国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

消毒工藝對(duì)水體中抗生素抗性基因的去除效果

2018-03-06 00:33李金梅張舒婷
凈水技術(shù) 2018年2期
關(guān)鍵詞:轉(zhuǎn)移率消毒劑抗性

李金梅,李 曦,張舒婷

(1.沈陽(yáng)化工大學(xué)環(huán)境與安全工程學(xué)院,遼寧沈陽(yáng) 110142;2.中國(guó)科學(xué)院城市環(huán)境研究所,城市環(huán)境與健康重點(diǎn)實(shí)驗(yàn)室,福建廈門(mén) 361021)

抗生素抗性基因(antibiotic resistance genes,ARGs)是能對(duì)抗生素產(chǎn)生抗性的基因[1],是微生物,包括病原微生物,耐藥性形成和擴(kuò)散的物質(zhì)基礎(chǔ),是一類(lèi)新型環(huán)境污染物[2]。它能在微生物包括病原微生物間傳播,還可從細(xì)菌、人類(lèi)散播源和動(dòng)物源等傳播擴(kuò)散到自然環(huán)境和飲用水系統(tǒng)中[3]。甚至ARGs能通過(guò)攜帶抗性基因的質(zhì)粒等可移動(dòng)遺傳元件進(jìn)入人體[4],致使抗生素療效下降,細(xì)菌感染的治療更加棘手[5]。有報(bào)道世界上每年因抗結(jié)核桿菌受影響人數(shù)達(dá)50萬(wàn)[6],歐盟每年約2.5萬(wàn)人死于感染多重抗性細(xì)菌,美國(guó)每年約6.3萬(wàn)人死于醫(yī)院獲得性細(xì)菌感染[7]。目前臨床上使用的所有抗生素幾乎都存在其抗性細(xì)菌(antibiotic resistance bacteria,ARB),甚至出現(xiàn)“超級(jí)細(xì)菌”,如“新德里.梅塔洛一號(hào)”(New Delhi-Metallo-1,NDM-1)[8]。因此,ARGs極可能引發(fā)公共健康危機(jī)。

環(huán)境中ARGs主要產(chǎn)生于醫(yī)療和畜牧業(yè)長(zhǎng)期濫用或誤用抗生素[1],從而使水體、土壤、活性污泥等環(huán)境介質(zhì)成為ARB或ARGs的源和匯。目前,已有大量報(bào)道在水環(huán)境、土壤、沉積物中檢測(cè)到ARGs,甚至空氣中也檢測(cè)到ARGs[9]。這些ARGs可持久存在于環(huán)境中[10],并且在攜帶ARGs的微生物死亡后,釋放到環(huán)境中的裸露DNA分子最終又可通過(guò)基因重組轉(zhuǎn)入其他微生物而使其具有抗性,給人類(lèi)和動(dòng)物安全帶來(lái)潛在威脅。水環(huán)境已成為ARGs散播的重要介質(zhì),也是ARGs的重要貯存庫(kù)之一[11]。本文闡述了ARGs在水環(huán)境中的分布,總結(jié)了目前水處理工藝中消毒對(duì)ARGs的去除效果,并探討了消毒處理對(duì)其傳播擴(kuò)散的影響機(jī)制。

