袁偉曦 劉海平 曹順旺 余豐 陳文芳 劉麗雅
[摘要] 鮑曼不動(dòng)桿菌是醫(yī)院獲得性感染的主要致病菌,臨床上多重耐藥鮑曼不動(dòng)桿菌日趨增多,抗感染治療面臨困境,亟需尋找能有效抑制鮑曼不動(dòng)桿菌的方法。金屬離子是細(xì)菌維持生理進(jìn)程和毒力活性所必需的,在抗生素出現(xiàn)之前,金屬離子就被用于治療細(xì)菌感染。本文通過(guò)闡述常見(jiàn)金屬離子(鐵、鋅、錳、銅等)對(duì)鮑曼不動(dòng)桿菌生物活性的影響,旨在使研究者充分認(rèn)識(shí)金屬離子的抑菌作用,為治療鮑曼不動(dòng)桿菌感染提供新思路和依據(jù)。
[關(guān)鍵詞] 鮑曼不動(dòng)桿菌;金屬離子;生物活性;耐藥;毒力
[中圖分類號(hào)] R446.5 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)12(b)-0047-04
[Abstract] Acinetobacter baumannii is the main pathogenic bacteria of hospital acquired infection. Multiple drug resistant Acinetobacter baumannii is rapidly increasing in clinical practice, which leads to a difficulty of anti-infection treatment. It is an urgent need to find better ways to effectively inhibit Acinetobacter baumannii. Metal ions are necessary to sustain the physiological process and keep virulence active in bacteria. They have been used to deal with bacterial infections before the advent of antibiotics. In this review, we focused on the influence of metal ions (Fe, Zn, Mn, Cu, etc.) on the bioactivity of Acinetobacter baumannii. We aimed to make the researchers fully understand the bacteriostasis of metal ions and supply new ways for the treatment of Acinetobacter baumannii infection.
[Key words] Acinetobacter baumannii; Metal ion; Bioactivity; Drug-resistant;Virulence
鮑曼不動(dòng)桿菌(Acinetobacter baumannii)是醫(yī)院獲得性感染的重要致病菌,可引起呼吸機(jī)相關(guān)性肺炎、導(dǎo)管相關(guān)性菌血癥、軟組織感染、尿路感染等[1-2]。由于鮑曼不動(dòng)桿菌對(duì)抗生素的通透性差、獲得外源性耐藥基因的能力強(qiáng),多重耐藥菌株迅速出現(xiàn),且數(shù)量逐年增多。用于治療多重耐藥鮑曼不動(dòng)桿菌(Multi-drug Resistant Acinetobacter baumannii)的抗生素僅有黏菌素、替加環(huán)素等少數(shù)幾種,且藥物毒副作用大,鮑曼不動(dòng)桿菌致死率居高不下,嚴(yán)重威脅人類的健康,世界衛(wèi)生組織將其列為優(yōu)先發(fā)展抗生素的第一致病菌。但研發(fā)新的抗生素周期長(zhǎng),花費(fèi)巨大,為了高效快速地控制感染,研究者從多方面著手尋找治療方法,如研制疫苗[3]、干擾鮑曼不動(dòng)桿菌毒力因子[4-5]或生理過(guò)程[6]等。細(xì)菌維持生理進(jìn)程和感染宿主都需要金屬離子,干擾細(xì)菌獲取金屬離子的能力,可影響細(xì)菌的代謝和毒力。本文闡述常見(jiàn)金屬離子干擾鮑曼不動(dòng)桿菌生物活性的作用機(jī)制,旨在使研究者充分了解金屬離子及其螯合劑的市場(chǎng)前景,為抗感染提供思路和依據(jù)。
