劉蒼偉,蘇明壘,王玉榮,趙榮軍
(中國林業(yè)科學(xué)研究院 木材工業(yè)研究所,北京 100091)
木質(zhì)纖維材料是重要的生物質(zhì)能源和制漿造紙?jiān)?。隨著化石能源物質(zhì)枯竭以及社會經(jīng)濟(jì)發(fā)展對木質(zhì)纖維材料的需求日益增加,定向培育優(yōu)質(zhì)速生人工林成為保障木質(zhì)纖維材料供應(yīng)的重要途徑之一。木質(zhì)纖維材料主要來源于木材細(xì)胞壁,由纖維素、半纖維素和木質(zhì)素3種高分子聚合物組成[1-3]。其中纖維素是構(gòu)成細(xì)胞壁的基本骨架,木質(zhì)素與半纖維素作為基質(zhì),沉積在纖維素框架內(nèi)[4]。纖維素和半纖維素是木質(zhì)纖維材料作為生物質(zhì)能源和制漿造紙?jiān)系闹饕贸煞?,其相對含量高低和提取工藝的難易,是評價(jià)木質(zhì)纖維材料優(yōu)劣的主要指標(biāo)[2,5],但木質(zhì)素的存在影響了木質(zhì)纖維材料可發(fā)酵糖的提取,降低了紙張質(zhì)量,阻礙了木質(zhì)纖維材料的利用。因此,在分子水平上調(diào)控木材細(xì)胞壁木質(zhì)素的含量和結(jié)構(gòu),提高木質(zhì)纖維材料品質(zhì),已成為國內(nèi)外學(xué)者的研究熱點(diǎn)[2,5-7]。
通過調(diào)控木質(zhì)素生物合成基因使木質(zhì)素合成途徑受阻,降低木質(zhì)素含量或改變其結(jié)構(gòu)從而提高纖維素分解和糖轉(zhuǎn)化效率,對于木質(zhì)纖維材料利用具有重大意義[2,7]。但從遺傳學(xué)與生物學(xué)角度來講,植物都有自我調(diào)節(jié)機(jī)制,改良植物體的單個(gè)目標(biāo)性狀,會對其他性狀產(chǎn)生影響,如改變細(xì)胞壁木質(zhì)素的含量,會引起纖維素代償性增加[8]。目前人們也認(rèn)識到,含有木質(zhì)素、纖維素和半纖維素等化學(xué)組分的細(xì)胞壁,不僅是一個(gè)機(jī)械支持和保護(hù)原生質(zhì)體的結(jié)構(gòu),而且是一個(gè)能進(jìn)行代謝活動(dòng)的結(jié)構(gòu),它參與著細(xì)胞的生長、分化、識別、抗病等過程[9-10]。因此細(xì)胞壁各組分的合成、組裝與沉積及其理化性質(zhì)決定著細(xì)胞壁相應(yīng)的功能[11]。因此本文主要論述木質(zhì)素調(diào)控基因活性改變對轉(zhuǎn)基因木材細(xì)胞壁化學(xué)組分及其微觀結(jié)構(gòu)的影響,并對近年的研究前景進(jìn)行展望,旨在為轉(zhuǎn)基因木材木質(zhì)素含量降低后纖維素分解與糖轉(zhuǎn)化性能的改變機(jī)制,以及細(xì)胞壁的綜合利用提供科學(xué)依據(jù),對優(yōu)質(zhì)速生人工林的選育和培育提供理論指導(dǎo)。
目前廣泛認(rèn)同,木質(zhì)素生物合成過程由苯丙氨酸起始,經(jīng)過一系列羥基化、甲基化、連接和還原反應(yīng)生成木質(zhì)素單體,然后轉(zhuǎn)運(yùn)到木質(zhì)化沉積位點(diǎn),最終這些結(jié)構(gòu)單元在細(xì)胞壁中羥化聚合成木質(zhì)素。具體而言,木質(zhì)素的合成途徑包含3步,即莽草酸途徑、苯丙烷途徑和特異合成途徑。莽草酸途徑是將植物光合作用的同化產(chǎn)物合成芳香氨基苯氨酸、酪氨酸和色氨酸等;苯丙烷途徑是將苯丙氨酸轉(zhuǎn)化為羥基肉桂酸及其輔酶A酯類;特異合成途徑是指完成木質(zhì)素單體的合成,即將羥基肉桂酰輔酶A酯類進(jìn)一步合成為木質(zhì)素結(jié)構(gòu)單元及其大分子聚合物[12-13]。
木質(zhì)素合成途徑的揭示為后期木質(zhì)素基因工程的發(fā)展奠定了堅(jiān)實(shí)的基礎(chǔ),且在其苯丙烷途徑和特異合成途徑上關(guān)鍵酶的調(diào)控基因也已被成功克隆。苯丙烷途徑主要包含苯丙氨酸氨解酶(phenylalanine ammonia-lyase,PAL)、肉桂酸4-羥基裂解酶(cinnamic acid 4-hydroxylase,C4H)和4-肉桂酸CoA連接酶(4-coumarate:CoA ligase,4CL)3類酶。它們位于木質(zhì)素合成途徑上游,決定著植物體內(nèi)碳元素的流向,其活性將直接影響植物體內(nèi)木質(zhì)素的含量,因此通過調(diào)控這些關(guān)鍵酶基因的表達(dá)能夠成功調(diào)控目標(biāo)植物中木質(zhì)素的含量。特異合成途徑上的肉桂酰CoA還原酶(cinnamoy1 CoA reductase,CCR)和肉桂醇脫氫酶(cinnamyl alcohol dehydrogenase,CAD)屬于還原調(diào)控酶,主要調(diào)控木質(zhì)素單體的合成。學(xué)者一般認(rèn)為,這2種酶對木質(zhì)素總含量的影響是通過改變木質(zhì)素單體的含量來實(shí)現(xiàn)的。此外對C3和C5位置上發(fā)生的羥基化和甲基化反應(yīng)起催化作用的香豆酸3-羥化酶(coumarate acid 3-hydroxylase,C3H)、咖啡酸/5-羥基阿魏酰-O-甲基轉(zhuǎn)移酶(bispecific cafeic acid/5-hydroxyferulic acid O-methyltransferase,COMT)、阿魏酸5-脫氫酶(ferulic acid 5-hydroxylase,F5H)以及咖啡酰CoA-O-甲基轉(zhuǎn)移酶(caffeoyl-CoA O-methytransferase,CCoAOMT)等活性的改變,同樣對林木體內(nèi)的木質(zhì)素含量有重要的調(diào)控作用[14-16]。