1 ARGs在水環(huán)境中的分布及傳播擴(kuò)散

ARGs和ARB已被證明在地表水、市政污水、污水處理廠出水以及飲用水中普遍存在,且種類(lèi)繁多,迄今已在各種水體中檢測(cè)出上百種ARGs[12-14]。例如在北美、歐洲、東亞和東南亞等地區(qū)的9個(gè)國(guó)家的飲用水、海水、地表水、醫(yī)療廢水、化糞池及污水處理廠檢測(cè)出大環(huán)內(nèi)酯類(lèi)(如 aphA1、aphA2、aadA1)、磺胺類(lèi)(如 dfrA12、dfrA17、sulI)、βu 內(nèi)酰胺類(lèi)(如blaTEM-1、blaOXA-1、blaPSE-1)、四環(huán)素類(lèi)(如 tetA、tetH、tetJ、tetY、tetZ)、青霉素類(lèi)(如 mecA、penA)和大環(huán)內(nèi)酯類(lèi)(如 ermA、mphA)等多達(dá) 50種 ARGs[15-17](表1)。一般認(rèn)為水環(huán)境中的這些ARGs主要通過(guò)醫(yī)療和水產(chǎn)養(yǎng)殖廢水直接進(jìn)入地表水體,也可由糞便施肥使其先進(jìn)入到土壤環(huán)境,再隨雨水等地表徑流滲透到地下水中[18]。因此,ARGs在水環(huán)境中廣泛分布,特別是污水處理廠,由于含抗生素和ARB的廢水直接排入其中而富集大量ARGs,成為ARGs集聚和傳播的一個(gè)重要媒介。如Su等[19]從污水廠分離到的98.4%的菌株對(duì)檢測(cè)的抗生素具有抗性,90.6%的菌株至少對(duì)3種抗生素表現(xiàn)出抗性。水體環(huán)境中這些ARB和ARGs的存在不僅會(huì)威脅到飲用水安全,也可能影響到水資源的循環(huán)利用[20]。研究發(fā)現(xiàn),用淡水和處理后廢水灌溉過(guò)的土壤均檢測(cè)出高水平的抗生素抗性[21]??梢?jiàn),水環(huán)境中ARGs普遍存在且可能對(duì)人類(lèi)健康和環(huán)境生態(tài)帶來(lái)影響。

表1 水環(huán)境中的ARGsTab.1 ARGs in Water Environment

ARGs主要通過(guò)垂直基因轉(zhuǎn)移(vertical gene transfer,VGT)和水平基因轉(zhuǎn)移(horizontal gene transfer,HGT)兩種方式進(jìn)行傳播擴(kuò)散。垂直基因轉(zhuǎn)移是依靠微生物親代之間的分裂生殖進(jìn)行;水平基因轉(zhuǎn)移則是ARGs通過(guò)接合 (conjugation)、轉(zhuǎn)化(transformation)、轉(zhuǎn)導(dǎo)(transduction)、轉(zhuǎn)座以及細(xì)菌溶源性基因轉(zhuǎn)移等過(guò)程發(fā)生轉(zhuǎn)移,從而使另一菌株獲得抗性的過(guò)程[29],它是水體環(huán)境中ARGs轉(zhuǎn)移擴(kuò)散的重要方式。早在20世紀(jì)40年代就有微生物水平基因轉(zhuǎn)移的描述[30],并提出HGT的發(fā)生是由選擇性壓力和生物進(jìn)化產(chǎn)生的一種普遍現(xiàn)象。如有研究發(fā)現(xiàn)攜帶四環(huán)素類(lèi)抗性基因的質(zhì)粒在大腸埃希氏菌(Escherichia coli)和氣單胞菌(Aeromonas spp.)之間進(jìn)行轉(zhuǎn)移[31],另外,還觀察到耐萬(wàn)古霉素腸球菌(vancomycin-resistant Enterococcus,VRE)與耐甲氧西林金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)間抗性基因轉(zhuǎn)移現(xiàn)象[32]。其中,HGT對(duì)ARGs通過(guò)水傳微生物進(jìn)行傳播擴(kuò)散起到重要作用。正是由于水平基因轉(zhuǎn)移的存在致使ARGs不僅可以在水體環(huán)境中從親代傳遞給子代,還可以在同種屬或不同種屬微生物間進(jìn)行基因傳遞。甚至在細(xì)菌、真菌、病毒和真核生物基因組均觀察到基因的水平轉(zhuǎn)移[33]。因此,水體環(huán)境中ARGs的存在及其通過(guò)水傳微生物的轉(zhuǎn)移擴(kuò)散給人體健康和水的生物安全帶來(lái)隱患[34]。

ARGs作為新型的環(huán)境污染物在水環(huán)境中可通過(guò)水傳微生物進(jìn)行散播。研究發(fā)現(xiàn),在水處理過(guò)程中水傳微生物攜帶ARGs不僅會(huì)使水體中ARGs的濃度增加[35],還可能進(jìn)入到水源水和給水系統(tǒng)。Zhang等[15]已在飲用水系統(tǒng)中廣泛檢測(cè)到ARB和ARGs,也有報(bào)道在大型給水廠中檢測(cè)到9個(gè)種或?qū)俚?ARGs且出現(xiàn)較高豐度[36]。而參與城市水循環(huán)的地表水更是擴(kuò)散致病微生物和ARGs的重要載體之一[37]。因此,如何有效去除和控制水環(huán)境中的ARGs需要重點(diǎn)關(guān)注。而消毒是殺滅水中對(duì)人體健康有害的致病微生物的重要方式,可防止通過(guò)飲用水傳播疾病,也是生活飲用水安全、衛(wèi)生的最后保障。特別是氯消毒因其具有經(jīng)濟(jì)和高效的特性,因而被廣泛應(yīng)用于廢水和飲用水消毒[38]。

