国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物表皮形態(tài)建成的分子調(diào)控機(jī)制

2018-01-29 20:37:59周玉乾孟思遠(yuǎn)周文期甘肅省農(nóng)業(yè)科學(xué)院作物研究所蘭州730070甘肅省種子管理局蘭州73000
關(guān)鍵詞:微絲扁平復(fù)合體

周玉乾,孟思遠(yuǎn),周文期(.甘肅省農(nóng)業(yè)科學(xué)院 作物研究所,蘭州 730070; .甘肅省種子管理局,蘭州 73000)

植物表皮在組織器官的生長(zhǎng)發(fā)育和形態(tài)建成中發(fā)揮非常重要的作用[1-3]。表皮是植物體內(nèi)與外界環(huán)境的天然保護(hù)屏障,它不僅可以感知外界刺激、傳遞信號(hào),吸收營(yíng)養(yǎng)等,而且表皮細(xì)胞外壁常覆蓋一層脂肪性物質(zhì),稱角質(zhì)層,在植物的地上器官(如莖、葉、花、果實(shí)和種子)中具有保護(hù)功能[4-6]。增加表皮層厚度不僅能使植物有效地抵御外界有機(jī)脅迫(微生物、病蟲害侵襲)和無(wú)機(jī)脅迫(低溫、高鹽堿等),更能減少植物體內(nèi)熱量及水分的散失[7];在地下器官(根)中具有吸收功能。因此,研究植物表皮的分裂、分化與形態(tài)建成對(duì)植物的正常生長(zhǎng)發(fā)育具有非常重要的理論意義。植物葉表皮扁平細(xì)胞排列緊密,細(xì)胞邊緣凸凹嵌套,沒(méi)有細(xì)胞間隙(除了氣孔)。除一般的表皮扁平細(xì)胞外,葉表皮細(xì)胞還包括特化的氣孔復(fù)合體和表皮毛等附屬物,在禾本科植物葉中還包括泡狀細(xì)胞、以及由硅質(zhì)細(xì)胞和栓質(zhì)細(xì)胞緊密鑲嵌而成的短細(xì)胞[8-10]。近幾年來(lái),隨著生物技術(shù)的不斷提高,對(duì)植物表皮形態(tài)建成的研究成為一大熱點(diǎn),尤其在雙子葉模式植物擬南芥中,取得了一系列的研究成果,但是在單子葉植物中,調(diào)控氣孔及表皮細(xì)胞發(fā)育圖式的基因及參與分子調(diào)控網(wǎng)絡(luò)的機(jī)理研究非常受限,因此需要更多科技工作者去深入探討和研究。

1 雙子葉植物葉表皮扁平細(xì)胞及表皮毛形態(tài)建成及分子機(jī)制

植物表皮主要作用是增加表皮層的厚度,減少熱量及水分散失,從而保護(hù)表皮層下組織,以免受到病蟲侵害及機(jī)械傷害[7]。擬南芥(Arabidopsisthaliana) 作為一種雙子葉植物的模式植物,對(duì)其葉表皮的研究已經(jīng)取得很大的進(jìn)展。研究證明,擬南芥葉表皮扁平細(xì)胞的發(fā)育經(jīng)歷3個(gè)階段:第1階段,表皮原始細(xì)胞先沿著葉長(zhǎng)軸開始擴(kuò)展,形成稍微變長(zhǎng)的多變形細(xì)胞;其次,沿細(xì)胞壁的背斜面向鄰近細(xì)胞側(cè)面延伸,細(xì)胞邊緣逐漸形成不規(guī)則的鋸齒狀凸出(lobe);最后,細(xì)胞凸出進(jìn)一步向外延伸,與相鄰細(xì)胞狹窄的凹陷(neck) 處交錯(cuò)相連,最終形成復(fù)雜多變的表皮圖式[11]。擬南芥表皮毛是一種特化的、典型的單細(xì)胞結(jié)構(gòu),一般有3個(gè)分支,無(wú)腺體,廣泛分布于葉、莖、花瓣的表面。其發(fā)育過(guò)程包括起始發(fā)育、分支、延伸和形態(tài)建成4 個(gè)階段[12]。葉表皮不規(guī)則的齒狀凸出和頸的形成以及表皮毛的延伸與發(fā)育主要受細(xì)胞骨架(微管,微絲和中間纖維)的調(diào)控。微管主要調(diào)控葉扁平細(xì)胞延伸與分裂[1,13]。微管結(jié)合蛋白MAP65(microtubule associated protein 65) 負(fù)責(zé)微管穩(wěn)定以及微管成束[14];微管切割蛋白KTN1(katanin 1) 與植物中的小G蛋白R(shí)OPs(rho-like small GTPase in plant) 的效應(yīng)蛋白R(shí)IC1(ROP-interactive CRIB motif-containing protein 1)結(jié)合,通過(guò)切割微管進(jìn)而調(diào)控微管的分布[15];Rho-GTPase級(jí)聯(lián)信號(hào)通路能調(diào)控微管與微絲的排列,從而導(dǎo)致葉扁平細(xì)胞形態(tài)改變[11,16]。微絲主要控制表皮細(xì)胞邊緣的凸出,即lobe的形成和圖式發(fā)育[2,11,17-18]。微絲結(jié)合蛋白ABPs(Actin binding proteins) 調(diào)節(jié)微絲的聚合以及微絲動(dòng)態(tài)裝配[19];目前已被證實(shí)的擬南芥中微絲結(jié)合蛋白主要包括:微絲解聚因子(actin-depolymerizing factors)、前纖維蛋白(profilin)、肌動(dòng)蛋白(fimbrins)、絨毛蛋白(villin)、肌動(dòng)蛋白相關(guān)蛋白Arp2/3(actin-related protein 2/3) 復(fù)合體等都參與細(xì)胞的形態(tài)發(fā)生[20-21]。