1 鐵
鐵是鮑曼不動(dòng)桿菌體內(nèi)含量最高的必需微量元素。宿主被鮑曼不動(dòng)桿菌感染后,會(huì)通過(guò)形成轉(zhuǎn)鐵蛋白和乳鐵蛋白降低血鐵濃度,以抵抗細(xì)菌的侵害。為了應(yīng)對(duì)鐵不足的環(huán)境,鮑曼不動(dòng)桿菌通過(guò)合成嗜鐵載體、鐵吸收調(diào)節(jié)蛋白等方式從宿主獲得鐵,以滿足需求。有學(xué)者進(jìn)一步研究鮑曼不動(dòng)桿菌主動(dòng)攝取鐵的現(xiàn)象,證實(shí)鐵是調(diào)控鮑曼不動(dòng)桿菌毒力因子相關(guān)基因表達(dá)的重要信號(hào)。鐵離子濃度可影響菌毛[7]、生物被膜[8]、OmpA[9]、OmpW[10]、孔蛋白、毒素[11]、磷脂酶C等重要毒力因子。在鐵離子受限的環(huán)境中,鮑曼不動(dòng)桿菌菌毛形成量下降,生物被膜形成增多,細(xì)菌致病力顯著下降,對(duì)人體的危害減弱,且與游離狀態(tài)的細(xì)菌相比,該狀態(tài)下的鮑曼不動(dòng)桿菌對(duì)抗生素更敏感,給抗生素的應(yīng)用提供更多空間。目前,在治療多重耐藥鮑曼不動(dòng)桿菌時(shí),鐵螯合劑2,2′-dipyridyl(DIP)不僅可單獨(dú)使用[12],還可與黏菌素聯(lián)合使用[13]。此外,鐵離子還可作為抑菌劑的載體,如頭孢地爾[14],更好地將抑菌藥攜帶至細(xì)菌胞內(nèi),充分發(fā)揮抗菌藥的抑菌作用。綜上所述,鐵離子主要影響鮑曼不動(dòng)桿菌環(huán)境抵抗力、耐藥能力、致病力,干擾鐵代謝相關(guān)過(guò)程,可降低鮑曼不動(dòng)桿菌的致病率,緩解多重耐藥菌株無(wú)藥可用的困境。
2 鋅
鋅不僅調(diào)控細(xì)菌多種轉(zhuǎn)錄因子的生成、蛋白的翻譯,參與氧化應(yīng)激、碳代謝等一系列生物進(jìn)程,還是多種酶的活性中心,對(duì)細(xì)菌有重要的意義。鮑曼不動(dòng)桿菌擁有功能強(qiáng)大的鋅獲取系統(tǒng)ZnuABC,維持鋅離子處于最適濃度。在鋅限制環(huán)境中,鋅依賴蛋白的合成障礙,細(xì)菌代謝受損,從而抑制細(xì)菌生長(zhǎng)。高濃度的鋅離子則通過(guò)改變鮑曼不動(dòng)桿菌的細(xì)胞膜組成,使脂肪酸16∶1n-7含量增高,脂肪酸18∶1n-9降低,細(xì)胞膜的流動(dòng)性改變,鮑曼不動(dòng)桿菌失去對(duì)花生四烯酸[15]等物質(zhì)的抵抗力,實(shí)現(xiàn)抑菌作用。此外,鋅離子可影響鮑曼不動(dòng)桿菌的耐藥性,主要體現(xiàn)在影響抗生素水解酶的活性和改變鮑曼不動(dòng)桿菌對(duì)某些抗生素的敏感性兩個(gè)方面。鮑曼不動(dòng)桿菌對(duì)多數(shù)β-內(nèi)酰胺類抗生素天然耐藥,而β-內(nèi)酰胺酶的活性中心都需要鋅離子[16],例如介導(dǎo)“超級(jí)細(xì)菌”耐藥的新德里金屬-β-內(nèi)酰胺酶(New Delhi metallo-beta-lactamase-1,NDM-1),鋅離子是該酶的活性中心,若無(wú)鋅離子,NDM-1水解抗生素的活性顯著降低。此外,在鋅缺乏的條件下,可逆轉(zhuǎn)多重耐藥鮑曼不動(dòng)桿菌對(duì)碳青霉烯類抗生素、阿米卡星的耐藥性,使其對(duì)這些抗生素敏感[17],這可能是因?yàn)榧?xì)菌攝入的鋅離子不足,鋅離子依賴的抗生素水解酶活性下降,細(xì)菌降解抗生素能力減弱,抗生素重新具有抑制或殺滅該細(xì)菌的能力,鋅離子憑借這一特性可和其他常用抗生素聯(lián)用,恢復(fù)常用抗生素對(duì)多重耐藥鮑曼不動(dòng)桿菌的殺滅作用。