2 消毒對(duì)ARGs和(或)ARB豐度的影響

消毒通??梢越档统鏊械募?xì)菌總量,從而對(duì)ARGs的削減起到一定作用。但對(duì)ARGs的去除效果還會(huì)受消毒方式等的影響。目前,國(guó)內(nèi)外使用的消毒方法包括化學(xué)消毒法(如鹵素消毒劑、臭氧和過(guò)氧乙酸等)、物理消毒法(如膜過(guò)濾截留微生物)和光化學(xué)消毒法(如紫外線(xiàn))以及電化學(xué)消毒法。廣泛應(yīng)用的主要有氯消毒、二氧化氯消毒、臭氧殺菌和紫外線(xiàn)照射及氧化消毒等[38],盡管這些消毒方法一般都能在水處理過(guò)程中去除部分ARB或ARGs,但在污水處理廠的出水中它們的檢出率仍然較高,且相對(duì)總量和種類(lèi)在出水中變化不大(表2)[19],甚至出現(xiàn)ARGs相對(duì)豐度升高現(xiàn)象。例如氧化和UV消毒對(duì)ARGs的去除幾乎沒(méi)有效果,對(duì)少數(shù)ARGs去除率能達(dá)到1~2個(gè)數(shù)量級(jí)[39],但氯消毒對(duì)ARGs的去除可以達(dá)到2~3個(gè)數(shù)量級(jí)[40],而消化處理、人工濕地及其他非消毒處理對(duì)ARGs的去除最多達(dá)到1 個(gè)數(shù)量級(jí)[41]。

由于ARGs的去除率不僅受消毒方法的影響,還會(huì)受到細(xì)菌攜帶抗性類(lèi)型、消毒劑量和多種消毒方法結(jié)合使用等多種因素影響,因此很難明顯降低或徹底清除ARGs污染。如Xu等用高通量定量PCR檢測(cè)不同水處理工藝的給水廠出水時(shí)發(fā)現(xiàn)兩給水處理廠經(jīng)消毒處理的出水中ARGs的相對(duì)豐度都提高了。因?yàn)橐话愕慕o水廠或污水廠處理過(guò)程基本沒(méi)有專(zhuān)門(mén)針對(duì)去除ARGs而設(shè)計(jì)的工藝[42],且水體中ARGs的含量還可能受補(bǔ)給、水量、季節(jié)變化、用途及流經(jīng)地區(qū)等因素影響[43],因此物理法、化學(xué)法和生物法對(duì)ARGs的去除效果并不明顯[44]。由于目前消毒工藝對(duì)ARB和ARGs的控制效應(yīng)數(shù)據(jù)也還較少,所以難以提出較有效的方法和途徑來(lái)遏制ARGs的散播。

表2 不同處理方法對(duì)ARB、ARGs的去除效果Tab.2 ARB and ARGs Removal Efficiency by Different Treatment Processes

續(xù) 表

消毒對(duì)ARB或ARGs的影響主要通過(guò)直接和間接兩方面起作用。直接作用表現(xiàn)為對(duì)ARB的致死或失活作用,即直接殺死細(xì)菌或抑制抗性基因的表達(dá)[45]。間接作用是消毒添加的消毒劑及其產(chǎn)生的消毒副產(chǎn)物(disinfection by-products,DBPs)能促進(jìn)ARB或ARGs的產(chǎn)生[57]。有報(bào)道ARB在氯消毒的水中檢出頻率更高,因此,氯消毒中使用的消毒劑或消毒劑與水體中腐植酸和富里酸反應(yīng)后生成的DBPs對(duì)其中的細(xì)菌極可能產(chǎn)生選擇性壓力和共選擇作用,從而影響ARGs的去除效率[52]。

