(進賢縣民和鎮(zhèn)中心小學(xué) 江西南昌 331700)
《數(shù)學(xué)課程標(biāo)準》提出:“要讓學(xué)生在參與特定的數(shù)學(xué)活動,在具體情境中初步認識對象的特征,獲得一些體驗?!彼^體驗,就是個體主動親歷或虛擬地親歷某件事并獲得相應(yīng)的認知和情感的直接經(jīng)驗的活動。讓學(xué)生親歷經(jīng)驗,不但有助于通過多種活動探究和獲取數(shù)學(xué)知識,更重要的是學(xué)生在體驗中能夠逐步掌握數(shù)學(xué)學(xué)習(xí)的一般規(guī)律和方法。教師要以“課標(biāo)”精神為指導(dǎo),用活用好教材,進行創(chuàng)造性地教,讓學(xué)生經(jīng)歷學(xué)習(xí)過程,充分體驗數(shù)學(xué)學(xué)習(xí),感受成功的喜悅,增強信心,從而達到學(xué)會學(xué)習(xí)的目的。
荷蘭數(shù)學(xué)家弗賴登塔爾說過:“學(xué)習(xí)數(shù)學(xué)的唯一正確方法是實行再創(chuàng)造,也就是由學(xué)生把本人要學(xué)習(xí)的東西自己去發(fā)現(xiàn)或創(chuàng)造出來;教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進行這種再創(chuàng)造工作,而不是把現(xiàn)成的知識灌輸給學(xué)生?!睂嵺`證明,學(xué)習(xí)者不實行“再創(chuàng)造”,他對學(xué)習(xí)的內(nèi)容就難以真正理解,更談不上靈活運用了。
如學(xué)習(xí)小數(shù)除法時,計算“9.47÷2. 7”,豎式上商3.5后,余下的2究竟表示多少,學(xué)生不容易理解。于是,我在橫式上寫出
9.47÷2.7=3.5……2,讓學(xué)生判斷是否正確。
經(jīng)過獨立思考,不少學(xué)生都想到了利用除法 是乘法的逆運算來檢驗:3.5×2.7+2≠9 .47, 得出余數(shù)應(yīng)該是0.02而不是2,在豎式上的余數(shù)2表示2個百分之一,即每次除后的余數(shù)數(shù)位與商的數(shù)位一致。
再如學(xué)完了“圓的面積”,出示:一個圓,從圓心沿半徑切割后,拼成了近似長方形,已知長方形的周長比圓的周長大6厘米,求圓的面積(下圖)。乍一看,似乎無從下手,但學(xué)生經(jīng)過自主探究,便能想到:長方形的周長不就比圓周長多出兩條寬,也就是兩條半徑,一條半徑的長度是3厘米,問題迎刃而解。
還有聽課發(fā)現(xiàn),歸納一個數(shù)除以小數(shù)的計算法則時,學(xué)生干瞪眼,下課時間又快到了,逼得老師自己直接抄寫法則,讓學(xué)生直接讀然后照著做題。出現(xiàn)這種情況,主要是教師沒有引導(dǎo)學(xué)生探究算理,缺少獨立思考,時間又不充分。
教師作為教學(xué)內(nèi)容的加工者,應(yīng)站在發(fā)展學(xué)生思維的高度,相信學(xué)生的認知潛能,對于難度不大的例題,大膽舍棄過多、過細的鋪墊,盡量對學(xué)生少一些暗示、干預(yù),正如“教學(xué)不需要精雕細刻,學(xué)生不需要精心打造”,要讓學(xué)生像科學(xué)家一樣去自己研究、發(fā)現(xiàn),在自主探究中體驗,在體驗中主動建構(gòu)知識。
教與學(xué)都要以“做”為中心。陶行知先生早就提出“教學(xué)做合一”的觀點,在美國也流行“木匠教學(xué)法”,讓學(xué)生找找、量量、拼拼……因為“你做了你才能學(xué)會”。皮亞杰指出:“傳統(tǒng)教學(xué)的特點,就在于往往是口頭講解,而不是從實際操作開始數(shù)學(xué)教學(xué)?!薄白觥本褪亲寣W(xué)生動手操作,在操作中體驗數(shù)學(xué)。通過實踐活動,可以使學(xué)生獲得大量的感性知識,同時有助于提高學(xué)生的學(xué)習(xí)興趣,激發(fā)求知欲。