在擬南芥中已經(jīng)證明參與調(diào)控扁平細(xì)胞及表皮毛發(fā)育有多條信號(hào)通路,表皮毛的形態(tài)和發(fā)育的調(diào)控均依賴相關(guān)基因的精確表達(dá),其中大部分屬于R2R3類型的MYB、bHLH(basic helix-loop-helix)和含WD40重復(fù)序列的TTG(RANSPARENTTESTA GLABRA1) 類轉(zhuǎn)錄因子,表皮毛發(fā)育及分子調(diào)控目前研究比較清晰[22-28]。本研究就針對(duì)依賴于SPK1-ROPs-SCAR/WAVE-ARP2/3這一信號(hào)通路進(jìn)行介紹,該通路基因通過(guò)調(diào)控微絲核化改變細(xì)胞骨架結(jié)構(gòu),從而導(dǎo)致葉扁平細(xì)胞及表皮毛發(fā)育過(guò)程形態(tài)異常,該通路成員有SPK1(spike 1),ROPs,環(huán)磷酸腺苷受體結(jié)合抑制因子SCAR/WAVE(suppressor of cAMP receptor/ Wiskott-Aldrich syndrome protein-family verprolin-homologous protein) 復(fù)合體,ARP2/3復(fù)合體[22,29-30]。單突變體spk1表皮毛分支明顯減少,不規(guī)則,扭曲延伸,扁平細(xì)胞邊緣凸出減少[3,31]。ROP家族在擬南芥中共有11個(gè)成員,分別是ROP1~ROP11,其中ROP1~ROP6主要調(diào)控細(xì)胞極性生長(zhǎng),參與葉表皮細(xì)胞形態(tài)建成,組成激活突變體CA-rop2扁平細(xì)胞顯著膨大,非極性分裂生長(zhǎng),表皮毛表現(xiàn)出腫脹表型,分枝不規(guī)則,扭曲;而負(fù)顯性突變體DN-rop2扁平細(xì)胞狹窄,lobe變短[32]。ROP2/4在扁平細(xì)胞lobe頂端質(zhì)膜上激活,促進(jìn)RIC4-依賴的皮層微絲積累,促進(jìn)了細(xì)胞向外凸出生長(zhǎng),控制微絲聚集,而ROP6在neck區(qū)域與RIC1結(jié)合促進(jìn)微管的裝配,進(jìn)而抑制細(xì)胞凸出形成[11]。ROPs信號(hào)分子在該通路中起“開關(guān)”作用,另一通路就是激活下游SCAR/WAVE復(fù)合體,繼續(xù)信號(hào)傳遞[33-34]。SCAR/WAVE 復(fù)合體共包括5個(gè)亞基,分別是PIR/SRA1(PIROGI/Specifically Rac1-associated protein)NAP1/NAP125(NCK-associated protein),BRICK1/HSPC300(haematopoietic stem progenitor cell 300),ABI(abl-interactor 2) 和 SCAR/WAVE[35-37]。研究證明,該復(fù)合體中PIR/SRA1亞基接收上游ROPs的激活信號(hào),SCAR/WAVE亞基與下游ARP2/3復(fù)合體直接相互作用并激活下游信號(hào)通路[36-40]。該復(fù)合體中單突變體pir1、nap1、brk1、wave1等都呈現(xiàn)出表皮毛扭曲,分枝不規(guī)則表型,并且細(xì)胞粘連處有缺口,細(xì)胞排列不緊密,brk1扁平細(xì)胞邊緣突出變平滑的表型更為明顯[21,37,41-42]。Arp2/3復(fù)合體由7個(gè)亞基構(gòu)成,分別是ARP2、ARP3、ARPC1-ARPC5[43-44]。4種稱為“變形(distorted)”基因分別編碼ARP2、ARP3、ARPC2以及ARPC5,單個(gè)基因突變同樣表現(xiàn)出表皮毛扭曲、腫脹,分枝繚亂,長(zhǎng)度減少等表型[45-47]。大量試驗(yàn)證明編碼該信號(hào)通路的蛋白功能相對(duì)保守,SCAR/WAVE和ARP2/3復(fù)合體主要通過(guò)調(diào)節(jié)微絲斑或微絲帶的形成來(lái)調(diào)控細(xì)胞極性生長(zhǎng)過(guò)程,從而改變?nèi)~扁平細(xì)胞以及表皮毛的形狀[36,48]。目前雙子葉植物中,對(duì)通過(guò)微管和微絲調(diào)控?cái)M南芥表皮細(xì)胞的圖式發(fā)育和形態(tài)建成的信號(hào)通路研究取得較大的成果。