處于消毒環(huán)境中的選擇性壓力下一些細(xì)菌會(huì)表現(xiàn)出更高的水平基因轉(zhuǎn)移率和突變率,使其獲得抗生素抗性更加迅速[58]。如 Ma等[59]發(fā)現(xiàn)當(dāng)出現(xiàn)不同抗生素選擇壓力時(shí),細(xì)菌能“感知”抗生素并決定是產(chǎn)生抗性還是傳播抗性,Obolski等研究還發(fā)現(xiàn)當(dāng)細(xì)菌處于壓力條件下會(huì)出現(xiàn)更高的水平轉(zhuǎn)移和突變率,當(dāng)壓力明顯對(duì)基因變異產(chǎn)生影響時(shí),抗生素抗性的出現(xiàn)也會(huì)受影響,并且可能促進(jìn)多重抗性細(xì)菌的出現(xiàn)[60]。另外,共選擇機(jī)制也能影響水環(huán)境中ARGs的發(fā)展。一般認(rèn)為共選擇是指環(huán)境中除抗生素以外的其他因素(如金屬、消毒劑、DBPs和一些微污染物等)對(duì)ARB和它們相關(guān)的基因形成選擇性壓力[60],從而導(dǎo)致細(xì)菌對(duì)抗生素和其他因素的抗性同時(shí)增加,即所謂的共選擇[61]。可見(jiàn),氯消毒中產(chǎn)生的選擇性壓力和共選擇對(duì)ARGs的增加起到一定作用。

3 消毒對(duì)ARGs水平轉(zhuǎn)移的影響機(jī)制

消毒可對(duì)細(xì)菌的接合效率產(chǎn)生作用而影響到ARGs水平轉(zhuǎn)移。如Guo等[62]發(fā)現(xiàn)低UV劑量(達(dá)到8 mJ/cm2)能對(duì)接合轉(zhuǎn)移頻率產(chǎn)生影響,但影響很小,而低氯消毒劑量(達(dá)到 40 mg Cl min/L)能明顯提高接合轉(zhuǎn)移的頻率2~5倍,同時(shí)發(fā)現(xiàn)高劑量的UV(>10 mJ/cm2)或氯消毒(>80 mg Cl min/L)下ARGs轉(zhuǎn)移的頻率均相對(duì)降低。Lin等[63]也對(duì)UV和氯處理對(duì)ARGs的轉(zhuǎn)移率進(jìn)行了研究,發(fā)現(xiàn)UV和低水平氯消毒處理都能降低接合效率。表現(xiàn)為當(dāng)UV 劑量(5~20 mJ/cm2)逐漸增加時(shí),轉(zhuǎn)移率逐漸降低,而氯消毒處理時(shí),轉(zhuǎn)移率沒(méi)有變化(氯劑量為0.05~0.2 mg/L)或轉(zhuǎn)移率較低甚至低于檢出限(氯劑量為0.3~0.5 mg/L)。可見(jiàn),UV和氯劑量較低對(duì)ARGs的水平轉(zhuǎn)移幾乎沒(méi)有影響,當(dāng)UV劑量在10~20 mJ/cm2,隨著劑量的增加能使 ARGs的轉(zhuǎn)移率逐漸降低。

消毒對(duì)ARGs水平轉(zhuǎn)移影響的具體機(jī)制有:一是通過(guò)降低供體細(xì)菌的存活率,從而降低接合轉(zhuǎn)移率;二是使細(xì)胞滲透性發(fā)生變化。研究發(fā)現(xiàn)氯消毒產(chǎn)生的氯胺能刺激細(xì)菌改變細(xì)胞滲透性,使接合細(xì)胞的表面出現(xiàn)更多的菌毛,提高ARGs的接合轉(zhuǎn)移率,從而促進(jìn) ARGs的水平基因轉(zhuǎn)移[62];三是抑制相關(guān)轉(zhuǎn)移基因的表達(dá)。如較低余氯(0.05~0.2 mg/L)可能對(duì)鞭毛基因(flagellar gene,flgC)、膜外蛋白基因(an outer membrane porin gene,ompF)和DNA轉(zhuǎn)移相關(guān)的基因(a DNA transport-related gene,traG)的表達(dá)產(chǎn)生抑制,從而降低水平基因轉(zhuǎn)移率[63];四是通過(guò)集聚不同質(zhì)粒、插入序列和整合子,提高ARGs水平基因轉(zhuǎn)移的發(fā)生。如Shi等[14]在給水廠發(fā)現(xiàn)ampC、aphA2、blaTEM-1、tetA、tetG、ermA和ermB基因氯消毒后發(fā)生了富集,并通過(guò)宏基因組分析認(rèn)為飲用水氯化處理確實(shí)能富集多種ARGs,同時(shí)質(zhì)粒、插入序列和整合子等與ARGs的水平轉(zhuǎn)移相關(guān)的可移動(dòng)遺傳元件也會(huì)發(fā)生集聚??梢?jiàn),消毒處理時(shí)消毒劑的類(lèi)型及劑量對(duì)ARGs的水平轉(zhuǎn)移能起到促進(jìn)作用也可能產(chǎn)生抑制,同時(shí),消毒時(shí)間也會(huì)對(duì)其產(chǎn)生影響[14]。并且,消毒處理對(duì)ARGs和可移動(dòng)遺傳元件的富集作用也能進(jìn)一步促進(jìn)ARGs的水平基因轉(zhuǎn)移。