2.1.1 不同合成途徑的影響 PAL是苯丙烷途徑上的第1個(gè)調(diào)控酶,抑制其表達(dá)活性能明顯降低木質(zhì)素含量,且伴隨植物生長特性異常變化。C4H與PAL類似,不屬于木質(zhì)素單體合成的直接調(diào)控酶,主要調(diào)控非木質(zhì)素酚類物質(zhì)的合成[17],其活性降低時(shí)木質(zhì)素含量明顯降低。Bjurhager等[18]通過抑制楊樹(Populus)中C4H的活性,發(fā)現(xiàn)Klason木質(zhì)素含量下降了30%。4CL屬于連接反應(yīng)酶,以肉桂酸為底物催化生成相應(yīng)的CoA酯,抑制了楊樹中4CL活性后,Klason木質(zhì)素含量同樣下降了40%~45%[19-22]。
C3H屬于細(xì)胞色素P450酶,調(diào)控單體碳源流向,抑制楊樹中C3H活性后,Klsaon木質(zhì)素含量下降幅度可達(dá)56%,而且通過組織化學(xué)染色和木質(zhì)素對紫外光熒光特性的定性觀察,發(fā)現(xiàn)轉(zhuǎn)基因楊樹木質(zhì)素含量同樣存在明顯差異[23-24]。在COMT與CCoAOMT基因表達(dá)被抑制的轉(zhuǎn)基因林木植物中,木質(zhì)素含量變化不明顯;而在煙草(Nicotiana)中抑制其表達(dá)時(shí),木質(zhì)素含量顯著降低[5,25-26]。Wang等[27]研究了調(diào)控糖基轉(zhuǎn)移酶對轉(zhuǎn)基因楊樹的影響發(fā)現(xiàn),PtGT1基因超表達(dá)后Klason木質(zhì)素含量明顯增加,Wiesner和M?ule染色程度也強(qiáng)于對照組。
在楊樹中抑制CCR基因的表達(dá),木質(zhì)素含量下降可達(dá)50%[28];而轉(zhuǎn)CCR桉樹(Eucalyptus)中木質(zhì)素含量只下降了8%[29],這可能與木材種類以及基因活性下調(diào)量有關(guān)。在楊樹、煙草和苜蓿(Meguminosae)中抑制CAD活性對木質(zhì)素總體含量并無明顯影響,但莖稈間苯三酚染色有明顯不同[5,30-32]。
2.1.2 不同調(diào)控方式的影響 采用不同調(diào)控方式對轉(zhuǎn)基因木材木質(zhì)素含量的影響也具有差異性。Tian等[33]通過正義、反義和RNAi 3種方式調(diào)控轉(zhuǎn)基因楊樹中4CL活性,發(fā)現(xiàn)正義調(diào)控4CL活性后木質(zhì)素含量升高18.52%,而反義調(diào)控后降低28.52%,RNAi調(diào)控也使木質(zhì)素含量有所下降,并且木質(zhì)素含量的變化與4CL活性呈正相關(guān),說明4CL基因能夠成功調(diào)控木質(zhì)素合成。用不同方式抑制楊樹中COMT活性后發(fā)現(xiàn),采用正義RNA抑制COMT活性能夠降低轉(zhuǎn)基因楊樹中木質(zhì)素的含量,而其他調(diào)控方式對木質(zhì)素總含量無明顯影響[5]。調(diào)控CCoAOMT基因過表達(dá)能夠增加木質(zhì)素的含量;而利用反義RNA技術(shù)調(diào)控CCoAOMT基因,能夠有效降低楊木中Klason木質(zhì)素的含量,提高楊木的造紙性能[13]。
2.2.1 木質(zhì)素組分結(jié)構(gòu)種類 木質(zhì)素主要由甲基化聚合程度不同的單體聚合成的紫丁香基丙烷(S)、愈創(chuàng)木基丙烷(G)、對羥苯基丙烷(H)3種結(jié)構(gòu)單元組成,在不同植物體內(nèi)含量和成分不同。如針葉樹主要為愈創(chuàng)木基結(jié)構(gòu)單元,其他結(jié)構(gòu)單元含量較少;闊葉樹和草本植物以紫丁香基結(jié)構(gòu)單元和愈創(chuàng)木基結(jié)構(gòu)單元為主,含少量對羥苯基結(jié)構(gòu)單元[5,12,34-35]。各結(jié)構(gòu)單元間主要通過C—C鍵和C—O鍵聯(lián)接。研究發(fā)現(xiàn),與G單元木質(zhì)素相比,無C5位置S單元的C—C鍵更易除去,因此當(dāng)S單元相對含量增加或S/G升高時(shí),木質(zhì)素易于分解,從而有助于木質(zhì)纖維材料的利用[36]。
2.2.2 不同調(diào)控途徑的影響 學(xué)者還研究了轉(zhuǎn)基因木材木質(zhì)素結(jié)構(gòu)的變化,發(fā)現(xiàn)改變某些木質(zhì)素合成酶基因表達(dá)時(shí)也能改變其組成結(jié)構(gòu),如位于苯丙烷途徑上的第1個(gè)限速酶PAL,抑制其活性能夠明顯降低木質(zhì)素含量,同時(shí)使木質(zhì)素結(jié)構(gòu)發(fā)生變化[5],而調(diào)控C4H、4CL等酶活性能明顯降低木質(zhì)素總含量,但對楊樹中木質(zhì)素的結(jié)構(gòu)無明顯影響[18,22]。
