薛 婧,程 愈,郝好杰,母義明
解放軍總醫(yī)院 內(nèi)分泌科,北京 100853
間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)是低免疫原性的成體干細(xì)胞,在特定的條件下可分化為脂肪細(xì)胞、成骨細(xì)胞以及軟骨細(xì)胞等多種組織細(xì)胞。研究發(fā)現(xiàn)除了多向分化潛能,MSC還具有強(qiáng)大免疫調(diào)控能力,包括誘導(dǎo)Treg細(xì)胞的分化,抑制CD4+T細(xì)胞和CD8+T細(xì)胞的增殖,調(diào)節(jié)B細(xì)胞的增殖、分化和抗體分泌能力等[1]。近年來MSC對固有免疫細(xì)胞的調(diào)節(jié)作用受到了越來越多的關(guān)注。巨噬細(xì)胞是固有免疫的重要組成部分,在抗擊病原微生物、損傷修復(fù)等方面具有重要作用,并能隨著微環(huán)境變化而調(diào)整分泌譜和功能狀態(tài)[2]。研究發(fā)現(xiàn)MSC對巨噬細(xì)胞表型具有調(diào)節(jié)作用,促進(jìn)其從促炎表型向抗炎表型極化,從而發(fā)揮抑制炎癥反應(yīng),維持微環(huán)境穩(wěn)態(tài)的效應(yīng),這一效應(yīng)在糖尿病、心肌梗死、難愈性創(chuàng)傷等多種疾病的治療中發(fā)揮著重要作用[3-6]。本文將MSC對巨噬細(xì)胞表型和功能調(diào)節(jié)的相關(guān)研究進(jìn)展進(jìn)行了分析和總結(jié),以期對MSC的免疫調(diào)節(jié)效應(yīng)有更深層次的理解。
巨噬細(xì)胞根據(jù)其表面標(biāo)記物、細(xì)胞因子分泌譜、功能等可基本分為兩種類型:經(jīng)典活化的M1型巨噬細(xì)胞和選擇性活化的M2型巨噬細(xì)胞。M1型巨噬細(xì)胞主要分泌促炎因子,如腫瘤壞死因子α(tumor necrosis factor,TNF-α)、白細(xì)胞介素1β(interleukin 1β,IL-1β)、IL-12、IL-23等,在炎癥的起始和發(fā)展中有著重要作用。常見M1型巨噬細(xì)胞分子標(biāo)志有CD11c、HLA-DR、CD197等;M2型巨噬細(xì)胞主要分泌高濃度的抑炎因子和營養(yǎng)因子,如IL-10、轉(zhuǎn)化生長因子β、血管內(nèi)皮生長因子等,能緩解炎癥反應(yīng),促進(jìn)組織修復(fù),常見M2型巨噬細(xì)胞分子標(biāo)志有CD206、CD163、CD301等[2]。機(jī)體內(nèi)多種因素能調(diào)節(jié)巨噬細(xì)胞的表型,并且巨噬細(xì)胞表型變化與機(jī)體生理及病理過程密切相關(guān)。如人體正常脂肪組織中,固有巨噬細(xì)胞大多為CD11b、CD301和CD206陽性的M2型巨噬細(xì)胞,它們通過分泌IL-10等抗炎型細(xì)胞因子促進(jìn)脂肪細(xì)胞的胰島素敏感性。隨著肥胖進(jìn)程,脂肪細(xì)胞釋放的高飽和脂肪酸、白三烯B4,干擾素-γ(interferon-γ,IFN-γ)等炎性介質(zhì)促進(jìn)巨噬細(xì)胞的招募和向M1方向極化,增多的M1型巨噬細(xì)胞分泌TNF-α、IL-1β等促炎因子,進(jìn)一步加重了脂肪組織的胰島素抵抗[7]。
2.1 MSC通過分泌效應(yīng)促進(jìn)巨噬細(xì)胞極化 研究發(fā)現(xiàn),MSC能分泌多種細(xì)胞因子和營養(yǎng)性因子,如前列腺素E2(prostaglandin E2,PGE2)、IL10、TSG-6、NO、(TGF-β)-1、IL6、犬尿氨酸、乳酸鹽等,這些因子在緩解炎癥和修復(fù)受損組織過程中發(fā)揮著關(guān)鍵作用。MSC對巨噬細(xì)胞的調(diào)節(jié)作用與MSC的分泌效應(yīng)密切相關(guān),研究發(fā)現(xiàn)MSC分泌的多種因子具有調(diào)節(jié)巨噬細(xì)胞表型和功能的作用。