4 總結(jié)與展望

研究發(fā)現(xiàn),ARGs污染通過(guò)HGT進(jìn)行傳播擴(kuò)散對(duì)我們?nèi)祟?lèi)和動(dòng)物的影響甚至遠(yuǎn)遠(yuǎn)超過(guò)抗生素殘留本身產(chǎn)生的影響。因?yàn)榛蛭廴静煌谝话悱h(huán)境污染物,其具有遺傳性且一旦散播到環(huán)境中難以控制和消除,對(duì)人類(lèi)和生態(tài)環(huán)境的影響將是長(zhǎng)期的和不可逆的[64]。因此,如何有效預(yù)防和降低其轉(zhuǎn)移擴(kuò)散帶來(lái)的環(huán)境影響是一項(xiàng)重要課題。本文分析了水環(huán)境中ARGs的廣泛分布,指出水體已成為ARGs匯聚和擴(kuò)散的重要介質(zhì),發(fā)現(xiàn)消毒在水處理中對(duì)ARGs的去除能起到一定作用,但效果不明顯,甚至?xí)霈F(xiàn)消毒處理后ARGs相對(duì)豐度升高現(xiàn)象[65],即消毒能降低ARGs的絕對(duì)量,但相對(duì)豐度會(huì)增加。認(rèn)為消毒能通過(guò)影響細(xì)菌的接合效率,使細(xì)胞滲透性發(fā)生變化,抑制相關(guān)轉(zhuǎn)移基因的表達(dá),對(duì)ARGs和可移動(dòng)遺傳元件的富集,從而對(duì)ARGs的水平轉(zhuǎn)移產(chǎn)生作用。表現(xiàn)為UV劑量低于20 mJ/cm2時(shí),對(duì)ARGs的水平轉(zhuǎn)移影響較小,甚至降低水平基因轉(zhuǎn)移率;而氯消毒劑量達(dá)到40~80 mg Cl min/L時(shí),能對(duì)ARGs的水平轉(zhuǎn)移起到促進(jìn)作用。

目前,針對(duì)水環(huán)境中ARGs的去除,較多已有的研究只是檢測(cè)水環(huán)境中消毒后ARB或ARGs的豐度變化,很少報(bào)道消毒對(duì)水環(huán)境中ARGs去除影響的具體機(jī)制。雖然也有關(guān)于多種消毒方法對(duì)ARGs去除的對(duì)比及機(jī)制探討[45],但還是難以很好地揭示水中較高的ARB或ARGs比例,特別是在實(shí)際消毒過(guò)程中消毒及其副產(chǎn)物對(duì)ARGs的作用規(guī)律仍需進(jìn)一步探究。另外,對(duì)于不同環(huán)境介質(zhì)中ARB、ARGs及可移動(dòng)遺傳元件的檢測(cè)與表征大體包括傳統(tǒng)微生物培養(yǎng)法和分子生物學(xué)方法,但相關(guān)采樣、數(shù)據(jù)分析和結(jié)果表達(dá)等需要進(jìn)一步建立和完善,使其更加標(biāo)準(zhǔn)化和系統(tǒng)化,也方便在不同方法和實(shí)驗(yàn)室條件下對(duì)所得研究結(jié)果進(jìn)行比較。

[1]周啟星,羅義,王美娥.抗生素的環(huán)境殘留、生態(tài)毒性及抗性基因污染[J].生態(tài)毒理學(xué)報(bào),2007,2(3):244-251.