位于特異合成途徑上游的C3H、COMT、CCoAOMT和F5H等酶對木質(zhì)素單體的合成有重要調(diào)控作用。C3H被認(rèn)為是調(diào)控S和G單元合成的關(guān)鍵酶,抑制其在楊樹中的活性后,木質(zhì)素總含量下降,但H單元相對含量增加,S單元含量不變,而G單元含量下降,致使S/G增大[23,36]。學(xué)者通過組織化學(xué)染色差異進(jìn)一步驗(yàn)證了S、G單體含量和微區(qū)分布上的差異[37]。抑制COMT基因表達(dá)對木質(zhì)素總含量無明顯影響,但能明顯改變木質(zhì)素結(jié)構(gòu),表現(xiàn)為S單元含量下降,G單元含量增加,使S/G降低[25,38]。CCoAOMT酶對S單元和G單元合成有調(diào)控作用,反義調(diào)控楊樹中CCoAOMT活性后發(fā)現(xiàn),由于G單元下降幅度相對較大從而使S/G升高,使楊木更適宜制漿造紙[39]。 F5H則被認(rèn)為是調(diào)控S單元木質(zhì)素合成的關(guān)鍵調(diào)控酶,其活性與S單元木質(zhì)素含量呈正相關(guān)。在楊樹中超表達(dá)F5H基因后,木質(zhì)素總量下降而S單元含量增加[40],木質(zhì)素支鏈減少更有利于分解[41]。相反,抑制F5H基因表達(dá)后,S單元木質(zhì)素含量明顯下降,進(jìn)一步證明F5H能夠調(diào)控S單元木質(zhì)素的合成[42]。
調(diào)控特異合成途徑上的CCR和CAD活性,同樣能影響木質(zhì)素單體的合成。CCR主要調(diào)控S單元木質(zhì)素的合成,在楊樹中抑制其活性能夠明顯降低S單元木質(zhì)素含量[28]。CAD則對S和G單體的合成有影響,Baucher等[43]通過反義抑制轉(zhuǎn)基因苜蓿中的CAD,發(fā)現(xiàn)木質(zhì)素總量未發(fā)生變化,但是S基單體含量降低,S/G降低。但在轉(zhuǎn)基因楊樹中,通過反義抑制CAD活性發(fā)現(xiàn),木質(zhì)素總量和結(jié)構(gòu)、組分都未發(fā)生明顯變化,而木質(zhì)素中的醛類物質(zhì)含量有所增加[30],表明CAD在不同植物體內(nèi)的調(diào)控方式可能存在差異。
2.2.3 多基因調(diào)控的影響 研究人員發(fā)現(xiàn),S和G單元木質(zhì)素的調(diào)控是相對獨(dú)立的,利用特定基因調(diào)控能夠?qū)崿F(xiàn)針對性調(diào)控S/G[5]。因此,許多學(xué)者采用雙基因平行調(diào)控S和G單元木質(zhì)素含量,來升高S/G,從而優(yōu)化木質(zhì)纖維材料的利用。如Franke等[40]通過C4H-F5H雙基因調(diào)控楊樹和煙草中的木質(zhì)素含量發(fā)現(xiàn),煙草中G單元木質(zhì)素含量明顯降低,S單元木質(zhì)素含量明顯升高,S/G升高;楊樹中G單元和S單元木質(zhì)素含量均明顯降低,其中G單元木質(zhì)素含量降幅更大,最終導(dǎo)致S/G升高。通過多基因調(diào)控在降低木質(zhì)素含量的同時(shí),對木質(zhì)素組分結(jié)構(gòu)進(jìn)行調(diào)控,例如在楊樹中抑制4CL表達(dá)的同時(shí)增加CALD5H活性后發(fā)現(xiàn),木質(zhì)素含量下降52%,S單元木質(zhì)素含量增加,使S/G上升64%,有利于木質(zhì)纖維材料的利用[44]。
2.3.1 對細(xì)胞壁其他化學(xué)組分含量的影響 木材細(xì)胞壁重要組分中除了木質(zhì)素外,還有纖維素和半纖維素。研究表明,部分轉(zhuǎn)基因植物中木質(zhì)素含量降低時(shí),纖維素和半纖維素等物質(zhì)含量會代償性增加,這有助于提高木質(zhì)纖維材料的利用率。如Bjurhager等[18]發(fā)現(xiàn),木質(zhì)素含量降低的同時(shí)纖維素和半纖維素含量增加。Jouanin等[25]通過抑制COMT活性來調(diào)控楊木木質(zhì)素的合成,發(fā)現(xiàn)木質(zhì)素總量降低17%,但C5位置木質(zhì)素相對含量增加;纖維素含量升高,有利于楊樹在造紙工業(yè)中的利用;但C5位置木質(zhì)素易與其他單體結(jié)合為較穩(wěn)定C—C鍵而不利于木質(zhì)素去除,因此雖然轉(zhuǎn)COMT基因楊樹C5位置木質(zhì)素含量增加,但并未提高可發(fā)酵糖產(chǎn)量。人們在柳枝稷(Panicum)中卻發(fā)現(xiàn),COMT活性下降后生物酒精產(chǎn)量增加,糖轉(zhuǎn)化率提高[45],進(jìn)一步說明抑制不同植物相同基因表達(dá)后對植物化學(xué)成分的影響不同。Doorsselaere等[46]在轉(zhuǎn)基因楊樹中發(fā)現(xiàn),COMT活性下降后纖維素含量增加。在楊樹中抑制CCR活性后半纖維素含量降低而纖維素含量增加,且5年內(nèi)基因下調(diào)性狀穩(wěn)定[5]。
木材細(xì)胞壁層含有多種化學(xué)成分共同維持植物機(jī)體正常新陳代謝,當(dāng)合成木質(zhì)素調(diào)控基因表達(dá)發(fā)生變化時(shí),為了維持植物機(jī)體正常的生長發(fā)育,其他微量化學(xué)成分也會發(fā)生相應(yīng)的變化,以保證植物體正常的生理代謝。Ziebell等[47]發(fā)現(xiàn),在C3H和C4H活性下調(diào)的桉樹中,NaOH抽提物含量明顯升高,表明木質(zhì)素等主要化學(xué)成分缺失時(shí)微量化學(xué)組成成分會補(bǔ)償性增加,保證了植物機(jī)體的生長發(fā)育。在CAD基因抑制調(diào)控的4年生楊樹中發(fā)現(xiàn),蛋白質(zhì)含量也有所降低[5]。對轉(zhuǎn)4CL基因楊樹的研究發(fā)現(xiàn),木質(zhì)素合成途徑受阻后,植物體內(nèi)的生長素含量明顯升高,以維持植物體的正常生理代謝[33],抽提物含量升高2倍[20-21,48]。在雜交楊中抑制C3H活性后,木質(zhì)素含量降低,淀粉含量增加,促進(jìn)了黃酮類化合物的合成,導(dǎo)致葉片花青素積累[23]。在RNAi轉(zhuǎn)C3H基因玉米植物中同樣發(fā)現(xiàn),類黃酮和花青素等微量化學(xué)成分含量有一定的變化[49]。
