国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水輪機(jī)活動(dòng)導(dǎo)葉端面間隙磨蝕形態(tài)演變預(yù)測(cè)

2018-03-09 05:44:16魏三則李光賢金俊俊
關(guān)鍵詞:頂蓋導(dǎo)葉水輪機(jī)

韓 偉,陳 雨,劉 宜,魏三則,李光賢,金俊俊

?

水輪機(jī)活動(dòng)導(dǎo)葉端面間隙磨蝕形態(tài)演變預(yù)測(cè)

韓 偉1,2,陳 雨1,劉 宜1,2※,魏三則3,李光賢1,金俊俊1

(1. 蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,蘭州 730050;2. 甘肅省流體機(jī)械及系統(tǒng)重點(diǎn)實(shí)驗(yàn)室,蘭州 730050;3. 酒泉市三元水電開(kāi)發(fā)有限公司,酒泉 735000)

恒定邊界條件下的磨蝕預(yù)測(cè)方法不能反映過(guò)流壁面磨蝕后流體動(dòng)力學(xué)參數(shù)的變化,導(dǎo)致現(xiàn)有的磨蝕預(yù)測(cè)結(jié)果很難與實(shí)際一致。該文基于磨蝕微分求積的思想,構(gòu)造了主要磨蝕壁面幾何形態(tài)的近似表達(dá),通過(guò)RNG-湍流模型和離散相模型(discrete phase model, DPM),對(duì)水輪機(jī)活動(dòng)導(dǎo)葉端面間隙挾沙水流進(jìn)行了非定常數(shù)值計(jì)算,得到了不同磨蝕階段主要磨蝕面的平均磨損率分布,建立了過(guò)流壁面磨蝕深度變化量關(guān)于平均磨損率和磨蝕時(shí)間的數(shù)學(xué)模型和近似求解方法,預(yù)測(cè)了過(guò)流壁面的漸變磨蝕形態(tài),分析了導(dǎo)葉端面和臺(tái)階面磨蝕形態(tài)逆流向演變的流動(dòng)機(jī)理。數(shù)值預(yù)測(cè)結(jié)果與機(jī)組實(shí)際運(yùn)行時(shí)間對(duì)應(yīng)磨蝕面的磨蝕深度基本一致,平均誤差在10.2%以內(nèi),驗(yàn)證了該預(yù)測(cè)方法的有效性。該研究可為流體機(jī)械的磨蝕預(yù)測(cè)提供參考。

計(jì)算機(jī)仿真;模型;磨蝕;水輪機(jī)活動(dòng)導(dǎo)葉;端面間隙流;時(shí)空演變

0 引 言

水輪機(jī)內(nèi)挾沙水流對(duì)活動(dòng)導(dǎo)葉端面間隙會(huì)造成嚴(yán)重的磨蝕破壞,使得活動(dòng)導(dǎo)葉間隙增大,漏水量增加,造成水輪機(jī)效率下降,機(jī)組出力減少以及水輪機(jī)在停機(jī)活動(dòng)導(dǎo)葉關(guān)閉后轉(zhuǎn)速過(guò)高而無(wú)法投入制動(dòng),水輪機(jī)檢修周期縮短,電站經(jīng)濟(jì)損失巨大等危害[1-4]。針對(duì)上述危害,諸多研究者分析并提出了相應(yīng)的解決措施[5-6]。

隨著多相內(nèi)流理論和數(shù)值模擬技術(shù)的發(fā)展,CFD技術(shù)已經(jīng)成為研究水力機(jī)械過(guò)流部件含沙水磨損的重要手段[7-8]。近年來(lái),國(guó)內(nèi)外研究人員對(duì)水輪機(jī)機(jī)組間隙流動(dòng)和磨蝕問(wèn)題從試驗(yàn)和數(shù)值[9]計(jì)算兩方面進(jìn)行了研究。肖微等[10-12]研究了水輪機(jī)間隙內(nèi)的流動(dòng)特性。胡全友等[13-14]基于Mixtrue模型對(duì)混流式水輪機(jī)內(nèi)泥沙磨損進(jìn)行數(shù)值模擬。李遠(yuǎn)余[15]采用CFX軟件模擬了水輪機(jī)內(nèi)部含沙水流動(dòng)。張廣等[16-17]研究了泥沙介質(zhì)在水輪機(jī)轉(zhuǎn)輪中的分布規(guī)律以及對(duì)轉(zhuǎn)輪壓力場(chǎng)的影響。廖偉麗等[18]采用N-S方程和標(biāo)準(zhǔn)紊流模型比較了活動(dòng)導(dǎo)葉有無(wú)間隙2種情況下的水輪機(jī)活動(dòng)導(dǎo)葉水動(dòng)力學(xué)特性。譚倫慧等[19]基于Reynolds平均法的Realizable模型對(duì)大流量工況、最優(yōu)工況下不同高度端面間隙進(jìn)行內(nèi)部流場(chǎng)分析。Koirala等[20]在挾沙水條件下,通過(guò)對(duì)渦輪機(jī)的活動(dòng)導(dǎo)葉葉片各主要面的侵蝕問(wèn)題進(jìn)行了研究,進(jìn)而得出引起間隙處的橫流,后緣處的尖端泄漏和表面上的高摩擦的原因。Thapa等[21]研究了5種不同尺寸間隙的情況,得出了泄漏速度及其影響最大的臨界間隙尺寸的存在。國(guó)內(nèi)外對(duì)磨蝕問(wèn)題研究較多,但是對(duì)磨蝕演變過(guò)程的分析研究較少。