PGE2是一種重要的細(xì)胞生長因子,具有抗炎和免疫抑制作用。Nemeth等[8]最早報道小鼠骨髓來源MSC能通過分泌PGE2促使巨噬細(xì)胞向M2表型分化,巨噬細(xì)胞分泌IL10增加,從而緩解小鼠敗血癥。Ylostalo等[9]的研究發(fā)現(xiàn)人源性MSC同樣能通過PGE2促進(jìn)巨噬細(xì)胞向M2表型極化。Chiossone等[3]發(fā)現(xiàn),人骨髓來源MSC通過分泌PGE2促進(jìn)單核細(xì)胞在巨噬細(xì)胞集落刺激因子作用下極化為一種特殊類型的抑炎型巨噬細(xì)胞。這些巨噬細(xì)胞能夠抑制NK細(xì)胞的激活和CD8+T細(xì)胞復(fù)制、促進(jìn)調(diào)節(jié)性T細(xì)胞的增殖,從而同時減輕固有免疫和獲得性免疫反應(yīng)。以上研究表明PGE2是MSC促進(jìn)巨噬極化的重要細(xì)胞因子之一。
腫瘤壞死因子誘導(dǎo)蛋白6(tumor necrosis factor-αstimulated protein-6,TSG-6)是一種30 kU的糖蛋白,與炎癥調(diào)節(jié)和細(xì)胞外基質(zhì)的穩(wěn)定性相關(guān)。Ko等[10]發(fā)現(xiàn),輸注人源MSC后,通過分泌TSG-6使小鼠肺部B220及CD11b呈陽性并伴有IL-10、F4/80、Ly6C高表達(dá)的單核/巨噬細(xì)胞增多,提示單核/巨噬細(xì)胞向M2極化。Liu等[11]在小鼠骨髓來源MSC治療小鼠結(jié)腸炎的研究中,同樣發(fā)現(xiàn)MSC通過分泌TSG-6抑制巨噬細(xì)胞炎性因子分泌,從而有效緩解結(jié)腸炎。
白細(xì)胞介素1受體拮抗劑(interleukin-1-receptor antagonist,IL-1RA)屬于IL-1家族,可與IL-1競爭結(jié)合位點,從而拮抗IL-1的促炎作用。在非特異性有絲分裂原導(dǎo)致的肝損傷模型中,Lee等[12]發(fā)現(xiàn)MSC輸注后肺部M2型巨噬細(xì)胞增多,敲除MSC的IL-1RA基因后,肺部巨噬細(xì)胞IL-10、Arg1的表達(dá)下降,MSC緩解肝損傷作用減弱。Luz-Crawford等[13]在小鼠關(guān)節(jié)炎模型中用IL1RA基因敲除MSC進(jìn)一步驗證了IL1RA在MSC促進(jìn)巨噬細(xì)胞極化中的作用。
除了以上細(xì)胞因子,近年來也有報道MSC可通過分泌IL-6、吲哚胺2,3-二加氧酶(indoleamine 2,3-dioxygenase,IDO)、乳酸鹽等因子以及外泌體促進(jìn)巨噬細(xì)胞向抑炎表型極化[5,14-16]。如Tang等[17]發(fā)現(xiàn)MSC分泌的小囊泡中Ang-1 mRNA能調(diào)節(jié)巨噬細(xì)胞表型向M2極化。Fran?ois等[14]發(fā)現(xiàn),經(jīng)過IFN-γ和TNF-α預(yù)處理的人源MSC分泌IDO增加,促使人單核細(xì)胞向CD14(+)/CD206(+)的M2型巨噬細(xì)的分化。該型巨噬細(xì)胞能通過IL-10抑制T細(xì)胞分化。以上研究提示,MSC在不同疾病模型中,分泌的主要效應(yīng)因子有所差異,但是這些細(xì)胞因子大多能調(diào)節(jié)巨噬細(xì)胞表型,從而達(dá)到放大MSC免疫抑制效應(yīng)的效果。