2.3.2 對細(xì)胞壁其他組分結(jié)構(gòu)的影響 研究表明,基因調(diào)控不但對細(xì)胞壁木質(zhì)素的結(jié)構(gòu)變化起作用,對半纖維素的組成結(jié)構(gòu)也有一定影響。Coleman等[23]發(fā)現(xiàn),抑制雜交楊的C3H調(diào)控基因表達(dá),木質(zhì)素含量降低,葡萄糖、木糖和阿拉伯糖等單糖組分含量也發(fā)生一定變化,表明C3H活性下調(diào)會引起植物化學(xué)成分的代償性變化。Min等[50]發(fā)現(xiàn),抑制4CL基因的表達(dá),木質(zhì)素含量大幅度降低,葡聚糖含量明顯高于野生型,木聚糖和其他小分子糖含量也略有增加。除此之外,基因調(diào)控對半纖維素的分子量也有一定影響,彭霄鵬[24]在研究轉(zhuǎn)C3H基因楊樹中發(fā)現(xiàn),轉(zhuǎn)基因楊樹的半纖維素分子量比野生型高,且轉(zhuǎn)基因楊樹的DMSO和堿性半纖維素分散系數(shù)更均一。Leplé 等[28]發(fā)現(xiàn),通過下調(diào)CCR活性可以降低木質(zhì)素的含量,提高纖維素的含量,與此同時(shí)半纖維素含量降低且結(jié)構(gòu)組分發(fā)生了變化,其中葡萄糖、木糖、鼠李糖、甘露糖的含量均明顯降低,證明基因調(diào)控木質(zhì)素含量變化的同時(shí),會引起其他成分的代償性變化。此外,研究人員還發(fā)現(xiàn),在楊樹和擬南芥(Arabidopsis)中調(diào)控RabG3bCA、UDP和2-PE等其他非木質(zhì)素合成調(diào)控基因,對半纖維結(jié)構(gòu)也有一定的影響,且引起葡萄糖、半乳糖、阿拉伯糖、甘露糖和木聚糖等單糖含量的變化,對細(xì)胞壁纖維素成分的糖轉(zhuǎn)化性能也有一定影響[51-53]。
木質(zhì)素是木材細(xì)胞壁的基質(zhì)成分之一,對維持細(xì)胞形態(tài)及提供力學(xué)支撐有重要作用[35]。對轉(zhuǎn)基因林木的研究發(fā)現(xiàn),基因調(diào)控在改變細(xì)胞壁木質(zhì)素含量及結(jié)構(gòu)的同時(shí),對其組織細(xì)胞顯微結(jié)構(gòu)也有一定影響。如隨著木質(zhì)素含量下降,轉(zhuǎn)C3H基因楊樹中韌皮纖維細(xì)胞數(shù)減少,導(dǎo)管尺寸變小但數(shù)目增多,木質(zhì)部細(xì)胞層數(shù)增多[23-24,54];抑制楊樹中CCR的活性,同樣發(fā)現(xiàn)纖維細(xì)胞壁呈現(xiàn)出連續(xù)的同心層或組織細(xì)胞排列雜亂無章[28]。導(dǎo)管尺寸和數(shù)目的變化,可能與轉(zhuǎn)基因林木體內(nèi)水分運(yùn)輸有關(guān),木質(zhì)素的疏水性是保證水分及營養(yǎng)物質(zhì)在植物體內(nèi)運(yùn)輸?shù)闹匾阅?,木質(zhì)素含量及結(jié)構(gòu)發(fā)生變化時(shí)必將對植物體內(nèi)的水分運(yùn)輸產(chǎn)生影響,在轉(zhuǎn)IAA合成調(diào)控基因和轉(zhuǎn)4CL楊樹中發(fā)現(xiàn),木質(zhì)部導(dǎo)管尺寸下降而數(shù)目增多[55-56];Schume等[57]研究了地下水分對雜交楊木顯微結(jié)構(gòu)的影響,發(fā)現(xiàn)低水分運(yùn)輸可引起導(dǎo)管尺寸降低和數(shù)目的增加。在轉(zhuǎn)C3H基因楊樹中發(fā)現(xiàn),根系側(cè)根數(shù)目增加可保證植物體內(nèi)的水分運(yùn)輸[24],進(jìn)一步說明基因調(diào)控影響了轉(zhuǎn)基因木材的顯微結(jié)構(gòu),也說明楊樹能夠在一定程度上進(jìn)行自我調(diào)控以保證其正常生長發(fā)育。
前人研究結(jié)果表明,基因活性調(diào)控對煙草、擬南芥、玉米(Zea)和苜蓿等草本轉(zhuǎn)基因植物顯微結(jié)構(gòu)也有重要影響,但不同基因?qū)Σ煌参锏挠绊懹胁町?。如抑制C3H調(diào)控基因的表達(dá),可導(dǎo)致玉米植株莖稈上維管束的尺寸降低[58];在擬南芥中,C3H調(diào)控基因的表達(dá)量則與莖稈次生壁壁厚成正比關(guān)系[59]。苜蓿中莽草酸/奎寧酸羥基肉桂酰轉(zhuǎn)移酶(shikimate/quinate hydroxycinnamoyl transferase,HCT)調(diào)控基因沉默導(dǎo)致維管束結(jié)構(gòu)受損,且細(xì)胞抗性降低[60]。抑制亞麻(Linum)CCoAOMT調(diào)控基因表達(dá),導(dǎo)致木質(zhì)部結(jié)構(gòu)發(fā)生變化,細(xì)胞壁變薄,出現(xiàn)不規(guī)則的木質(zhì)部顯性表達(dá)[61]。轉(zhuǎn)CAD調(diào)控基因煙草中莖干細(xì)胞壁變薄,韌皮部和木質(zhì)部纖維增長,導(dǎo)管分子密度降低,次生木質(zhì)部減少[62]。抑制擬南芥和煙草中CCR活性后,纖維和導(dǎo)管結(jié)構(gòu)松散,微纖絲排列雜亂和細(xì)胞壁變薄[63-64]。