本文將水輪機(jī)活動(dòng)導(dǎo)葉端面間隙流簡(jiǎn)化為圓柱繞流(活動(dòng)導(dǎo)葉轉(zhuǎn)軸)和臺(tái)階流動(dòng)。在其磨蝕問(wèn)題方面,鄧麗穎[22]采用大渦模擬,對(duì)后臺(tái)階流的瞬時(shí)流場(chǎng)進(jìn)行數(shù)值模擬,研究得到再附點(diǎn)的位置、平均速度場(chǎng)及均方根速度場(chǎng)。閏潔等[23]采用Lagrangian方法追蹤了顆粒在圓柱近壁區(qū)的運(yùn)動(dòng),利用非彈性碰撞模型的壁面磨蝕量經(jīng)驗(yàn)公式,研究分析不同粒徑的顆粒與壁面的碰撞磨蝕情況。姚軍[24]分析圓柱繞流顆粒粒徑對(duì)顆粒擴(kuò)散分布的影響。魏治強(qiáng)等[25]采用Mixture多相流模型,數(shù)值計(jì)算得出泥沙顆粒在圓柱前端及后臺(tái)階區(qū)域內(nèi)較為集中。邱曉等[26]采取歐拉-拉格朗日耦合算法對(duì)后臺(tái)階分離流動(dòng)中顆粒擴(kuò)散運(yùn)動(dòng)進(jìn)行數(shù)值研究。Scharnowski等[27]采用平面和立體聲粒子圖像測(cè)速測(cè)量,研究了后臺(tái)階流產(chǎn)生的渦結(jié)構(gòu)。

現(xiàn)有的磨蝕預(yù)測(cè)大多是基于流動(dòng)邊界條件不變的前提下進(jìn)行的,然而過(guò)流表面磨蝕后,流動(dòng)邊界的變化使流體動(dòng)力學(xué)參數(shù)也隨之發(fā)生改變,導(dǎo)致現(xiàn)有的磨蝕預(yù)測(cè)很難與實(shí)際一致。本文基于磨蝕微分求積的思想,構(gòu)造了主要磨蝕壁面幾何形態(tài)的近似表達(dá)。本文以水輪機(jī)活動(dòng)導(dǎo)葉端面固液兩相間隙流為研究對(duì)象,基于離散相模型(discrete phase model, DPM),通過(guò)非定常數(shù)值模擬,得到主要磨蝕壁面的平均磨損率,再根據(jù)磨蝕微分求積法得到不同階段的過(guò)流壁面的磨蝕形態(tài),分析一個(gè)磨蝕周期內(nèi)過(guò)流壁面的磨蝕形態(tài)的時(shí)空演變過(guò)程,為流體機(jī)械磨蝕破壞的有效預(yù)測(cè)提供參考。

1 計(jì)算模型

1.1 基本假設(shè)

以挾沙水流為介質(zhì),水輪機(jī)活動(dòng)導(dǎo)葉端面間隙流動(dòng)可以簡(jiǎn)化為圓柱繞流和后臺(tái)階流動(dòng),假設(shè)如下:1)固液兩相挾沙水流不可壓縮,沙粒為粒徑均勻的球體;2)間隙流動(dòng)進(jìn)口固液兩相沒(méi)有速度滑移,并且入流方向一致。

1.2 幾何模型及網(wǎng)格劃分

1.2.1 磨蝕初期數(shù)值計(jì)算幾何模型

水輪機(jī)活動(dòng)導(dǎo)葉端面間隙流動(dòng)區(qū)域簡(jiǎn)化幾何模型如圖1所示,該間隙是指在活動(dòng)導(dǎo)葉瓣體端面與頂蓋、底環(huán)過(guò)流面間的間隙。其中圓柱繞流為流體繞活動(dòng)導(dǎo)葉轉(zhuǎn)軸流動(dòng),上下臺(tái)階為活動(dòng)導(dǎo)葉和頂蓋臺(tái)階面。水輪機(jī)實(shí)際運(yùn)行過(guò)程中,活動(dòng)導(dǎo)葉頭部端面、轉(zhuǎn)軸迎流面及轉(zhuǎn)軸中線之前的其他區(qū)域磨蝕破壞較輕,因此本文主要側(cè)重于轉(zhuǎn)軸背面、臺(tái)階面和活動(dòng)導(dǎo)葉尾緣端面磨蝕形態(tài)演變過(guò)程的研究。