在學(xué)習(xí)“時分秒的認識”之前,讓學(xué)生先自制一個鐘面模型供上課用,遠比帶上現(xiàn)成的鐘好,因為學(xué)生在制作鐘面的過程中,通過自己思考或詢問家長,已經(jīng)認真地自學(xué)了一次,課堂效果能不好嗎?如:一張長30厘米,寬20厘米的長方形紙,在它的四個角上各剪去一個邊長5厘米的小正方形后,圍成的長方體的體積、表面積各是多少?學(xué)生直接解答有困難,若讓學(xué)生親自動手做一做,在實踐操作的過程中體驗長方形紙是怎樣圍成長方體紙盒的,相信大部分學(xué)生都能輕松解決問題,而且掌握牢固。
再如“將正方體鋼胚鍛造成長方體”,為了讓學(xué)生理解變與不變的關(guān)系,讓他們每人捏一個正方體橡皮泥,再捏成長方體,體會其體積保持不變的道理。在學(xué)習(xí)圓柱與圓錐后,學(xué)生即使理解了其關(guān)系,但遇到圓柱、圓錐體積相等,圓柱高5厘米,圓錐高幾厘米之類的習(xí)題仍有難度,如果讓學(xué)生用橡皮泥玩一玩,或許學(xué)生就不會再混淆,而能清晰地把握,學(xué)會邏輯地思考。
對于動作思維占優(yōu)勢的小學(xué)生來說,聽過了,可能就忘記;看過了,可能會明白;只有做過了,才會真正理解。教師要善于用實踐的眼光處理教材,力求把教學(xué)內(nèi)容設(shè)計成物質(zhì)化活動,讓學(xué)生體驗“做數(shù)學(xué)”的快樂。
這里的“說數(shù)學(xué)”指數(shù)學(xué)交流。課堂上師生互動、生生互動的合作交流,能夠構(gòu)建平等自由的對話平臺,使學(xué)生處于積極、活躍、自由的狀態(tài),能出現(xiàn)始料未及的體驗和思維火花的碰撞,使不同的學(xué)生得到不同的發(fā)展。因為“個人創(chuàng)造的數(shù)學(xué)必須取決于數(shù)學(xué)共同體的‘裁決’,只有為數(shù)學(xué)共同體所一致接受的數(shù)學(xué)概念、方法、問題等,才能真正成為數(shù)學(xué)的成分。”因此,個體的經(jīng)驗需要與同伴和教師交流,才能順利地共同建構(gòu)。
例如學(xué)習(xí)“分數(shù)化成小數(shù)”,首先讓學(xué)生把分數(shù)一個個地去除,得出1/4、9/25、17/40能化成有限小數(shù)的分數(shù)。若像教材上一樣再將各分數(shù)的分母分解質(zhì)因數(shù),看分母里是不是只含有質(zhì)因數(shù)2或5,最后得出判斷分數(shù)化成有限小數(shù)的方法,這樣哪能培養(yǎng)學(xué)生的創(chuàng)造思維呢?學(xué)生的表情是木然的,像機器一樣跟著教師轉(zhuǎn),如此沒有興趣的學(xué)習(xí),效果又能如何呢?可以先讓學(xué)生猜想:這些分數(shù)能化成有限小數(shù),是什么原因?可能與什么有關(guān)?學(xué)生好像無從下手,幾分鐘后有學(xué)生回答“可能與分子有關(guān),因為1/4、1/5都能化成有限小數(shù)”;馬上有學(xué)生反駁:“1/3、1/7的分子同樣是1,為什么不能化成有限小數(shù)?”另有學(xué)生說:“如果用4或5作分母,分子無論是什么數(shù),都能化成有限小數(shù),所以我猜想可能與分母有關(guān)?!薄拔艺J為應(yīng)該看分母。從分數(shù)的意義想,3/4是把單位‘1’平均分成4份,有這樣的3份,能化成有限小數(shù);而3/7表示把單位‘1’平均分成7份,也有這樣的3份,卻不能化成有限小數(shù)。”老師再問:“這些能化成有限小數(shù)的分數(shù)的分母又有何特征呢?”學(xué)生們思考并展開討論,幾分鐘后開始匯報:“只要分母是2或5的倍數(shù)的分數(shù),都能化成有限小數(shù)?!薄拔也煌?。如7/30的分母也是2和5的倍數(shù),但它不能化成有限小數(shù)?!薄耙驗榉帜?0還含有約數(shù)3,所以我猜想一個分數(shù)的分母有約數(shù)3就不能化成有限小數(shù)?!薄拔也孪肴绻帜钢缓屑s數(shù)2或5,它進能化成有限小數(shù)?!薄梢姡寣W(xué)生在合作交流中充分地表達、爭辯,在體驗中“說數(shù)學(xué)”能更好地鍛煉創(chuàng)新思維能力。