2.2 其他調(diào)節(jié)機(jī)制 MSC的分泌效應(yīng)被認(rèn)為是MSC調(diào)節(jié)巨噬細(xì)胞表型和功能的主要方式,但近期有研究團(tuán)隊另辟蹊徑,發(fā)現(xiàn)MSC和巨噬細(xì)胞的直接接觸同樣參與了巨噬細(xì)胞的表型轉(zhuǎn)變。Braza等發(fā)現(xiàn)肺部巨噬細(xì)胞吞噬了外源輸注的MSC后會轉(zhuǎn)變?yōu)镸2表型,有效緩解了小鼠哮喘[18]。同樣,有研究報道熱失活的人源MSC仍有免疫調(diào)節(jié)效應(yīng)。Luk等[19]通過熱失活使MSC在保留細(xì)胞完整性和免疫表型的同時,失去分泌效應(yīng)和對炎癥信號主動回應(yīng)的能力。熱失活MSC失去對T細(xì)胞和B細(xì)胞的調(diào)節(jié)能力,但仍能抑制單核/巨噬細(xì)胞TNF-α的合成。Gon?alves等[20]將MSC破裂后細(xì)胞膜形成的顆粒(membrane particles,MP)輸入體內(nèi),發(fā)現(xiàn)MP能被單核細(xì)胞識別并捕獲,誘導(dǎo)促炎單核細(xì)胞凋亡,并增加抗炎單核細(xì)胞比例。這些研究提示我們,除了MSC主動分泌細(xì)胞因子,單核/巨噬細(xì)胞對MSC的主動識別、吞噬也參與了巨噬細(xì)胞表型的改變。
此外最近研究報道,MSC還能夠通過向巨噬細(xì)胞傳遞線粒體調(diào)節(jié)巨噬細(xì)胞功能[21-24]。Phinney等[22]發(fā)現(xiàn),MSC可分泌外泌體調(diào)低巨噬細(xì)胞Toll樣受體的表達(dá),使巨噬細(xì)胞更易吞噬MSC釋放的線粒體。進(jìn)一步的,Jackson等[23]報道了MSC線粒體可以通過細(xì)胞間隧道納米管直接傳遞給巨噬細(xì)胞。通過吞噬MSC來源線粒體,巨噬細(xì)胞的能量代謝和噬菌作用均有所增強(qiáng),從而增加了清除病原微生物的能力。
MSC能通過多種機(jī)制調(diào)節(jié)巨噬細(xì)胞表型和功能,但是值得注意的是,MSC對巨噬細(xì)胞功能的調(diào)節(jié)不是單向的,巨噬細(xì)胞同樣能夠影響MSC的分泌功能。如巨噬細(xì)胞能分泌IL-1β刺激MSC的IL-1RA和PGE2合成,MSC分泌的IL-1RA和PGE2進(jìn)一步改變了巨噬細(xì)胞表型[8,25]。
巨噬細(xì)胞分布廣泛,是機(jī)體內(nèi)重要的抗原提呈細(xì)胞和吞噬細(xì)胞,在應(yīng)對外源性病原微生物和維持機(jī)體穩(wěn)態(tài)上發(fā)揮著重要作用,參與了許多免疫和炎癥性疾病的發(fā)生、發(fā)展和修復(fù)過程。在體內(nèi)和體外研究中均發(fā)現(xiàn)MSC可促進(jìn)單核細(xì)胞/M1型巨噬細(xì)胞向M2型巨噬細(xì)胞極化[3,8,14,26-27]。Kim和Hematti[26]最早報道人骨髓來源的MSC能促進(jìn)M2型巨噬細(xì)胞產(chǎn)生。他們發(fā)現(xiàn)人源性巨噬細(xì)胞與人骨髓來源的MSC共培養(yǎng)后,巨噬細(xì)胞CD206表達(dá)上調(diào),抗炎因子如IL-10分泌增加,并伴隨著吞噬功能增強(qiáng)。張澤宇等[28]也發(fā)現(xiàn)脂肪間充質(zhì)干細(xì)胞能促進(jìn)巨噬細(xì)胞極化,并增強(qiáng)巨噬細(xì)胞清除凋亡中性粒細(xì)胞的能力。體內(nèi)研究方面,多種疾病的動物模型中均發(fā)現(xiàn)MSC輸注后受損組織內(nèi)的巨噬細(xì)胞表型和功能發(fā)生改變,從而緩解疾病進(jìn)展,促進(jìn)組織修復(fù)。Wang等[29]研究發(fā)現(xiàn)急性心肌梗死模型小鼠輸注小鼠骨髓間充質(zhì)干細(xì)胞后,受損心肌組織M2型巨噬細(xì)胞增多,促進(jìn)了心肌組織血管再生和形態(tài)、功能的修復(fù)。