2 雙子葉植物中氣孔的圖式發(fā)育及分子機(jī)制

氣孔是高等植物表皮上的一種特化結(jié)構(gòu),是蒸騰過(guò)程中水蒸氣從體內(nèi)排到體外的主要出口,也是光合作用和呼吸作用與外界氣體交換的“大門”,對(duì)植物的蒸騰、光合、呼吸等都起著非常重要的作用。氣孔在調(diào)節(jié)植物逆境環(huán)境中,常通過(guò)其開關(guān)來(lái)維持體內(nèi)水分,在維持地球水分平衡、碳氧平衡及植物的生命活動(dòng)中均發(fā)揮著非常重要的作用[49-50]。當(dāng)光照、溫度、CO2含量、葉片含水量、化學(xué)物質(zhì)等環(huán)境因子發(fā)生變化時(shí),植物通過(guò)調(diào)整氣孔孔徑大小來(lái)控制自身與外界的氣體交換能力,以便能更好地適應(yīng)外界環(huán)境[50-51]。擬南芥的原表皮細(xì)胞同時(shí)具有發(fā)育成扁平細(xì)胞、氣孔和表皮毛的能力。原表皮細(xì)胞逐漸發(fā)育成擬分生組織母細(xì)胞MMC(meristemoid mother cell),屬于氣孔干細(xì)胞,并主導(dǎo)氣孔系細(xì)胞的第1次不均等起始分裂,產(chǎn)生2個(gè)子細(xì)胞,小細(xì)胞為擬分生組織(meristemoid),繼續(xù)進(jìn)行細(xì)胞不均等分裂,或者分化為保衛(wèi)細(xì)胞母細(xì)胞GMCs(guard mother cells);其中較大的姊妹細(xì)胞稱為氣孔系基礎(chǔ)細(xì)胞SLGC(stomatal lineage ground cell),發(fā)育成扁平細(xì)胞PCs(pavement cells),GMCs再進(jìn)行一次均等分裂,進(jìn)而最終分化成2個(gè)保衛(wèi)細(xì)胞GCs(guard cells),細(xì)胞壁加厚,逐漸形成孔狀特化的氣孔結(jié)構(gòu)。氣孔擬分生組織在發(fā)育過(guò)程中,經(jīng)歷1~3次不均等分裂形成氣孔和多個(gè)扁平細(xì)胞[49]。把這種經(jīng)過(guò)1~3次不均等分裂過(guò)程稱為氣孔系細(xì)胞的擴(kuò)增分裂(amplifying division);把另一種氣孔系基礎(chǔ)細(xì)胞重新獲得分裂能力,形成2個(gè)氣孔和1個(gè)扁平細(xì)胞的分裂稱為空間分裂(spacing division),這2種分裂模式同時(shí)調(diào)控氣孔在表皮層的分布和發(fā)育,使氣孔分布遵循“一個(gè)氣孔間隔一個(gè)扁平細(xì)胞”交錯(cuò)的排列模式[49,52-53]。

擬南芥中有關(guān)氣孔發(fā)育及調(diào)控機(jī)理有比較深入的研究,其信號(hào)通路主要包括轉(zhuǎn)錄因子,配體與受體、MAPK信號(hào)級(jí)聯(lián)等[54-55]。已經(jīng)報(bào)道了3個(gè)bHLH正調(diào)轉(zhuǎn)錄因子SPCH(Speechless)、MUTE 和FAMA,分別與另2種轉(zhuǎn)錄因子SCRM/ICE1(Scream/inducer of cbf expression 1) 和SCRM2(scream 2)形成異二聚體,分別調(diào)控由原表皮細(xì)胞向擬分生組織,擬分生組織向保衛(wèi)細(xì)胞母細(xì)胞,以及保衛(wèi)細(xì)胞母細(xì)胞向保衛(wèi)細(xì)胞的分裂與分化3個(gè)關(guān)鍵過(guò)程[56-59];RNA聚合酶Ⅱ第3大亞基NRPB3(the third largest subunit of RNA polymerase Ⅱ) 能夠與FAMA和ICE1相互作用,來(lái)執(zhí)行氣孔發(fā)育和圖式分化特異的轉(zhuǎn)錄調(diào)控,功能缺陷型突變體nrpb3-1表現(xiàn)出2個(gè)氣孔系細(xì)胞簇生的表型,包括簇生擬分生組織、GMCs和氣孔復(fù)合體[60]。另外,MYB 轉(zhuǎn)錄因子主要包括FLP(FOUR LIPS) 和 MYB88,編碼2種R2R3類 MYB 蛋白,與FAMA獨(dú)立協(xié)同調(diào)控GMCs 向GCs的分化和轉(zhuǎn)變,在此過(guò)程中,F(xiàn)AMA須結(jié)合另一種叫作RBR(RETINO BLASTOMA RELATED) 蛋白才能行使功能,均在氣孔形成晚期發(fā)揮重要的調(diào)控作用[56,61-62]。配體主要包括表皮模式因子EPFs(epidermal patterning factors) 家族EPF1、EPF2、EPFL5、EPFL6負(fù)調(diào)控氣孔發(fā)育,STOMAGEN/EPFL9則對(duì)氣孔發(fā)育起正調(diào)節(jié)作用[63-65]。受體包括富亮氨酸重復(fù)區(qū)受體類激酶(LRR-LRK) 包括ERECTA家族成員[ER、ERL1(ERECTA LIKE 1) 和ERL2],以及SERK(SOMATIC EMBRYOGENESIS RECEPTOR KINASE) 家族成員SERK1-SERK4,與其共受體富亮氨酸重復(fù)的受體類蛋白TMM(TOO MANY MOUTH) 共同調(diào)控氣孔系前體細(xì)胞的不均等分裂;植物促分裂原蛋白活化激酶級(jí)聯(lián)信號(hào)MAPK信號(hào)級(jí)聯(lián)(MAPK signaling cascade) 由促分裂原蛋白活化激酶YODA/MAPKKK、MKK4/MKK5/MKK7/MKK9和MPK3/MPK6構(gòu)成,YODA-MKK4/5-MPK3/6信號(hào)級(jí)聯(lián)通路中激酶的功能缺失導(dǎo)致葉表皮形成氣孔簇,而持續(xù)激活將導(dǎo)致葉片沒(méi)有氣孔的形成[66-68],因此,不同的酶活性水平影響氣孔系細(xì)胞的正常發(fā)育。此外,一個(gè)新的受體蛋白BASL(BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE) 也調(diào)控氣孔系擬分生組織母細(xì)胞和擬分生組織細(xì)胞的不均等分裂[69-70]??莶輻U菌蛋白酶類的絲氨酸蛋白酶SDD1(STOMATAL DENSITY AND DISTRIBUTION1) 作用于TMM上游,在擬分生組織細(xì)胞和GMCs中表達(dá),調(diào)控氣孔圖式發(fā)育[71-72]。