3 錳
錳離子參與細(xì)菌脂質(zhì)代謝、蛋白質(zhì)代謝、碳水化合物代謝等生理進(jìn)程,還是多種重要酶的輔因子,尤其是氧化還原酶的輔因子,如超氧化物歧化酶、過(guò)氧化氫酶。活性氧(reactive oxygen species,ROS)是宿主殺滅細(xì)菌的一個(gè)重要機(jī)制。錳離子作為鮑曼不動(dòng)桿菌重要的電子供體,能有效地中和活性氧,保護(hù)細(xì)菌;同時(shí),錳離子也能抵消鈣衛(wèi)蛋白介導(dǎo)的營(yíng)養(yǎng)免疫的抑制作用和輔助細(xì)菌逃避巨噬細(xì)胞、中性粒細(xì)胞的殺傷作用。錳離子不僅在一定程度上增強(qiáng)鮑曼不動(dòng)桿菌在宿主體內(nèi)的生存能力,還能協(xié)助細(xì)菌抵抗環(huán)境中的傷害,如γ射線。錳離子在鮑曼不動(dòng)桿菌的致病力和耐藥能力方面也有重要作用。在致病方面,與野生菌株相比,錳離子轉(zhuǎn)運(yùn)子缺陷株引起的感染癥狀出現(xiàn)時(shí)間延后1~2 d,致死率下降50%[18]。在耐藥方面,富含錳離子的培養(yǎng)基可使鮑曼不動(dòng)桿菌對(duì)替加環(huán)素的耐受性增加,50%最低抑菌濃度增加2~8倍[19]。錳離子參與鮑曼不動(dòng)桿菌的防御、致病、耐藥等重要階段,有效控制錳離子的攝入,可降低多重耐藥菌株的治療難度。
4 銅
銅離子具有多種氧化狀態(tài),兩種狀態(tài)間巨大的勢(shì)能差使其在電子轉(zhuǎn)移、氧化還原反應(yīng)中有重要的作用。鮑曼不動(dòng)桿菌借助銅離子轉(zhuǎn)運(yùn)體維持銅離子平衡。研究表明,TonB依賴銅離子受體缺陷菌株的生物膜形成能力下降,細(xì)胞黏附力降低,疏水性及擴(kuò)散能力皆改變[20-21],致病力顯著下降。而該TonB依賴銅離子受體是一個(gè)外膜受體,結(jié)構(gòu)序列相對(duì)保守,可成為治療鮑曼不動(dòng)桿菌的疫苗所針對(duì)的靶目標(biāo)。少劑量的銅可以作為酶的輔因子存在,但是高濃度的銅離子對(duì)細(xì)菌有毒性作用,這是因?yàn)殂~離子可產(chǎn)生羥基自由基,羥基自由基通過(guò)與生物分子相互作用,損傷生物分子,妨礙細(xì)菌的生長(zhǎng);且銅離子在與其他金屬競(jìng)爭(zhēng)酶結(jié)合位點(diǎn)的過(guò)程中獲勝,影響這些金屬酶的活性。研究已經(jīng)證明銅和銅合金可抑制甚至殺滅鮑曼不動(dòng)桿菌,且多重耐藥鮑曼不動(dòng)桿菌對(duì)銅及銅合金更敏感。鮑曼不動(dòng)桿菌存在于醫(yī)院環(huán)境中,尋找免疫低下的宿主,若在醫(yī)院中多使用銅或銅合金鍍層的家具、器具,可減少環(huán)境中鮑曼不動(dòng)桿菌的數(shù)量,從而降低細(xì)菌的感染率。
5 其他金屬離子
目前,用于抑制鮑曼不動(dòng)桿菌活性的還有金屬離子金[22]、銀[23]、鈀[24-25]、鉑[26],這些貴金屬離子抑制或殺滅鮑曼不動(dòng)桿菌的機(jī)制稍有不同,金離子和銀離子可通過(guò)細(xì)菌的細(xì)胞膜,與細(xì)菌DNA結(jié)合,破壞DNA,從而殺死細(xì)菌;而鈀離子通過(guò)產(chǎn)生活性氧殺滅細(xì)菌;鉑離子則阻礙細(xì)菌蛋白質(zhì)的剪接活性,以達(dá)到抑制作用。但是這些貴金屬對(duì)人體也有毒性作用,且人體耐受量較低,用于抗感染時(shí)的使用量要求極高,這給其使用帶來(lái)巨大挑戰(zhàn)。
6 結(jié)語(yǔ)與展望
