對頻繁的地區(qū),結合碎屑鋯石的年齡頻譜和Hf同位素成分,并與區(qū)域中已有的同位素年代學數據進行對比,可以有效地示蹤地層的沉積物源[35-36]。
本文采自金銀庫組的絹云母片巖中的72粒碎屑鋯石普遍具有巖漿鋯石的特征,具有1 955~457 Ma的年齡區(qū)間,年齡眾數主要在814 Ma(占總數的45%)、757 Ma(15%)、568 Ma(3%)、491 Ma(29%)和463 Ma(4%),同時包括少量>1.0 Ga的鋯石。結合其具有自形—半自形的形態(tài)學特征,表明金銀庫組的沉積物源以早古生代和新元古代火成巖為主,這些巖漿事件與佳木斯地塊上出露的古生代和新元古代巖漿事件相吻合[40],同時在相鄰的松嫩—張廣才嶺地塊和興凱地塊中也具有類似的巖漿事件[18, 37-38],這說明金銀庫組的沉積物源區(qū)為佳木斯地塊及其鄰區(qū)。
新元古代(814、757和568 Ma)碎屑鋯石以具有負的Hf(t)值(-13.9~-0.1)為特征(圖6),其中814 Ma的碎屑鋯石與鄰區(qū)松嫩—張廣才嶺地塊東緣841 Ma花崗閃長巖具有相似的Hf同位素特征[18, 39-40],757 Ma的年齡則與興凱地塊西北部Iman群中(757±4)Ma花崗片麻巖的形成時代相吻合[38]。雖然目前缺少568 Ma巖漿事件的報道,但基于佳木斯地塊麻山地區(qū)花崗片麻巖變質作用的研究表明,該區(qū)存在563 Ma的高級變質作用[41]。新元古代碎屑鋯石年齡與區(qū)域巖漿和變質作用在時間上呈現一致性。因此,上述巖漿作用所產生的巖漿巖可為金銀庫組提供沉積物源。
金銀庫組零星出露于蘿北縣石灰窯和密山縣金銀庫地區(qū),前人研究認為本組屬于穩(wěn)定建造系列的異地碳酸鹽巖建造[8]。針對該異地碳酸鹽巖建造所形成地質背景的研究,有利于解讀區(qū)域構造演化歷史。
異地碳酸鹽巖形成的地質背景主要有4種,分別是活動大陸邊緣的弧后或弧間裂谷盆地、被動大陸邊緣盆地、大洋海山附近以及前陸盆地[44]。由于金銀庫組中巖石成分單一,以碳酸鹽巖為主,只含有少量砂泥質陸源碎屑成分,沒有出現火山碎屑巖以及與火山熔巖伴生的現象;因此,我們認為金銀庫組最有可能形成于被動大陸邊緣盆地的地質背景。同時,對松嫩—張廣才嶺地塊東部和佳木斯地塊北部巖漿巖的年代學和地球化學研究也表明,在晚奧陶世到早志留世期間,佳木斯地塊北部處于被動大陸邊緣環(huán)境[34, 37]。綜上所述,我們認為蘿北縣石灰窯地區(qū)金銀庫組形成于被動大陸邊緣的構造背景。
通過對佳木斯地塊石灰窯地區(qū)金銀庫組中碎屑鋯石和巖漿鋯石U-Pb年代學以及Hf同位素的研究,得出以下幾點結論:
1)佳木斯地塊北部石灰窯地區(qū)金銀庫組的形成時代為463~430 Ma,即晚奧陶世至早志留世,而不是前人確定的早寒武世。
2)佳木斯地塊北部石灰窯地區(qū)存在中二疊世巖漿作用。263 Ma花崗細晶巖的原始巖漿應為新增生地殼物質部分熔融的產物,而267 Ma輝綠巖的原始巖漿在形成的過程中有古老地殼物質的加入。
3)金銀庫組的沉積物源主要來自佳木斯地塊及其鄰區(qū)的早古生代早期和新元古代火成巖,并且金銀庫組形成于被動大陸邊緣盆地的構造背景。
致謝:河北省廊坊物探勘察院在鋯石的分選過程中給予了幫助,中國地質大學(武漢)地質過程與礦產資源國家重點實驗室以及中國科學院地質與地球物理研究所在鋯石LA-ICP-MS U-Pb分析以及主量元素、微量元素及Hf同位素測試過程中給予了大力幫助,在此表示感謝。
[1]Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences , 2006, 26 (3/4): 207-224.
[2] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
[3] Xu W L, Pei F P, Wang F, et al. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations Between Multiple Tectonic Systems[J]. Journal of Asian Earth Sciences,2013, 74: 167-193.