作為木材細(xì)胞壁層的重要組成成分,木質(zhì)素含量或結(jié)構(gòu)變化對組織細(xì)胞壁層的形成均有一定影響,但由于不同基因調(diào)控對木質(zhì)素等主要化學(xué)成分影響的差異性,因此對細(xì)胞壁超微結(jié)構(gòu)的影響也不同。Bjurhager等[18]對轉(zhuǎn)C4H基因楊樹的研究發(fā)現(xiàn),木質(zhì)素含量降低對微纖絲的結(jié)晶度無明顯影響,但微纖絲排列較對照組稀松。在轉(zhuǎn)4CL基因楊樹中,木質(zhì)素含量下降45%,組織細(xì)胞壁層結(jié)構(gòu)與對照組相似[22],表明不同調(diào)控基因在轉(zhuǎn)基因林木植株中表現(xiàn)有所差異。木質(zhì)素含量明顯下降的轉(zhuǎn)CCR基因楊樹與對照組楊樹相比,組織細(xì)胞壁層排列不整齊,且次生壁各壁層區(qū)分不明顯;對照組在S2層內(nèi)側(cè)有大量S單元木質(zhì)素沉積,而外側(cè)較少,表明木質(zhì)素合成主要發(fā)生在次生壁S2層形成時(shí);同時(shí)轉(zhuǎn)基因楊木S單元在各壁層微區(qū)分布含量明顯較稀疏且分布均勻;在細(xì)胞壁層原位揭示了木質(zhì)素含量變化對組織細(xì)胞的影響[28]。
研究發(fā)現(xiàn),木質(zhì)素含量和結(jié)構(gòu)變化對其組織細(xì)胞壁層結(jié)構(gòu)有重要影響。Chabannes等[65]系統(tǒng)研究了CCR、CAD或CCR×CAD調(diào)控基因抑制表達(dá)的轉(zhuǎn)基因煙草中,木質(zhì)素單體在細(xì)胞壁層的沉積規(guī)律及以上基因?qū)?xì)胞壁層超微觀結(jié)構(gòu)的影響,發(fā)現(xiàn)CAD和CCR×CAD調(diào)控基因抑制表達(dá)對木質(zhì)部組織細(xì)胞壁層結(jié)構(gòu)影響不明顯,而CCR活性下調(diào)后對纖維次生壁S2層排列有明顯影響,但對S1層無影響;說明木質(zhì)素的合成主要發(fā)生于次生壁加厚的過程中,改變木質(zhì)素含量或結(jié)構(gòu)主要對次生壁合成時(shí)具有重要影響作用;此外還發(fā)現(xiàn),G、S單元木質(zhì)素在組織細(xì)胞各壁層的沉積規(guī)律也發(fā)生了相應(yīng)的變化。Fornalé等[49]發(fā)現(xiàn),CAD活性下調(diào)后的轉(zhuǎn)基因玉米壁層結(jié)構(gòu)未產(chǎn)生明顯變化,導(dǎo)管細(xì)胞壁中S單元木質(zhì)素含量增多,纖維細(xì)胞壁的S單元含量減少、G單元含量增加,表明基因調(diào)控對木質(zhì)素微區(qū)分布含量變化有重要調(diào)控作用,而其對組織細(xì)胞壁層結(jié)構(gòu)的影響可能與其下調(diào)量或其他化學(xué)成分含量變化有關(guān)。
綜上所述,木質(zhì)素基因活性的改變能夠有效調(diào)控木材細(xì)胞壁木質(zhì)素含量和結(jié)構(gòu),對木材細(xì)胞壁其他化學(xué)成分也有一定影響,同時(shí)木質(zhì)素基因活性改變后木材及其他轉(zhuǎn)基因植物的顯微結(jié)構(gòu)也存在差異。但由于不同植物間具有生物差異性且基因調(diào)控作用不同,導(dǎo)致基因調(diào)控對植物體的影響具有多樣性,此外基因調(diào)控方式對基因調(diào)控結(jié)果也有一定影響,因此研究轉(zhuǎn)基因木材時(shí)要針對特定目標(biāo)林木和基因及調(diào)控方式進(jìn)行分析。結(jié)合前人對轉(zhuǎn)基因木材的研究現(xiàn)狀和趨勢,發(fā)現(xiàn)有以下幾個(gè)方面亟待研究:(1)闡明木質(zhì)素調(diào)控基因?qū)δ举|(zhì)素、纖維素等多種化學(xué)成分微區(qū)含量分布變化的影響機(jī)制;(2)闡明木質(zhì)素調(diào)控基因活性改變對纖維素及半纖維結(jié)構(gòu)的變化規(guī)律,揭示其對纖維素分解及糖轉(zhuǎn)化性能提升的影響機(jī)制;(3)系統(tǒng)揭示木質(zhì)素基因表達(dá)下調(diào)量與木材顯微結(jié)構(gòu)和細(xì)胞壁層超微結(jié)構(gòu)的響應(yīng)機(jī)制,以便選育優(yōu)質(zhì)轉(zhuǎn)基因木材資源;(4)從縱向不同發(fā)育角度系統(tǒng)揭示轉(zhuǎn)基因木材細(xì)胞壁化學(xué)組分及解剖結(jié)構(gòu)的生長發(fā)育規(guī)律。
[參考文獻(xiàn)]
[1] Cosgrove D J.Growth of the plant cell wall [J].Nature Reviews Molecular Cell Biology,2005,6(11):850-861.
[2] Sticklen M.Plant genetic engineering to improve biomass characteristics for biofuels [J].Current Opinion in Biotechnology,2006,17(3):315-319.
[3] Tong Z,Li H,Zhang R,et al.Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (MedicagosativaL.) [J].Plant Science,2015,239:230-237.