[2]Pruden A,Pei R,Storteboom H,et al.Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado [J].EnvironmentalScience & Technology, 2006, 40 (23):7445-7450.

[3]Berendonk T U,Manaia C M,Merlin C,et al.Tackling antibiotic resistance:The environmental framework [J].Nature Reviews Microbiology,2015,13(5):310-317.

[4]Martinez J L.Antibiotics and antibiotic resistance genes in natural environments [J].Science,2008,321(5887):365-367.

[5]Perez F,Hujer A M,Hujer K M,et al.Global challenge of multidrug-resistant acinetobacter baumannii[J].Antimicrobial Agents and Chemotherapy,2007,51(10):3471-3484.

[6]Editor.Standing up to antimicrobial resistance [J].Nature Reviews Microbiology,2010,8(12):836.

[7]Aminov R I.A brief history of the antibiotic era:Lessons learned and challenges for the future [J].Frontiers in Microbiology,2010(1):134.

[8]Yong D,Toleman M A,Giske C G,et al.Characterization of a new metallo-beta-lactamase gene,bla(NDM-1),and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumoniae sequence type 14 from India [J].Antimicrobial Agentsand Chemotherapy, 2009, 53 (12):5046-5054.

[9]Douki T,Setlow B,Setlow P.Effects of the binding of alpha/betatype small,acid-soluble spore proteins on the photochemistry of DNA in spores of bacillussubtilis and in vitro [J].Photochemistry and Photobiology,2005,81(1):163-169.

[10]Kubera L,Studzinska J,Dokladna W,et al.Microbiological air quality in some kindergartens and antibiotic resistance of bacteria of the Staphylococcus spp.genus [J].Medycyna Pracy,2015,66(1):49-56.

[11]Kummerer K.Antibiotics in the aquatic environment — A review — Part I[J].Chemosphere,2009,75(4):417-434.

[12]Cernat R B C,Ivanescu D,Nedelcu D,et al.Mechanisms of resistance in multiple-antibiotic-resistant escherichia coli strains isolated from drinking and recreational,salmaster waters [J].International Journal of Antimicrobial Agents,2007,29(7):274.

[13]Peak N,Knapp C W,Yang R K,et al.Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with differentantibiotic use strategies [J]. Environmental Microbiology,2007,9(1):143-151.

[14]Shi P,Jia S,Zhang X X,et al.Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J].Water Research,2013,47(1):111-120.

[15]Zhang X X,Zhang T,F(xiàn)ang H H.Antibiotic resistance genes in water environment[J].Applied Microbiology and Biotechnology,2009,82(3):397-414.

[16]Virginia Rabbia H B-T,Sebastian Jim enez,Mario Quezada ,et al.Antibiotic resistance in escherichia coli strains isolated from antarctic bird feces,water from inside a wastewater treatment plant,and seawater samples collected in the antarctic treaty area[J].Polar Science,2016,10(2):123-131.

[17]Baquero F,Martinez J L ,Canton R.Antibiotics and antibiotic resistance in water environments [J]. Current Opinion in Biotechnology,2008,19(3):260-265.

[18]Wellington E M,Boxall A B,Cross P,et al.The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria [J].The Lancet Infectious Diseases,2013,13(2):155-165.

[19]Su H C,Ying G G,He L Y,et al.Antibiotic resistance,plasmidmediated quinolone resistance(PMQR)genes and ampC gene in two typicalmunicipalwastewater treatmentplants [J].Environmental Science Processes& Impacts,2014,16(2):324-332.

[20]Pruden A.Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance [J].Environmental Science& Technology,2014,48(1):5-14.

[21]Negreanu Y,Pasternak Z,Jurkevitch E,et al.Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils[J].Environmental Science & Technology,2012,46(9):4800-4808.

[22]Macauley J J A C,Mormile M R.Diversity of tet resistance genes in tetracycline resistant bacteria isolated from a swine lagoon with low antibiotic impact [J].Canadian Journal of Microbiology,2007,53(12):1307-1315.

[23]Park J J,Jeong Y W,Cho J W,et al.Antibiotic selective pressure for the maintenance of antibiotic resistant genes in coliform bacteria isolated from the aquatic environment[J].Water Science &Technology,2003,47(3):249-253.