[4] 許文良, 王楓, 裴福萍,等. 中國東北中生代構造體制與區(qū)域成礦背景:來自中生代火山巖石組合時空變化的制約[J]. 巖石學報, 2013, 29 (2): 339-353.
Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29 (2): 339-353.
[5] Zhou J B, Wilde S A, Zhang X Z, et al. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt[J]. Tectonophysics, 2009, 478: 230-246.
[6] 孟恩, 許文良, 楊德彬, 等. 滿洲里地區(qū)靈泉盆地中生代火山巖的鋯石U-Pb年代學、地球化學及其地質意義[J]. 巖石學報, 2011, 27 (4): 1209-1226.
Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2011, 27(4): 1209-1226.
[7] 王楓, 許文良,葛文春,等. 敦化—密山斷裂帶的平移距離:來自松嫩—張廣才嶺—佳木斯—興凱地塊古生代—中生代巖漿作用的制約[J]. 巖石學報, 2016, 32 (4): 1129-1140.
Wang Feng, Xu Wenliang, Ge Wenchun, et al. The Offset Distance of the Dun-Mi Fault: Constrains from Palezoic-Mesozoic Magmatism with in the Songnen-Zhangguangcai Range, Jiamusi and Khanka Massifs[J]. Acta Petrologica Sinica, 2016, 32 (4): 1129-1140.
[8] 黑龍江省地質礦產局. 黑龍江省區(qū)域地質志[M]. 北京: 地質出版社, 1993.
Heilongjiang Bureau of Geology and Mineral Resources. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993.
[9] Meng E, Xu W L, Pei F P, et al. Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485: 42-51.
[10] Seng?r A M C, Natal’in B A , Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364: 299-307.
[11] Jahn B M. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic[J]. Geological Society of London, 2004, 226: 73-100.
[12] 李宇, 丁磊磊, 許文良, 等. 孫吳地區(qū)中侏羅世白云母花崗巖的年代學與地球化學: 對蒙古—鄂霍茨克洋閉合時間的限定[J]. 巖石學報, 2015, 31 (1): 56-66.
Li Yu, Ding Leilei, Xu Wenliang, et al. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean[J]. Acta Petrologica Sinica, 2015, 31(1): 56-66.
[13] 許文良, 孫德有, 周燕. 滿洲里—綏芬河地學斷面巖漿作用和地殼結構[M]. 北京: 地質出版社, 1994.
Xu Wenliang, Sun Deyou, Zhou Yan. Magmatism and Crutal Structure of Manzhouli-Suifenhe Geological Fault[M]. Geological Publishing House, Beijing, 1994.
[14] Wilde S A, Dorsett-Bain H L, Liu J L. The Iden-tification of a Late Pan-African Granulite Facies Event in Northeast China: SHRIMP U-Pb Zircon Dating of the Mashan Group at Liumao, Heilongjiang Province, China[C]//Proceedings of the 30th IGC: Precambrian Geology Metamorphic Petrology. Amsterdam: VSP International Science Publishers, 1997: 59-74.
[15] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif[J]. Precambrian Research, 2003, 122: 311-327.
[16] 吳福元, 孫德有, 林強. 東北地區(qū)顯生宙花崗巖的成因與地殼增生[J]. 巖石學報, 1999, 15 (2): 181-189.
Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in the Northeast China[J]. Acta Petrologica Sinica, 1999, 15 (2): 181-189.
[17] 吳福元, Wilde S A, 孫德有. 佳木斯地塊片麻狀花崗巖的鋯石離子探針U-Pb年齡[J]. 巖石學報, 2001, 17 (3): 443-452.
Wu Fuyuan, Wilde S A, Sun Deyou. The La-ICP-MS U-Pb Ages of Granitic Gneisses in the Jiamusi Massif[J]. Acta Petrologica Sinica, 2001, 17 (3): 443-452.
[18]Luan J P, Wang F, Xu W L, et al. Provenance, Age, and Tectonic Implications of Neoproterozoic Strata in the Jiamusi Massif: Evidence from U-Pb Ages and Hf Isotope Compositions of Detrital and Magmatic Zircons[J]. Precambrian Research, 2017, 297: 19-32.
[19] Bi J H, Ge W C, Yang H, et al. Petrogenesis and Tectonic Implications of Early Paleozoic Granitic Magmatism in the Jiamusi Massif, NE China: Geochronological, Geochemical and Hf Isotopic Evidence[J]. Journal of Asian Earth Sciences, 2014, 96: 308-331.
[20]Wilde S A, Zhang X Z, Wu F Y. Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics, 2000, 328: 115-130.
[21]Wang F, Xu W L, Xu Y G, et al. Late Triassic Bimodal Igneous Rocks in the Eastern Heilongjiang Province, NE China:Implications for the Initation of Subduction of the Paleo-Pacific Plate Beneath Eurasia[J]. Journal of Asian Earth Sciences, 2015, 97: 406-423.