[4] Boudet A,Kajita S,Grima-Pettenati J,et al.Lignins and lignocellulosics:a better control of synthesis for new and improved uses [J].Trends in Plant Science,2003,8(12):576-581.
[5] Verma S R,Dwivedi U N.Lignin genetic engineering for improvement of wood quality: applications in paper and textile industries,fodder and bioenergy production [J].South African Journal of Botany,2014,91:107-125.
[6] 宋恩慧,蔡 誠,魏 國,等.RNA干涉培育低木質(zhì)素楊樹 [J].林業(yè)科學(xué),2001,46(2):39-44.
Song E H,Cai C,Wei G,et al.Cultivation of low lignin poplar by RNA interference [J].Scientia Silvae Sinicae,2010,46(2):39-44.
[7] Poovaiah C R,Nageswara-Rao M,Soneji J R,et al.Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks [J].Plant Biotechnology Journal,2014,12(9):1163-1173.
[8] Tronchet M,Balague C,Kroj T,et al.Cinnamyl alcohol dehydrogenases-C and D,key enzymes in lignin biosynthesis,play an essential role in disease resistance inArabidopsis[J].Molecular Plant Pathology,2010,11(1):83-92.
[9] Keegstra K.Plant cell walls [J].Plant Physiology,2010,154(2):483-486.
[10] Cannon M C,Terneus K,Hall Q,et al.Self-assembly of the plant cell wall requires an extensin scaffold [J].Proceedings of the National Academy of Sciences,2008,105(6):2226-2231.
[11] 趙云軍,李來庚.植物細(xì)胞壁松弛因子 [J].植物生理學(xué)報(bào),2011,47(10):925-935.
Zhao Y J,Li L G.Plant cell wall loosening factors [J].Plant Physiology Journal,2011,47(10):925-935.
[12] Boeijan W,Ralph J,Baucher M.Lignin biosynthesis [J].Annual Review of Plant Biology,2003,54(1):519-546.
[13] 趙華燕,魏建華,宋艷茹.木質(zhì)素生物合成及其基因工程研究進(jìn)展 [J].植物生理與分子生物學(xué)學(xué)報(bào),2004,30(4):361-370.
Zhao H Y,Wei J H,Song Y R.Advances in study of lignin biosynthesis and genetic engineering [J].Journal Plant Physiology and Molecular Biology,2004,30(4):361-370.
[14] Baucher M,Halpin C,Petit-Conil M,et al.Lignin: genetic engineering and impact on pulping [J].Critical Reviews in Biochemistry and Molecular Biology,2003,38(4):305-350.
[15] 李金花,張綺紋,牛正田,等.木質(zhì)素生物合成及其基因調(diào)控的研究進(jìn)展 [J].世界林業(yè)研究,2007,20(1):29-37.
Li J H,Zhang Q W,Niu Z T,et al.Advances in study of lignin biosynthesis and genetic engineering modification [J].World Forestry Research,2007,20(1):29-37.
[16] 高 原,陳信波,張志揚(yáng).木質(zhì)素生物合成途徑及其基因調(diào)控的研究進(jìn)展 [J].生物技術(shù)通報(bào),2007(2):47-51.
Gao Y,Chen X B,Zhang Z Y.Advances in research on lignin biosynthesis and its molecular regulation [J].Biotechnology Bulletin,2007(2):47-51.