鮑曼不動(dòng)桿菌耐藥能力強(qiáng),多重耐藥菌和泛耐藥菌日益增多,給臨床治療帶來(lái)巨大壓力。金屬離子治療細(xì)菌感染歷史悠久,金屬離子干擾細(xì)菌代謝和致病力,抑制細(xì)菌生長(zhǎng)和減緩細(xì)菌毒性,實(shí)現(xiàn)控制細(xì)菌感染的目的。金屬離子治療鮑曼不動(dòng)桿菌感染主要分為兩個(gè)方面,一方面,高濃度金屬離子損傷細(xì)菌,發(fā)揮抑菌作用;另一方面,螯合或拮抗細(xì)菌所必須的金屬離子,干擾細(xì)菌的正常生理功能,減弱細(xì)菌對(duì)抗抗生素和機(jī)體的抵抗能力,實(shí)現(xiàn)抗菌作用。與鮑曼不動(dòng)桿菌生物活性相關(guān)的金屬離子多為重金屬離子,大量的重金屬離子傷害人體,使用量需謹(jǐn)慎。因此,高濃度金屬離子抑菌原理多應(yīng)用在以金屬為材料制作醫(yī)學(xué)暫時(shí)性植入物,如以鋅、銅、銀為涂層的抗菌尿管等;金屬螯合劑或拮抗劑在抗菌方面的作用已得以證實(shí),同時(shí)還發(fā)現(xiàn)其在其他方面的作用,如鐵螯合劑具有抗氧化應(yīng)激、改善組織供血等作用,鋅螯合劑可緩解缺血再灌注神經(jīng)損傷。金屬離子用于抑制鮑曼不動(dòng)桿菌活性時(shí),尚有用量、毒副作用等挑戰(zhàn),但金屬離子成為抗菌藥物中的重要成員的潛力巨大。
[參考文獻(xiàn)]
[1] Wong D,Nielsen TB,Bonomo RA,et al. Clinical and Pathophysiological Overview of Acinetobacter Infections:a Century of Challenges [J]. Clin Microbiol Rev,2017,30(1):409-447.
[2] Elhosseiny NM,Attia AS. Acinetobacter:an emerging pat-hogen with a versatile secretome [J]. Emerg Microbes Infect,2018, 7(1):33.
[3] Guo SJ,Ren S,Xie YE. Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice [J]. Biomed Environ Sci,2018,31(2):155-158.
[4] Wang J,Zhou Z,He F,et al. The role of the type Ⅵ secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606 [J]. PLoS One,2018,13(2):e0192288.
[5] Nicol M,Alexandre S,Luizet JB,et al. Unsaturated Fatty Acids Affect Quorum Sensing Communication System and Inhibit Motility and Biofilm Formation of Acinetobacter baumannii [J]. Int J Mol Sci,2018,19(1):E214.
[6] Ghosh M,Miller PA,M?觟llmann U,et al. Targeted Antibiotic Delivery:Selective Siderophore Conjugation with Daptomycin Confers Potent Activity against Multidrug Resistant Acinetobacter baumannii Both in Vitro and in Vivo [J]. J Med Chem,2017,60(11):4577-4583.
[7] Eijkelkamp BA,Hassan KA,Paulsen IT,et al. Investigation of the human pathogen Acinetobacter baumannii under iron limiting Conditions [J]. BMC Genomics,2011,12(1):126.