3 單子葉植物氣孔及扁平細(xì)胞發(fā)育圖式形成研究進(jìn)展

雖然有關(guān)葉扁平細(xì)胞和氣孔的研究在擬南芥中取得的進(jìn)展令人鼓舞,但在玉米(ZeamaysL.)和水稻(OryzasativaL.) 等單子葉植物中,調(diào)控氣孔及表皮細(xì)胞生長(zhǎng)發(fā)育與形態(tài)建成的分子機(jī)制研究非常受限,因此亟待研究者去發(fā)現(xiàn)和挖掘。

單子葉植物中葉氣孔及表皮細(xì)胞的生長(zhǎng)發(fā)育、排列方式等與雙子葉植物中截然不同[73]。在雙子葉植物中,雖然2個(gè)氣孔遵循間隔1個(gè)扁平細(xì)胞的排列模式,但是氣孔雜亂無(wú)章地分布在葉表皮上,并且在成熟葉片中,處于各種分裂與分化狀態(tài)的氣孔和扁平細(xì)胞形態(tài)隨時(shí)能被觀察到。但是在單子葉禾本科植物中,氣孔一列列整齊地排列在葉脈兩側(cè),也遵循2個(gè)氣孔間隔1個(gè)扁平細(xì)胞的排列模式[8]。早期葉原基形成后,氣孔系細(xì)胞便開始分裂與分化,并在較短時(shí)間內(nèi)完成發(fā)育,因此在成熟葉片中,幾乎觀察不到正處于分裂或者分化的氣孔系細(xì)胞[73-74]。玉米葉氣孔及扁平細(xì)胞的發(fā)育過(guò)程與水稻中基本一致[75],氣孔都是由氣孔系原始細(xì)胞(也叫保衛(wèi)細(xì)胞母細(xì)胞前體細(xì)胞)進(jìn)行第1次不等分裂,產(chǎn)生2個(gè)大小不一的子細(xì)胞,大細(xì)胞直接發(fā)育成PCs,而小細(xì)胞稱為GMCs,GMCs具有氣孔系干細(xì)胞命運(yùn),能繼續(xù)分裂與分化;當(dāng)位于GMCs兩側(cè)的副衛(wèi)細(xì)胞母細(xì)胞SMCs(subsidary mother cells) 接收到GMCs傳遞的某種信號(hào)后,起初在GMCs 和SMCs 接觸的位置形成微絲斑,然后SMCs的細(xì)胞核朝GMCs極化進(jìn)行第2次不均等分裂,形成副衛(wèi)細(xì)胞SCs(subsidary cells);最后,GMCs 再進(jìn)行1次橫向均等分裂,形成對(duì)稱的2個(gè)保衛(wèi)細(xì)胞,隨著葉發(fā)育成熟,最終形成由2個(gè)三角形狀的副衛(wèi)細(xì)胞夾著2個(gè)啞鈴狀的保衛(wèi)細(xì)胞組成的氣孔復(fù)合體[76-79]。

目前研究發(fā)現(xiàn),無(wú)論在雙/單子葉植物中,氣孔的分化均受到一類bHLH 家族轉(zhuǎn)錄因子的調(diào)控,主要包括SPCH、MUTE和FAMA[77]。在水稻中, OsSPCH2調(diào)控氣孔形態(tài)及氣孔密度,OsFAMA主要控制極性分裂及副衛(wèi)細(xì)胞的形態(tài)變化,與ATFAMA功能保守,調(diào)控GMCs向特化GCs分裂。擬南芥中過(guò)表達(dá)OsMUTE氣孔缺陷表型得到部分恢復(fù),過(guò)表達(dá)ZmMUTE,也能誘導(dǎo)產(chǎn)生很多的保衛(wèi)細(xì)胞,因此,推測(cè)在玉米中,同源蛋白ZmSPCH、ZmMUTE和ZmFAMA都參與調(diào)控氣孔系細(xì)胞發(fā)育的信號(hào)通路[77]。玉米中富亮氨酸受體類激酶PAN1(PANGLOSS1) 和PAN2 作為受體識(shí)別來(lái)源于GMCs 傳遞的信號(hào),調(diào)控SMCs的不均等分裂方向及其子細(xì)胞的極性分裂,功能缺失均導(dǎo)致氣孔及表皮細(xì)胞結(jié)構(gòu)異常,PAN2可能參與微絲極化,影響副衛(wèi)細(xì)胞的形狀,基因突變后能引起三角形的副衛(wèi)細(xì)胞變成矩形[76,80-81]。Rho家族GTPase、ROP2和ROP9與PAN1互作,調(diào)控SMCs的極性分裂[82]。在單子葉植物二穗短柄草中,STOMATALESS(STL) 基因功能缺失導(dǎo)致葉片中不能形成氣孔,并且證明STL基因就是擬南芥與水稻中ICE的同源基因[83]。同時(shí)他們利用CRISPR-Cas 9(clustered,regularly interspaced short palindromic repeats-associated 9) 基因編輯技術(shù),分離到bdscrm2突變體,研究表明BdSCRM2功能缺陷,雖然能形成GMCs和SCs,但是GMCs將不能正常分裂,成為開孔。雙突變體 bdspch1、bdspch2和 bdice1的突變體在氣孔發(fā)育早期均不能形成GMCs前體細(xì)胞,導(dǎo)致氣孔密度顯著降低,這表明 BdSPCHs 和 BdICE1 的功能與擬南芥中的氣孔調(diào)控比較相似,在調(diào)控氣孔系細(xì)胞早期發(fā)育中發(fā)揮作用[83]。因此筆者推測(cè)在水稻及玉米等禾谷類作物中,同源蛋白ZmSPCHs(3個(gè))、ZmICE1、ZmICE2、OsICE1和OsSCRM2等也參與氣孔系細(xì)胞的分裂與分化,這有待更多的學(xué)者進(jìn)行基因功能的研究,以期闡明調(diào)控單子葉植物氣孔系細(xì)胞形態(tài)建成的內(nèi)在基因調(diào)控網(wǎng)絡(luò)。