[22] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257: 34-43.
[23]Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51: 537-571.
[24] Ludwig K R. ISOPLOT 3: A Geochronological Too-lkit for Microsoft Excel[M]. California: Berkeley Geochronology Centre Special Publication, 2003: 1-74.
[25] Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report204Pb[J]. Chemical Geology, 2002, 192 (1/2): 59-79.
[26] Hu Z C, Liu Y S, Gao S, et al. A “Wire” Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis[J]. Spectrochimica Acta: Part B: Atomic Spectroscopy, 2012, 78: 50-57.
[27]Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J]. Journal of Microscopy, 1993, 171: 223-232.
[28] Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143: 602-622.
[29] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.
[30]Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link Between U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184: 123-138.
[31] Bi J H , Ge W C, Yang H, et al. Geochronological and Geochemical of Late Carboniferous-Middle Permian I- and A-Type Granites and Gabbro-Diorites in the Eastern Jiamusi Massif, NE China: Implications for Petrogenesis and Tectonic Setting[J]. Lithos, 2016, 266/267: 213-232.
[32] 高福紅,王楓,曹花花,等. 三江盆地綏濱斷陷基底花崗巖的鋯石U-Pb年代學及其構造意義[J]. 吉林大學學報(地球科學版),2010, 40 (4): 955-960.
Gao Fuhong, Wang Feng, Cao Huahua, et al. Zircon U-Pb Age of the Basement Granite from Suibin Depression in Sanjiang Basin and Its Tectonic Implications[J]. Journal of Jilin University (Earth Science Edition), 2010, 40 (4): 955-960.
[33] Wang F, Xu W L, Meng E, et al. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites[J]. Journal of Asian Earth Sciences, 2012, 49: 234-248.
[34] Buchko I V, Sorokin A A, Kudryashov N M. Age and Tectonic Position of the Early Paleozoic Malyi Khingan Terrane in the Eastern Part of the Central Asian Fold Belt[J]. Doklady Earth Sciences, 2012, 445(2): 929-933.
[35] Lee J, Williams I, Ellis D. Pb, U and Th Diffusion in Natural Zircon[J]. Nature, 1997, 390: 159-163.
[36] Cherniak D J,Watson E B.Pb Diffusion in Zircon[J].Chemical Geology, 2001, 172 (1/2): 5-24.
[37] Wang Z W, Xu W L, Pei F P, et al. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks of the Lesser Xing’an Range, NE China: Implications for the Tectonic Evolution of the Eastern Central Asian Orogenic Belt[J]. Lithos, 2016, 261(1): 144-163.
[38] Khanchuk A I, Berdnikov N V, Cherepanov A A, et al. First Finds of Platinoids in Black-Shale Sequences of the Bureya Massif[J]. Doklady Earth Sciences, 2009, 425 (5): 213-215.
[39] 王少軼,劉寶山. 伊春東風經營所新元古代花崗質片麻巖U-Pb年代學和地球化學特征[J].世界地質,2014,33 (4): 780-786.
Wang Shaoyi, Liu Baoshan. Characteristics of U-Pb Chronology and Geochemistry of Neoproterozoic Granitic Gneiss in Dongfengjingyingsuo of Yichun Area[J]. Global Geology, 2014,33 (4): 780-786.
[40] Luan J P, Xu W L, Wang F, et al. Age and Geo-chemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications[J]. Journal of Asian Earth Sciences, 2017, 148: 265-276.
[41] Yang H, Ge W C, Zhao G C, et al. Zircon U-Pb Ages and Geochemistry of Newly Discovered Neoproterozoic Orthogneisses in the Mishan Region, NE China: Constraints on the High-Grade Metamorphism and Tectonic Affinity of the Jiamusi-Khanka Block[J]. Lithos, 2017, 268/269/270/271: 16-31.
[42] Sorokin A A, Kudryashov N M. The First Geochro-nological Evidence of Late Proterozoic Granitoid Magmatism in the Bureya Terrane[J]. Doklady Earth Sciences, 2012, 447 (5): 541-545.
[43] Sorokin A A, Kotovb A B, Sal’nikova E B, et al. Early Paleozoic Granitoids in the Lesser Khingan Terrane, Central Asian Foldbelt: Age, Geochemistry and Geodynamic Interpretations[J]. Petrology, 2011, 19: 632-648.
[44] 牛新生,王成善. 異地碳酸鹽巖塊體與碳酸鹽巖重力流沉積研究及展望[J].古地理學報,2010, 12 (1): 17-30.
Niu Xinsheng, Wang Chengshan. Problems and Perspect in Studies of Allochthonous Carbonate Blocks and Carbonate Gravity Flow Desposits[J]. Journal of Paleogeography, 2010, 12 (1): 17-30.