用氯膦酸鹽去除巨噬細(xì)胞后,MSC治療作用被削弱。在輸注MSC治療急性腎損傷、STZ誘導(dǎo)的急性胰島損傷、難愈型創(chuàng)傷、敗血癥、脊髓挫傷等以急性炎癥為特征的疾病過程中也有類似現(xiàn)象報道[16,30-32]。對于慢性炎癥性疾病,如類風(fēng)濕關(guān)節(jié)炎、2型糖尿病等,MSC也能夠通過調(diào)節(jié)組織巨噬細(xì)胞表型向M2型分化,延緩了疾病進(jìn)展[5,32]。此外,MSC對巨噬細(xì)胞的調(diào)節(jié)也參與了自身免疫性疾病的治療[33]。You等[33]發(fā)現(xiàn)MSC輸注后誘導(dǎo)肝Kupffer細(xì)胞向抑炎表型極化,從而減輕大鼠肝移植后的急性免疫排異反應(yīng)。Ko等[10]發(fā)現(xiàn)MSC輸注后,通過調(diào)節(jié)肺部單核/巨噬細(xì)胞向免疫抑制表型分化,減輕了小鼠角膜異體移植術(shù)后的排異反應(yīng)和自身免疫性葡萄膜炎。MSC對巨噬細(xì)胞的調(diào)節(jié)作用同樣參與了MSC在生物工程學(xué)中的應(yīng)用。Ding等[34]報道以骨髓間充質(zhì)干細(xì)胞為基礎(chǔ)的工程軟骨可以通過增加巨噬細(xì)胞向M2極化抑制炎癥,從而使工程軟骨更好地在體內(nèi)發(fā)揮作用。需要注意的是,間充質(zhì)干細(xì)胞調(diào)節(jié)巨噬細(xì)胞向M2表型極化也參與了腫瘤的發(fā)展[35-36],這提示我們揭示間充質(zhì)干細(xì)胞對巨噬細(xì)胞的調(diào)節(jié)機(jī)制,將有助于腫瘤性疾病的治療。
近年來研究揭示了MSC和巨噬細(xì)胞之間存在著復(fù)雜的調(diào)控關(guān)系。MSC能通過分泌PGE2、TSG-6、ILRA、IL6、IDO等多種因子,傳遞線粒體等調(diào)節(jié)巨噬細(xì)胞的表型和功能,此外巨噬細(xì)胞對MSC的主動識別、吞噬也參與了巨噬細(xì)胞表型的改變。MSC通過調(diào)節(jié)巨噬細(xì)胞顯著放大自身的抗炎效應(yīng)和免疫抑制效應(yīng),這是MSC治療2型糖尿病、急性腎損傷、類風(fēng)濕關(guān)節(jié)炎、移植后排斥反應(yīng)等多種炎癥性疾病和自身免疫性疾病的重要機(jī)制之一。目前MSC調(diào)節(jié)巨噬細(xì)胞的具體分子機(jī)制仍有許多不明確之處,進(jìn)一步研究MSC對巨噬細(xì)胞表型和功能的影響將能更好地闡明MSC對各種自身免疫性及炎癥性疾病的治療機(jī)制,幫助我們優(yōu)化干細(xì)胞臨床運用方式,對于MSC治療的發(fā)展具有重要意義。
1 Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation[J]. Cell Stem Cell, 2013, 13(4):392-402.
2 Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization : nomenclature and experimental guidelines[J].Immunity, 2014, 41(1): 14-20.
3 Chiossone L, Conte R, Spaggiari GM, et al. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses[J]. Stem Cells, 2016, 34(7): 1909-1921.
4 Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med,2015, 13 : 308.