對(duì)玉米及水稻中調(diào)控葉扁平細(xì)胞形態(tài)和表皮毛的基因,推測(cè)主要依賴Racs(ROPs)-SCAR/WAVE-ARP2/3復(fù)合體這一保守的信號(hào)通路[79]。在玉米中,早期報(bào)道了3個(gè)BRK(Brick)基因通過(guò)調(diào)控微絲成核,影響微絲排列而導(dǎo)致葉表皮細(xì)胞邊緣突出(lobe) 的缺失,且表皮毛變短、尖端變鈍化[84-85]。由于當(dāng)時(shí)基因組信息的不完善,文章沒(méi)有給出具體的基因座信息,更沒(méi)有提出這3個(gè)基因就是WAVE復(fù)合體中的3個(gè)亞基,但是筆者通過(guò)生物信息學(xué)比對(duì)和分析,確定BRK1、BRK2和BRK3與擬南芥中HSP300、PIR/SRA1和NAP1就是相互對(duì)應(yīng)的同源蛋白,且進(jìn)化上功能保守,通過(guò)調(diào)控微絲成核分別引起葉表皮細(xì)胞形態(tài)變化[79,84-85]。在水稻中,表皮毛禿頭基因 TUTOU1/ES1(Early Senescence 1)編碼擬南芥及玉米SCAR1同源蛋白,通過(guò)控制微絲合成,影響表皮毛的形態(tài)發(fā)育,表皮毛尖端鈍化,并證明功能缺失突變體 es1對(duì)干旱等逆境脅迫更敏感[86-87]。ZHOU等[79]在水稻中克隆了2個(gè)調(diào)控表皮細(xì)胞形態(tài)建成基因LPL2(less pronounced lobe epidermal cell 2) 和LPL3,分別是玉米BRK2和BRK3及擬南芥中PIR/SRA1和NAP1的同源基因,并證明LPL2和LPL3在調(diào)控水稻葉表皮細(xì)胞邊緣凸出中發(fā)揮不可或缺的功能,同屬于水稻SCAR/WAVE復(fù)合體的亞基,酵母雙雜交試驗(yàn)表明LPL2和LPL3能夠相互作用[88]。總之,雖然在單子葉植物中,也克隆到少數(shù)幾個(gè)調(diào)控葉表皮細(xì)胞圖式發(fā)育的基因,但是離闡明單子葉植物葉表皮形態(tài)建成機(jī)制仍相差甚遠(yuǎn),亟待挖掘。

4 展 望

目前,對(duì)單子葉植物水稻、玉米葉表皮發(fā)育的遺傳調(diào)控機(jī)制還懸而未決,單子葉植物氣孔及扁平細(xì)胞的發(fā)育機(jī)制不等同于雙子葉植物,新的分子遺傳調(diào)控機(jī)制方面的許多問(wèn)題亟待解決:(1)氣孔方面:有哪些特異性基因參與調(diào)控單子葉植物氣孔系細(xì)胞的分裂與分化?氣孔發(fā)育圖式是如何相互調(diào)控的?(2)表皮細(xì)胞方面:水稻及玉米等單子葉植物中是否存在依賴ROPs-SCAR/WAVE-ARP2/3復(fù)合體調(diào)控表皮細(xì)胞形態(tài)建成的信號(hào)通路?如果存在,分別由哪些亞基組成?各自的功能又是什么?還有哪些信號(hào)通路參與其中[79]?等等問(wèn)題亟待探索和研究。

植物表皮細(xì)胞發(fā)育過(guò)程易于顯微觀察,是研究植物的生長(zhǎng)發(fā)育、細(xì)胞分裂與分化、形態(tài)建成和抗逆生理性研究的理想模型[49]??寺≌{(diào)控氣孔發(fā)育相關(guān)基因、解析并研究基因功能,增進(jìn)對(duì)水稻玉米等糧食作物氣孔和表皮細(xì)胞發(fā)育機(jī)制的認(rèn)識(shí),可以通過(guò)轉(zhuǎn)基因及基因編輯等分子育種手段選育既能節(jié)約淡水灌溉,又能促進(jìn)農(nóng)作物增產(chǎn)的優(yōu)良品種的選育,對(duì)作物改良具有重大意義。

參考文獻(xiàn)Reference:

[1] SMITH L G.Cytoskeletal control of plant cell shape:getting the fine points[J].CurrentOpinioninPlantBiology,2003,6(1):63.

[2] MATHUR J.Cell shape development in plants[J].TrendsinPlantScience,2004,9(12):583-590.

[3] SMITH L G,OPPENHEIMER D G.Spatial control of cell expansion by the plant cytoskeleton[J].AnnualReviewofCellandDevelopmentalBiology,2005,21(1):271.

[4] GUIMIL S,DUNAND C.Patterning ofArabidopsisepidermal cells:epigenetic factors regulate the complex epidermal cell fate pathway[J].TrendsinPlantScience,2006,11(12):601-609.

[5] GUIMIL S,DUNAND C.Cell growth and differentiation in arabidopsis epidermal cells[J].JournalofExperimentalBotany,2007,58(14):3829-3840.