[17] 李潞濱,劉 蕾,何聰芬,等.木質(zhì)素生物合成關(guān)鍵酶基因的研究進(jìn)展 [J].分子植物育種,2007,5(6):45-51.
Li L B,Liu L,He C F,et al.Research progresses on the genes encoding the key enzymes in biosynthetic pathway of lignin [J].Molecular Plant Breeding,2007,5(6):45-51.
[18] Bjurhager I,Olsson A M,Zhang B,et al.Ultrastructure and mechanical properties ofPopuluswood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase [J].Biomacromolecules,2010,11(9):2359-2365.
[19] 賈彩紅,趙華燕,王宏芝,等.抑制4CL基因表達(dá)獲得低木質(zhì)素含量的轉(zhuǎn)基因毛白楊 [J].科學(xué)通報(bào),2004,49(7):662-666.
Jia C H,Zhao H Y,Wang H Z,et al.Depressed expression of 4CLgene to obtain transgenic poplar with low lignin content [J].Chinese Science Bulletin,2004,49(7):662-666.
[20] Voelker S L,Lachenbruch B,Meinzer F C,et al.Transgenic poplars with reduced lignin show impaired xylem conductivity,growth efficiency and survival [J].Plant Cell & Environment,2011,34(4):655-668.
[21] Voelker S L,Lachenbruch B,Meinzer F C,et al.Reduced wood stiffness and strength,and altered stem form,in young antisense 4CLtransgenic poplars with reduced lignin contents [J].New Phytologist,2011,189(4):1096-1109.
[22] Hu W J,Harding S A,Lung J,et al.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees [J].Nature Biotechnology,1999,17(8):808-812.
[23] Coleman H D,Park J Y,Nair R,et al.RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism [J].Proceedings of the National Academy of Sciences,2008,105(11):4501-4506.
[24] 彭霄鵬.楊樹木質(zhì)素合成基因C3H與HCT表達(dá)下調(diào)對細(xì)胞壁組成與結(jié)構(gòu)的影響 [D].北京:北京林業(yè)大學(xué),2015.
Peng X P.Effects on cell wall composition and structure by downregulation of monolignol biosynthetic genesC3HandHCTinPopulusalba×P.glandulosa[D].Beijing:Beijing Forestry University,2015.
[25] Jouanin L,Goujon T,de Nadal V,et al.Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity [J].Plant Physiology,2000,123(4):1363-1374.
[26] 魏建華,趙華燕,張景昱,等.毛白楊CCoAOMTcDNA片段的克隆與轉(zhuǎn)基因楊木質(zhì)素含量的調(diào)控 [J].植物學(xué)報(bào)(英文版),2001,43(11):1179-1183.
Wei J H,Zhao H Y,Zhang J Y,et al.Cloning of cDNA encodingCCoAOMTfromPopulustomentosaand down-regulation of lignin content in transgenic plant expressing antisense gene [J].Acta Bottmica Sinica(in English),2001,43(11):1179-1183.
[27] Wang Y W,Wang W C,Jin S H,et al.Over-expression of a putative poplar glycosyltransferase gene,PtGT1,in tobacco increases lignin content and causes early flowering [J].Journal of Experimental Botany,2012,63(7):1-10.
[28] Leplé J C,Dauwe R,Morreel K,et al.Downregulation of cinnamoyl-coenzyme A reductase in poplar:multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure [J].Plant Cell,2007,19(11):3669-3691.
[29] Wadenb?ck J,Von Arnold S,Egertsdotter U,et al.Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR) [J].Transgenic Research,2008,17(3):379-392.
[30] Baucher M,Chabbert B,Pilate G,Van Doorsselaere J,et al.Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar [J].Plant Physiol,1996,l12(4):1479-1490.
[31] Lapierre C,Pollet B,MacKay J J,et al.Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase [J].Journal of Agricultural and Food Chemistry,2000,48(6):2326-2331.
[32] Thakur A K,Aggarwal G,Srivastava D K.Genetic modification of lignin biosynthetic pathway inPopulusciliatawall.via agrobacterium-mediated antisenseCADgene transfer for quality paper production [J].National Academy Science Letters,2012,35(2):79-84.
[33] Tian X M,Xie J,Zhao Y L,et al.Sense-,antisense-and RNAi-4CL1 regulate soluble phenolic acids,cell wall components and growth in transgenicPopulustomentosaCarr. [J].Plant Physiology and Biochemistry,2013,65:111-119.
[34] Whetten R,Sederoff R.Lignin biosynthesis [J].The Plant Cell,1995,7(7):1001.
[35] Vanholme R,Morreel K,Ralph J,et al.Lignin engineering [J].Current Opinion in Plant Biology,2008,11(3):278-285.
[36] Ralph J,Akiyama T,Coleman H D,et al.Effects on lignin structure of coumarate 3-hydroxylase downregulation in poplar [J].Bioenergy Research,2012,5(4):1009-1019.
[37] Piquemal J,Lapierre C,Myton K,et al.Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants [J].The Plant Journal,1998,13(1):71-83.
[38] Oraby H F,Ramadan M F.Impact of suppressing the caffeic acid O-methyltransferase (COMT) gene on lignin,fiber, and seed oil composition inBrassicanapustransgenic plants [J].European Food Research and Technology,2015,240(5):931-938.
[39] Meyermans H,Morreel K,Lapierre C,et al.Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase,an enzyme involved in lignin biosynthesis [J].Journal of Biological Chemistry,2000,275(47):36899-36909.
[40] Franke R,McMichael C M,Meyer K,et al.Modified lignin in tobacco and poplar plants over-expressing theArabidopsisgene encoding ferulate 5-hydroxylase [J].The Plant Journal,2000,22(3):223-234.