[24]Yu Chao,Chang Tienyu,Kao Pomin,et al.Potential association between antibiotic abuse and existence of related resistance genes in different aquatic environments[J].Water Air& Soil Pollution,2015,226(1):2235.

[25]Peak W K,Richard K Y.Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feed lots with different antibiotic use strategies [J].Environmental Microbiology,2007,9(1):143-151.

[26]Diwan V,Chandran S P,Tamhankar A J,et al.Identification of extended-spectrum-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India[J].Journal of Antimicrobial Chemotherapy,2012,67(4):857-859.

[27]Su H C,Ying G G,He L Y,et al.Antibiotic resistance,plasmidmediated quinolone resistance(PMQR)genes and ampC gene in two typical municipal wastewater treatment plants [J].Environmental Science Processes & Impacts,2014,16 (2):324-332.

[28]Wen Q,Yang L,Duan R,et al.Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin,northeast China [J].Environmental Pollution ,2016,30(5):34-40.

[29]Nongkhlaw F M,Joshi S R.Horizontal gene transfer of the nonribosomal peptide synthetase gene among endophytic and epiphytic bacteria associated with ethnomedicinalplants [J].Current Microbiology,2016,72(1):1-11.

[30]Tatum E L,Lederberg J.Gene recombination in the bacterium escherichia coli[J].Journal of Bacteriology,1947,53(6):673-684.

[31]Glenn G H, Jean S, Patrick M, etal. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments:Implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A [J].Applied and EnvironmentalMicrobiology,2000,66 (9):3883-3890.

[32]Mc Kinley L,Becerra B,Moriarty H,et al.Vancomycin-resistant enterococcus co-colonization rates with methicillin-resistant staphylococcus aureus and clostridium difficile in critically ill veterans [J].American Journal of Infection Control,2016,44(9):1047-1049.

[33]Bansal A K.Meyer T E.Evolutionary analysis by whole-genome comparisons[J].Journal of Bacteriology,2002,184(8):2260-2272.

[34]Zhang S,Lu L,Zhang Y,et al.Occurrence and variations of five classes of antibiotic resistance genes along the Jiulong River in southeast China [J].Journal of Environmental Biology,2013,34(2):345-351.

[35]Deligianni E,Pattison S,Berrar D,et al.Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro [J].BMC Microbiology,2010,10(1):38.

[36]Zhang S,Lin W,Yu X.Effects of full-scale advanced water treatment on antibiotic resistance genes in the Yangtze Delta area in China [J].Fems Microbiology Ecology,2016,92(5):65.

[37]Kümmere K.Antibiotics in the aquatic environment— A review —Part I[J].Chemosphere,2009,75(4):417-434.

[38]張曉健,黃霞.水與廢水物化處理的原理與工藝[M].北京:清華大學(xué)出版社,2011.

[39]Mckinney C M Y,Novak J T,Pruden A.Disinfection of microconstituent antibiotic resistance genes by UV light and sludge digestion [J].Proceeding of the Water Environment Federation,2009,20 (11):577-589.

[40]Zhuang Y,Ren H,Geng J,et al.Inactivation of antibiotic resistance genes in municipal wastewater by chlorination,ultraviolet,and ozonation disinfection [J].Environmental Science and Pollution Research International,2015,22(9):7037-7044.

[41]Brjesson S M A,Lindgren P E.Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year[J].Water Health,2010,8 (2):247-256.

[42]Zhang T,Yang Y,Pruden A.Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach [J].Applied Microbiology &Biotechnology,2015,99(18):7771-7779.

[43]Hsu C Y,Hsu B M,Ji W T,et al.A potential association between antibiotic abuse and existence of related resistance genes in different aquatic environments[J].Water Air& Soil Pollution,2015,226(1):2235.

[44]Munir M,Wong K ,Xagoraraki I.Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan [J].Water Research,2011,45(2):681-693.

[45]Lin W,Li S,Zhang S,et al.Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination[J].Water Research,2016,91(6):331-338.

[46]Chen H,Zhang M.Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou,China [J].Environmental Science & Technology,2013,47(15):8157-8163.

[47]Mckinney C W,Pruden A.Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater[J].Environmental Science & Technology,2012,46(24):13393-13400.

[48]Gao P,Munir M,Irene Xagoraraki.Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J].Science of the Total Environment,2012,421-422(3):173-183.