[6] MARTIN C,GLOVER B J.Functional aspects of cell patterning in aerial epidermis.[J].CurrentOpinioninPlantBiology,2007,10(1):70.

[7] SCHELLMANN S,HLSKAMP M.Epidermal differentiation:trichomes inArabidopsisas a model system[J].InternationalJournalofDevelopmentalBiology,2004,49(5/6):579-584.

[8] LUO L,ZHOU W Q,LIU P,etal.The development of stomata and other epidermal cells on the rice leaves[J].BiologiaPlantarum,2012,56(3):521-527.

[9] GALLAGHER K,SMITH L G.Discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis[J].Development,1999,126(20):4623.

[10] GALLAGHER K,SMITH L G.Roles for polarity and nuclear determinants in specifying daughtercell fates after an asymmetric cell division in the maize leaf[J].CurrentBiology,2000,10(19):1229-1232.

[11] FU Y,GU Y,ZHENG Z,etal.Arabidopsisinterdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis[J].Cell,2005,120(5):687.

[12] SZYMANSKI D B,LLOYD A M,MARKS M D.Progress in the molecular genetic analysis of trichome initiation and morphogenesis inArabidopsis[J].TrendsinPlantScience,2000,5(5):214-219.

[13] HASHIMOTO T.Dynamics and regulation of plant interphase microtubules:a comparative view[J].CurrentOpinioninPlantBiology,2003,6(6):568-576.

[14] MLLER S,SMERTENKO A,WAGNER V,etal.The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function[J].CurrentBiology,2004,14(5):412-417.

[15] LIN D,CAO L,ZHOU Z,etal.Rho GTPase signaling activates microtubule severing to promote microtubule ordering inArabidopsis[J].CurrentBiology,2013,23(4):290-297.

[16] FU Y,XU T,ZHU L,etal.A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion inArabidopsis[J].CurrentBiology,2009,19(21):1827-1832.

[17] YANG Z.Cell polarity signaling inArabidopsis[J].AnnualReviewofCell&DevelopmentalBiology,2008,24(24):551-575.

[18] ARMOUR W J,BARTON D A,LAW A M,etal.Differential growth in periclinal and anticlinal walls during lobe formation inArabidopsiscotyledon pavement cells[J].PlantCell,2015,27(9):2484-2500.

[19] WASTENEYS G O,YANG Z.New views on the plant cytoskeleton[J].PlantPhysiology,2004,136(4):3884-3891.

[20] KLAHRE U,FRIEDERICH E,KOST B,etal.Villin-like actin-binding proteins are expressed ubiquitously inArabidopsis[J].PlantPhysiology,2000,122(1):35-48.

[21] DEEKS M J,KALORITI D,DAVIES B,etal.ArabidopsisNAP1 is essential for arp2/3-dependent trichome morphogenesis[J].CurrentBiology,2004,14(15):1410-1414.

[22] QIAN P,HOU S,GUO G.Molecular mechanisms controlling pavement cell shape inArabidopsisleaves[J].PlantCellReports,2009,28(8):1147-1157.

[23] WADA T,TACHIBANA T,SHIMURA Y,etal.Epidermal cell differentiation inArabidopsisdetermined by a myb homolog,CPC[J].Science,1997,277(5329):1113- 1116.

[24] WALKER A R,DAVISON P A,BOLOGNESI-WINFIELD A C,etal.The TRANSPARENT TESTA GLABRA1 locus,which regulate strichome differentiation and anthocyanin biosynthesis inArabidopsis,encodes a WD40 repeat protein[J].PlantCell,1999,11(7):1337-1350.

[25] PAYNE C T,ZHANG F,LOYD AM.GL3 encodes a bHLH protein that regulates trichome development inArabidopsisthrough interaction with GLl andTTG 1[J].Genetics,2000,156(3):1349-1362.

[26] 高 英,郭建強(qiáng),趙金鳳.擬南芥表皮毛發(fā)育的分子機(jī)制[J].植物學(xué)報(bào),2011,46(1):119-127.

GAO Y,GUO J Q,ZHAO J F.Molecular mechanisms ofArabidopsistrichome development[J].ChineseBulletinofBotany,2011,46(1):119-127.

[27] 曹 敏,張 璐,高新梅,等.植物表皮毛發(fā)育分子調(diào)控機(jī)制的研究進(jìn)展[J].安徽農(nóng)業(yè)科學(xué),2013,41(10):4231-4235.

CAO M,ZHANG L,GAO X M,etal.Research progress of molecular mechanism inthe development of plant trichomes[J].JournalofAnhuiAgriculture,2013,41(10):4231-4235.

[28] 劉艷霞,王 娟,蘭海燕.基因調(diào)控網(wǎng)絡(luò)調(diào)節(jié)植物表皮毛發(fā)育的研究進(jìn)展[J].分子植物育種,2017(4):1362-1370.

LIU Y X,WANG J,LAN H Y.Advance in gene regulatory network of plant trichome development controlling[J].MolecularPlantBreeding,2017(4):1362-1370.

[29] COOPER J A,WEAR M A,WEAVER A M.Arp2/3 complex:advances on the inner workings of a molecular machine[J].Cell,2001,107(6):703-705.

[30] DIPANWITA B,JIE L E,TAYA Z,etal.A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes[J].ProceedingsoftheNationalAcadermyofSciencesoftheUSA,2008,105(10):4044-4049.

[31] QIU J L,JILK R,MARKS M D,etal.TheArabidopsisSPIKE1 gene is required for normal cell shape control and tissue development[J].PlantCell,2002,14(1):101-108.