[41] Stewart J J,Akiyama T,Chapple C,et al.The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar1 [J].Plant Physiology,2009,150(2):621-635.
[42] Nakashima J,Chen F,Jackson L,et al.Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicagosativa):effects on lignin composition in specific cell types [J].New Phytologist,2008,179(3):738-750.
[43] Baucher M,Bernard-Vailhé M A,Chabbert B,et al.Down regulation of cirmamyl alcohol dehydrogenase in transgenic alfalfa (MedicagosativaL.) and the efect on lignin composition and digestibility [J].Plant Mo1 Bio1,1999,39(3):437-447.
[44] Li L,Zhou Y,Cheng X,et al.Combinatorial modification of multiple lignin traits in trees through multigene cotransformation [J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(8):4939-4944.
[45] Yee K L,Rodriguez J M,Thompson O A,et al.Consolidated bioprocessing of transgenic switchgrass by an engineered and evolvedClostridiumthermocellumstrain [J].Biotechnology for Biofuels,2014,7(1):1-6.
[46] Doorsselaere J,Baucher M,Chognot E,et al.A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity [J].The Plant Journal,1995,8(6):855-864.
[47] Ziebell A,Gjersing E,Hinchee M,et al.Downregulation of p-Coumaroyl quinate/shikimate 3-hydroxylase (C3H) or cinnamate-4-hydrolylase (C4H) inEucalyptusurophylla×Eucalyptusgrandisleads to increased extractability [J].BioEnergy Research,2016,9(2):691-699.
[48] Voelker S L,Lachenbruch B,Meinzer F C,et al.Antisense down-regulation of 4CLexpression alters lignification,tree growth and saccharification potential of fieldgrown poplar [J].Plant Physiology,2010,154:874-886.
[49] Fornalé S,Capellades M,Encina A,et al.Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase [J].Molecular Plant,2012,5(4):817-830.
[50] Min D,Li Q,Jameel H,et al.The cellulase-mediated saccharification on wood derived from transgenic low-lignin lines of black cottonwood (Populustrichocarpa) [J].Applied Biochemistry & Biotechnology,2012,168(4):947-955.
[51] Jung Y H,Cho H J,Lee J S,et al.Evaluation of a transgenic poplar as a potential biomass crop for biofuel production [J].Bioresource Technology,2013,129:639-641.
[52] Payyavula R S,Tschaplinski T J,Jawdy S S,et al.Metabolic profiling reveals altered sugar and secondary metabolism in response toUGPaseoverexpression inPopulus[J].BMC Plant Biology,2014,14(1):1-14.
[53] Qi G,Wang D,Yu L,et al.Metabolic engineering of 2-phenylethanol pathway producing fragrance chemical and reducing lignin inArabidopsis[J].Plant Cell Reports,2015,34(8):1331-1342.
[54] 楊少宗,柳新紅,趙樹堂,等.通過RNAi技術(shù)抑制楊樹C3H基因表達(dá)提高糖轉(zhuǎn)化效率 [J].浙江林業(yè)科技,2012,32(3):1-8.
Yang S Z,Liu X H,Zhao S T,et al.Downregulation of coumaroyl shikimate 3-hydroxylase in poplar by RNAi technique [J].Jour of Zhejing For Sci&Tech,2012,32(3):1-8.
[55] Tuominen H,Sundberg B.Altered growth and wood characteristics in transgenic hybrid aspen expressingAgrobacteriumtumefaciensT-DNA indoleacetic acid-biosynthetic genes [J].Plant Physiology,1995,109(4):1179-1189.
[56] Horvath B.Effect of lignin content and structure on the anatomical,physical and mechanical properties of genetically engineered aspen trees [J].Dissertations & Theses-Gradworks,2009.
[57] Schume H,Grabner M,Eckmüllner O.The influence of an altered groundwater regime on vessel properties of hybrid poplar [J].Trees,2004,18(2):184-194.
[58] Fornalé S,Rencoret J,Garcia-Calvo L,et al.Cell wall modifications triggered by the down-regulation of coumarate 3-hydroxylase-1 in maize [J].Plant Science,2015,236:272-282.
[59] Chai G,Qi G,Cao Y,et al.PoplarPdC3H17 andPdC3H18 are direct targets of PdMYB3 and PdMYB21,and positively regulate secondary wall formation inArabidopsisand poplar [J].New Phytologist,2014,203(2):520-534.
[60] Pattathil S,Saffold T,Gallego-Giraldo L,et al.Changes in cell wall carbohydrate extractability are correlated with reduced recalcitrance of HCT downregulated alfalfa biomass [J].Industrial Biotechnology,2012,8(4):217-221.
[61] Day A,Neutelings G,Nolin F,et al.Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem [J].Plant Physiology and Biochemistry,2009,47(1):9-19.
[62] Sirisha V L,Prashant S,Kumar D R,et al.Cloning,characterization and impact of up- and down-regulating subabul cinnamyl alcohol dehydrogenase (CAD) gene on plant growth and lignin profiles in transgenic tobacco [J].Plant Growth Regulation,2011,66(3):239-253.
[63] Ruel K,Chabannes M,Boudet A M,et al.Reassessment of qualitative changes in lignification of transgenic tobacco plants and their impact on cell wall assembly [J].hytochemistry,2001,57(6):875-882.
[64] Ruel K,Berrio-Sierra J,Derikvand M M,et al.Impact ofCCR1 silencing on the assembly of lignified secondary walls inArabidopsisthaliana[J].New Phytologist,2009,184(1):99-113.
[65] Chabannes M,Ruel K,Yoshinaga A,et al.Insituanalysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels [J].The Plant Journal,2001,28(3):271-282.