5 Xie Z, Hao H, Tong C, et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats[J].Stem Cells, 2016, 34(3): 627-639.
6 謝敏, 郝好杰, 劉杰杰, 等. 間充質(zhì)干細(xì)胞治療代謝綜合征的機(jī)制研究進(jìn)展[J]. 解放軍醫(yī)學(xué)院學(xué)報, 2017(7): 700-702.
7 McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease[J]. Immunity, 2014, 41(1): 36-48.
8 Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1): 42-49.
9 Ylostalo JH, Bartosh TJ, Coble K, et al. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an antiinflammatory phenotype[J]. Stem Cells, 2012, 30(10): 2283-2296.
10 Ko JH, Lee HJ, Jeong HJ, et al. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye[J]. Proc Natl Acad Sci USA, 2016, 113(1): 158-163.
11 Liu Y, Zhang R, Yan K, et al. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6[J]. J Neuroinflammation, 2014, 11 : 135.
12 Lee KC, Lin HC, Huang YH, et al. Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease[J].J Hepatol, 2015, 63(6): 1405-1412.
13 Luz-Crawford P, Djouad F, Toupet K, et al. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation[J]. Stem Cells,2016, 34(2): 483-492.
14 Fran?ois M, Romieu-Mourez R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation[J].Mol Ther, 2012, 20(1): 187-195.
15 Selleri S, Bifsha P, Civini S, et al. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming[J]. Oncotarget, 2016, 7(21):30193.
16 Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS ONE, 2018, 13(1):e0190358.
17 Tang XD, Shi L, Monsel A, et al. Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by Ang-1 mRNA[J]. Stem Cells, 2017, 35(7): 1849-1859.
18 Lu W, Fu C, Song L, et al. Exposure to supernatants of macrophages that phagocytized dead mesenchymal stem cells improves hypoxic cardiomyocytes survival[J]. Int J Cardiol, 2013, 165(2): 333-340.
19 Luk F, de Witte SF, Korevaar SS, et al. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity[J]. Stem Cells Dev, 2016, 25(18): 1342-1354.
20 Gon?alves FDC, Luk F, Korevaar SS, et al. Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes[J].Sci Rep, 2017, 7(1): 12100.
21 Lo Sicco C, Reverberi D, Balbi C, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization[J]. Stem Cells Transl Med, 2017, 6(3): 1018-1028.
22 Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J]. 2015, 6 : 8472.
23 Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS[J]. Stem Cells, 2016, 34(8):2210-2223.
24 Jackson MV, Krasnodembskaya AD. Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC)[J]. Bio Protoc, 2017, 7(9): e2255.
25 Bustos ML, Huleihel L, Meyer EM, et al. Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels[J].Stem Cells Transl Med, 2013, 2(11): 884-895.
26 Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages[J]. Exp Hematol,2009, 37(12): 1445-1453.
27 Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem Cells, 2010, 28(10):1856-1868.
28 張澤宇, 易軍, 陳光輝. 脂肪間充質(zhì)干細(xì)胞對巨噬細(xì)胞清除凋亡中性粒細(xì)胞的影響[J]. 解放軍醫(yī)學(xué)院學(xué)報, 2016(3): 256-260.
29 Wang M, Zhang G, Wang Y, et al. Crosstalk of mesenchymal stem cells and macrophages promotes cardiac muscle repair[J]. Int J Biochem Cell Biol, 2015, 58 : 53-61.
30 Cao X, Han ZB, Zhao H, et al. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice[J]. Int J Biochem Cell Biol, 2014,53: 372-379.
31 Wise AF, Williams TM, Kiewiet MB, et al. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2014, 306(10): F1222-F1235.
32 Anderson P, Souza-Moreira L, Morell M, et al. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis[J]. Gut, 2013,62(8): 1131-1141.
33 You Y, Zhang J, Gong J, et al. Mesenchymal stromal cell-dependent reprogramming of Kupffer cells is mediated by TNF-α and PGE2 and is crucial for liver transplant tolerance[J]. Immunol Res, 2015, 62(3): 292-305.
34 Ding J, Chen B, Lv T, et al. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model[J]. Stem Cells Transl Med, 2016, 5(8):1079-1089.
35 Ren G, Zhao X, Wang Y, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα[J]. Cell Stem Cell,2012, 11(6): 812-824.
36 Motegi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth[J]. J Dermatol Sci, 2017, 86(2): 83-89.