[32] FU Y,LI H,YANG Z.The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion duringArabidopsisorganogenesis[J].PlantCell,2002,14(4):777-794.

[33] YANG Z.Small GTPases:versatile signaling switches in plants[J].PlantCell,2002,14(Suppl):S375.

[34] GU Y,WANG Z,YANG Z.ROP/RAC GTPase:an old new master regulator for plant signaling[J].CurrentOpinioninPlantBiology,2004,7(5):527-536.

[35] SZYMANSKI D B.Breaking the WAVE complex:the point ofArabidopsistrichomes[J].CurrentOpinioninPlantBiology,2005,8(1):103.

[36] YANAGISAWA M,ZHANG C,SZYMANSKI D B.ARP2/3-dependent growth in the plant kingdom:SCARs for life[J].FrontiersinPlantScience,2013,4(166):166.

[37] LE J,MALLERY E L,ZHANG C,etal.ArabidopsisBRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2[J].CurrentBiology,2006,16(9):895.

[38] DJAKOVICS,DYACHOK J,BURKE M,etal.BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape inArabidopsis[J].Development,2006,133(6):1091-1100.

[39] CHEN Z,BOREK D,PADRICK S B,etal.Structure and control of the actin regulatory WAVE complex[J].Nature,2010,468(7323):533.

[40] MENDOZA M C.Phosphoregulation of the WAVE regulatory complex and signal integration[J].SeminarsinCell&DevelopmentalBiology,2013,24(4):272-279.

[41] FRANK M,EGILE C,DYACHOK J,etal.Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2004,101(46):16379.

[42] BASU D,LE J,SEL-D E E,etal.DISTORTED3/SCAR2 is a putativeArabidopsisWAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis[J].PlantCell,2005,17(2):502-524.

[43] HENRY N.HIGGS AND,THOMAS D.Activation by a diverse array of proteins1[J].AnnualReviewofBiochemistry,2001,70(1):649-676.

[44] POLLARD T D.Regulation of actin filament assembly by Arp2/3 complex and formins[J].AnnualReviewofBiophysics&BiomolecularStructure,2007,36(36):451.

[45] LEW D J.The morphogenesis checkpoint:how yeast cells watch their figures[J].CurrentOpinioninCellBiology,2003,15(6):648.

[46] MATHUR J,MATHUR N,KERNEBECK B,etal.Mutations in actin-related proteins 2 and 3 affect cell shape development inArabidopsis[J].PlantCell,2003,15(7):1632-1645.

[47] SELD E A,LE J,BASU D,etal.ArabidopsisGNARLED encodes a NAP125 homolog that positively regulates ARP2/3[J].CurrentBiology,2004,14(15):1405.

[48] YANAGISAWA M,DESYATOVA A S,BELTETON S A,etal.Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis[J].NaturePlants,2015,1(3):15014.

[49] BERGMANN D C,SACK F D.Stomatal development[J].AnnualReviewofCellandDevelopmentalBiology,2007,58(1):163-181.

[50] LIU B F,GAO E J,ZENG X Z,etal.Plant development:YODA the stomatal switch[J].CurrentBiology,2004,14(12):488-490.

[51] SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signalling and engineering drought hardiness in plants[J].Nature,2001,410(6826):327-330.

[52] PILLITTERI L J,TORII K U.Mechanisms of stomatal development[J].AnnualReviewofPlantBiology,2012,63(1):591-614.

[53] PILLITTERI L J,DONG J.Stomatal development inArabidopsis[J].TheArabidopsisBook/AmericanSocietyofPlantBiologists,2013,11:162.

[54] 陳青云,李有志,樊憲偉.植物氣孔發(fā)育的分子調(diào)控機(jī)制[J].遺 傳,2017,39(4):302-312.

CHEN Q Y,LI Y ZH,FAN X W.Molecule mechanism for regulating stomatal development inplants[J].Hereditas,2017,39(4):302-312.

[55] 陳 亮,侯歲穩(wěn).植物氣孔發(fā)育的分子遺傳調(diào)控[J].中國(guó)科學(xué)(生命科學(xué)),2017,47(8):798-807.

CHEN L,HOU S W.Molecular genetic control of plant stomatal development[J].ScientiaSinicaVitae(LifeScience),2017,47(8):798-807.

[56] OHASHIIT O K,BERGMANN D C.ArabidopsisFAMA controls the final proliferation/differentiation switch during stomatal development[J].PlantCell,2006,18(10):2493-2505.

[57] MACALISTER C A,OHASHI-ITO K,BERGMANN D C.Transcription factor control of asymmetric cell divisions that establish the stomatal lineage[J].Nature,2007,445(7127):537-540.

[58] PILLITTERI L J.Termination of asymmetric cell division and differentiation of stomata[J].Nature,2007,445(7127):501-505.

[59] KANAOKA M M,PILLITTERI L J,FUJII H,etal.SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading toArabidopsisstomatal differentiation[J].PlantCell,2008,20(7):1775.

[60] CHEN L,GUAN L,QIAN P,etal.NRPB3,the third largest subunit of RNA polymerase Ⅱ,is essential for stomatal patterning and differentiation inArabidopsis[J].Development,2016,143(9):1600-1611.

[61] LAI L B,NADEAU J A,LUCAS J,etal.TheArabidopsisR2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage[J].ThePlantCell,2005,17(10):2754.

[62] MATOS J L,LAU O S,HACHEZ C,etal.Irreversible fate commitment in theArabidopsisstomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module[J].Elife,2014,3:15.

[63] HUNT L,BAILEY K J,GRAY J E.The signalling peptide EPFL9 is a positive regulator of stomatal development[J].NewPhytologist,2010,186(3):609-614.