[8] Modarresi F,Azizi O,Shakibaie MR,et al. Iron limitation enhances acyl homoserine lactone(AHL)production and biofilm formation in clinical isolates of Acinetobacter baumannii [J]. Virulence,2015,6(2):152-161.
[9] Nwugo CC,Gaddy JA,Zimbler DL,et al. Deciphering the iron response in Acinetobacter baumannii:a proteomics approach [J]. J Proteomics,2011,74(1):44-58.
[10] Fiester SE,Arivett BA,Schmidt RE,et al. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii [J]. PLoS One,2016,11(11):e0167068.
[11] Rojas-Hernandez CM,Oo TH. The unusual nutritional and toxin-related underproduction anemias:approaching the riddle beyond iron,cobalamin,and folate [J]. Discov Med,2018,25(136):67-74.
[12] Ohneck EJ,Arivett BA,F(xiàn)iester SE,et al. Mucin acts as a nutrient source and a signal for the differential expression of genes coding for cellular processes and virulence factors in Acinetobacter baumannii [J]. PLoS One,2018, 13(1):e0190599.
[13] López-Rojas R,García-Quintanilla M,Labrador-Herrera G,et al. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii [J]. Int J Antimicrob Agents,2016,47(6):473-477.
[14] Ito A,Sato T,Ota M,et al. In Vitro Antibacterial Properties of Cefiderocol,a Novel Siderophore Cephalosporin,against Gram-Negative Bacteria [J]. Antimicrob Agents Chemother,2017,62(1):e01454- e01517.
[15] Hasan MJ,Shamsuzzaman SM. Distribution of adeB and NDM-1 genes in multidrug resistant Acinetobacter baumannii isolated from infected wound of patients admitted in a tertiary care hospital in Bangladesh [J]. Malays J Pathol,2017,39(3):277-283.
[16] Lin DL,Tran T,Alam JY,et al. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ⅰb by zinc:reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore [J]. Antimicrob Agents Chemother,2014,58(7):4238-4241.
[17] Hassan KA,Pederick VG,Elbourne LD,et al. Zinc stress induces copper depletion in Acinetobacter baumannii [J]. BMC Microbiol,2017,17(1):59.
[18] Papp-Wallace KM,Maguire ME. Manganese Transport and the Role of Manganese in Virulence [J]. Annu Rev Microbiol,2006,60(2):187-209.
[19] Veenemans J,Mouton JW,Kluytmans JA,et al. Effect of manganese in test media on in vitro susceptibility of Enterobacteriaceae and Acinetobacter baumannii to tigecycline [J]. J Clin Microbiol,2012,50(9):3077-3079.
[20] Abdollahi S,Rasooli I,Mousavi Gargari SL. The role of TonB-dependent copper receptor in virulence of Acinetobacter baumannii [J]. Infect Genet Evol,2018,60(1):181-190.
[21] Abdollahi S,Rasooli I,Mousavi Gargari SL. An in silico structural and physicochemical characterization of TonB-dependent copper receptor in A. baumannii [J]. Microb Pathog,2018,118(1):18-31.
[22] Mmola M,Roes-Hill ML,Durrell K,et al. Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts [J]. Molecules,2016,21(12):E1633.
[23] Salunke GR,Ghosh S,Santosh Kumar RJ,et al. Rapid efficient synthesis and characterization of silver,gold,and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control [J]. Int J Nanomedicine,2014,9:2635-2653.
[24] Fang G,Li W,Shen X,et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria [J]. Nat Commun,2018,9(1):129.
[25] Hazarika M,Borah D,Bora P,et al. Biogenic synthesis of pal-ladium nanoparticles and their applications as catalyst and antimicrobial agent [J]. PLoS One,2017,12(9):e0184936.
[26] Nejdl L,Kudr J,Moulick A,et al. Platinum nanoparticles induce damage to DNA and inhibit DNA replication [J]. PLoS One,2017,12(7):e0180798.
(收稿日期:2018-06-10 本文編輯:封 華)