[49]Jia S,Shi P,Hu Q,et al.Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination[J].Environmental Science & Technology,2015,49(20):12271-12279.

[50]Lin W ,Zhang M,Zhang S,et al.Can chlorination co-select antibiotic-resistance genes? [J].Chemosphere, 2016, 156:412-419.

[51]Huang J J,Hu H Y,Tang F,et al.Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant [J].Water Research,2011,45(9):2775-2781.

[52]Armstrong J L,Calomiris J,Seidler R J.Selection of antibioticresistant standard plate count bacteria during water treatment[J].Applied and EnvironmentalMicrobiology, 1982, 44 (2):308-316.

[53]Zhuang Y,Ren H,Geng J,et al.Inactivation of antibiotic resistance genes in municipal wastewater by chlorination,ultraviolet,and ozonation disinfection [J].Environmental Science and Pollution Research International, 2015, 22 (9 ):7037-7044.

[54]Ibanez M,Gracia-Lor E,Bijlsma L,et al.Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone [J].Journal of Hazardous Materials,2013,260(1):389-398.

[55]Ferro G,Guarino F,Castiglione S,et al.Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2process [J].Science of the Total Environment,2016,45(8):29-35.

[56]Rizzo L,Manaia C,Merlin C,et al.Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment:A review [J].The Science of the Total Environment,2013,447(9):345-360.

[57]Lu L,Jiang T,Zhang S,et al.Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in pseudomonas aeruginosa [J].Environmental Science & Technology,2014,48(14):8188-8195.

[58]D'Costa V M,King C E,Kalan L,et al.Antibiotic resistance is ancient[J].Nature,2011,477(7365):457-461.

[59]Ma H,Bryers J D.Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilmbound bacteria:Effects of substrate loading and antibiotic selection[J].Applied Microbiology and Biotechnology,2013,97(1):317-328.

[60]Lu L,Jiang T,Zhang S,et al.Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in pseudomonas aeruginosa [J].Environmental Science & Technology,2014,48(14):8188-8195.

[61]Chapman J S. Disinfectantresistance mechanisms, crossresistance,and coresistance [J].International Biodeterioration Biodegration,2003,51(4):271-276.

[62]Guo M T,Yuan Q B,Yang J.Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater [J].Environmental Science & Technology,2015,49(9):5771-5778.

[63]Lin W,Li S,Zhang S,et al.Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination[J].Water Research,2016,50(6):331-338.

[64]王麗梅,羅義,毛大慶,等.抗生素抗性基因在環(huán)境中的傳播擴(kuò)散及抗性研究方法[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(4):1063-1069.

[65]Shi P,Jia S,Zhang X X,et al.Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J].Water Research,2013,47(1):111-120.

猜你喜歡
轉(zhuǎn)移率消毒劑抗性
亞洲玉米螟對(duì)Cry1Ac蛋白抗性適合度代價(jià)
漲瘋了!碘漲50%,三氯漲超30%,溶劑漲超250%……消毒劑要漲價(jià)了
一個(gè)控制超強(qiáng)電離輻射抗性開(kāi)關(guān)基因的研究進(jìn)展
甲狀腺乳頭狀癌右側(cè)喉返神經(jīng)深層淋巴結(jié)轉(zhuǎn)移率及影響因素
離散廣義Markov 跳變系統(tǒng)在一般轉(zhuǎn)移率下的魯棒穩(wěn)定性
含氯消毒劑,別僅憑名字辨別
正確使用消毒劑
消毒劑會(huì)引發(fā)哮喘嗎
6 種藥材中5 種重金屬轉(zhuǎn)移率的測(cè)定
甜玉米常見(jiàn)病害的抗性鑒定及防治
清镇市| 项城市| 沙坪坝区| 台中县| 鄂州市| 望都县| 新津县| 南平市| 白朗县| 穆棱市| 荔波县| 莫力| 陵水| 昌江| 环江| 搜索| 通化市| 永丰县| 新津县| 新乡县| 沅陵县| 准格尔旗| 荃湾区| 宁强县| 蒙阴县| 高阳县| 周口市| 长武县| 漳浦县| 水富县| 平谷区| 宝丰县| 江口县| 凤山市| 彰武县| 高青县| 浦北县| 德阳市| 汉源县| 宁阳县| 武强县|