[64] SUGANO S S,SHIMADA T,IMAI Y,etal.Stomagen positively regulates stomatal density inArabidopsis[J].Nature,2010,463(7278):241.

[65] LEE J S,HNILOVA M,MAES M,etal.Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J].Nature,2015,522(7557):439.

[66] WANG Y,XUE X,ZHU J K,etal.Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development[J].Development,2016,143(23):4452.

[67] LAMPARD G R,LUKOWITZ W,ELLIS B E,etal.Novel and expanded roles for MAPK signaling inArabidopsisstomatal cell fate revealed by cell type-specific manipulations [J].PlantCell,2009,21(11):3506.

[68] MENG X,CHEN X,MANG H,etal.Differential function ofArabidopsis,SERK family receptor-like kinases in stomatal patterning[J].CurrentBiology,2015,25(18):2361-2372.

[69] DONG J,CORA A M,DOMINIQUE C B.BASL controls asymmetric cell division inArabidopsis[J].Cell,2009,137(7):1320-1330.

[70] ZHANG Y,WANG P,SHAO W,etal.The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division[J].DevelopmentalCell,2015,33(2):136.

[71] BERGER D,ALTMANN T.A subtilisin-like serine protease involved in the regulation of stomatal density and distribution inArabidopsisthaliana[J].Genes&Development,2000,14(9):1119-1131.

[72] GROLL U V,BERGER D,ALTMANN T.The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling duringArabidopsisstomatal development[J].PlantCell,2002,14(7):1527-1539.

[73] PETERSON K M,RYCHEL A L,TORII K U.Out of the mouths of plants:the molecular basis of the evolution and diversity of stomatal development[J].PlantCell,2010,22(2):296-306.

[74] CASSON S A,FRANKLIN K A,GRAY J E,etal.Phytochrome B and PIF4 regulate stomatal development in response to light quantity[J].CurrentBiology,2009,19(3):229-234.

[75] SACK F D,CHEN J G.Plant science.Pores in place[J].Science,2009,323(5914):592-593.

[76] CARTWRIGHT H N,HUMPHRIES J A,SMITH L G.PAN1:a receptor-like protein that promotes polarization of an asymmetric cell division in maize[J].Science,2009,323(5914):649-651.

[77] LIU T,OHASHI-ITO K,BERGMANN D C.Orthologs ofArabidopsisthalianastomatalbHLHgenes and regulation of stomatal development in grasses[J].Development,2009,136(13):2265-2276.

[78] ZHANG X,FACETTE M,HUMPHRIES J A,etal.Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize[J].PlantCell,2012,24(11):4577.

[79] ZHOU W Q,WANG Y,WU Z,etal.Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice[J].JournalofExperimentalBotany,2016,67(14):4311-4323.

[80] SUTIMANTANAPI D,PATER D,SMITH L G.Divergent roles for maize PAN1 and PAN2 receptor-like proteins in cytokinesis and cell morphogenesis[J].PlantPhysiology,2014,164(4):1905-1917.

[81] FACETTE M R,PARK Y,SUTIMANTANAPI D,etal.The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize[J].NaturePlants,2015,1(2):14024.

[82] HUMPHRIES J A,SMITH L G.ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize[J].PlantCell,2011,23(6):2273-2284.

[83] RAISSIG MT,ABRASH E,BETTADAPUR A,etal.Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2016,113(29):8326.

[84] FRANK M J,SMITH L G.A small,novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells[J].CurrentBiology,2002,12(10):849.

[85] FRANK M J,CARTWRIGHT H N,SMITH L G.Three brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis[J].Development,2003,130(4):753.

[86] BAI J,ZHU X,WANG Q,etal.Rice TUTOU1 encodes a SCAR-like protein that is important for actin organization and panicle development[J].PlantPhysiology,2015,169(2):1179-1191.

[87] RAO Y,YANG Y,XU J,etal.EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice[J].PlantPhysiology,2015,169(2):1225-1239.

[88] BASU D,ELASSAL E D,LE J,etal.Interchangeable functions ofArabidopsisPIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development[J].Development,2004,131(17):4345.

猜你喜歡
微絲扁平復(fù)合體
Fe 對(duì)Ni-Mn-Ga 合金微絲形狀記憶效應(yīng)的影響
材料工程(2024年3期)2024-03-29 16:36:08
全球治理趨向扁平
動(dòng)物細(xì)胞微絲觀察教學(xué)實(shí)驗(yàn)的設(shè)計(jì)與探索
軟骨細(xì)胞微絲骨架的研究進(jìn)展*
CoFe2O4/空心微球復(fù)合體的制備與吸波性能
熔體直紡238 dtex/228f細(xì)旦扁平滌綸POY生產(chǎn)技術(shù)
絲綢(2015年11期)2015-02-28 14:56:50
僅趾間扁平濕疣為表現(xiàn)的二期梅毒一例
微絲解聚劑及微管阻斷劑對(duì)蘚羽藻細(xì)胞重建過(guò)程的影響
3種多糖復(fù)合體外抗腫瘤協(xié)同增效作用
扁平鋼箱梁梁格法有限元對(duì)比分析
临沧市| 元氏县| 正安县| 喀什市| 察哈| 城口县| 滨州市| 兰坪| 祁东县| 长垣县| 宜兰市| 耒阳市| 南充市| 固阳县| 潢川县| 神农架林区| 肇东市| 格尔木市| 铜陵市| 兴化市| 肥东县| 吴江市| 安远县| 武义县| 永春县| 孝义市| 金平| 綦江县| 千阳县| 祁阳县| 和平区| 赫章县| 吉林市| 崇左市| 彭阳县| 临海市| 耒阳市| 内丘县| 额尔古纳市| 奎屯市| 甘谷县|