圖1 水輪機(jī)活動(dòng)導(dǎo)葉間隙流動(dòng)區(qū)域簡(jiǎn)化幾何模型

圖2為水輪機(jī)活動(dòng)導(dǎo)葉端面間隙流域初始簡(jiǎn)化模型正/俯視圖。模型的主要幾何參數(shù)及尺寸見(jiàn)表1。

注: 模型的主要幾何參數(shù)及尺寸見(jiàn)表1。

1.2.2 流動(dòng)區(qū)域網(wǎng)格劃分

活動(dòng)導(dǎo)葉端面間隙流幾何模型采用結(jié)構(gòu)化六面體網(wǎng)格劃分,由于磨蝕到一定程度之后,微元面Part上的磨蝕深度變化很不規(guī)律,所以間隙流磨蝕模型后幾個(gè)階段采用非結(jié)構(gòu)網(wǎng)格進(jìn)行劃分。初始時(shí)刻,間隙流磨蝕模型磨損初期網(wǎng)格劃分如圖3所示。為了減少網(wǎng)格數(shù)量對(duì)計(jì)算結(jié)果的影響,選擇不同的網(wǎng)格尺度,以出口壓力變化量小于5%為網(wǎng)格無(wú)關(guān)性檢驗(yàn)標(biāo)準(zhǔn),進(jìn)行了網(wǎng)格無(wú)關(guān)性檢驗(yàn),得出當(dāng)網(wǎng)格數(shù)量大于60萬(wàn)后,間隙流模型的出口壓力變化在5%以內(nèi)。最終確定計(jì)算周期0、0.2、0.4、0.6、0.8和時(shí)刻間隙流幾何模型的網(wǎng)格單元總數(shù)分別為642 784,899 358,1 404 345,652 793和624 595個(gè)。圖3為間隙流模型磨蝕初始的計(jì)算域網(wǎng)格。

表1 模型A的主要幾何參數(shù)

圖3 初始時(shí)刻幾何模型網(wǎng)格劃分

1.3 數(shù)值計(jì)算方法

采用RNG-湍流模型和離散相模型來(lái)計(jì)算間隙流(含圓柱繞流和臺(tái)階流)的非定常三維流場(chǎng),使用有限體積法和半隱式SIMPLE算法對(duì)流動(dòng)控制方程進(jìn)行離散和求解。非定常計(jì)算時(shí)間步長(zhǎng)為0.000 1 s,間隙流特征時(shí)間為0.922 s,故設(shè)置每10 000步為一個(gè)計(jì)算周期Δ(1 s)。

離散相模型將固體顆粒相視為離散介質(zhì),通過(guò)積分拉氏坐標(biāo)系下的顆粒運(yùn)動(dòng)方程來(lái)求解離散相顆粒的軌道[28-30]。顆粒運(yùn)動(dòng)方程在笛卡爾坐標(biāo)系下的形式為

式中v為顆粒速度,m/s;為流體速度,m/s;ρ為顆粒密度,為流體密度,kg/m3;F為單位質(zhì)量顆粒所受到的阻力,N;為固體顆粒所受的其他外力的總合力。

1.4 邊界條件和初始條件

根據(jù)三元水電公司對(duì)該型水輪機(jī)的測(cè)試和全流場(chǎng)數(shù)值計(jì)算結(jié)果,水輪機(jī)活動(dòng)導(dǎo)葉端面間隙流入口邊界采用速度進(jìn)口,進(jìn)口速度為10 m/s,入口面壓力Patch為1.9 MPa;出口邊界采用自由出流。清水相密度為998.2 kg/m3,黏度為0.001 003 kg/(m·s);考慮重力的影響,重力加速度取9.81 m/s2;沙粒平均密度取2 650 kg/m3,中值粒徑取0.05 mm,顆粒體積相含率取7%?;顒?dòng)導(dǎo)葉端面材料為ZGO4Cr13Ni5Mo,材料密度為7 790 kg/m3。入口處設(shè)置為固相入射面源,且顆粒均勻分布。壁面邊界采用無(wú)滑移邊界條件,間隙流壁面采用反射邊界,顆粒在此壁面處反彈并發(fā)生動(dòng)量變化,出口采用逃逸邊界。

1.5 壁面磨蝕計(jì)算模型

實(shí)踐表明,挾沙水流對(duì)水輪機(jī)活動(dòng)導(dǎo)葉端面間隙表面以及活動(dòng)導(dǎo)葉軸的磨蝕是一個(gè)非均態(tài)的逆流向發(fā)展過(guò)程。為了比較準(zhǔn)確的描述該間隙磨蝕發(fā)展演變的物理真實(shí),本文采用磨蝕微分求積法,在需要考慮的磨蝕面上創(chuàng)建盡可能多的微元面,構(gòu)造其表面形態(tài)的漸近幾何表達(dá),然后根據(jù)數(shù)值計(jì)算結(jié)果所求得各微元面Part上的平均磨損深度微量Δδ來(lái)改變間隙流模型磨蝕后的表面形態(tài),通過(guò)微分求積的思想得出這一問(wèn)題的數(shù)值近似解。

式中為一個(gè)磨蝕計(jì)算周期;()為某一時(shí)刻的磨蝕深度,mm;為某一磨蝕時(shí)刻;為第個(gè)磨蝕時(shí)段;δ為某一時(shí)段的磨蝕深度,mm。由非定常數(shù)值模擬一個(gè)計(jì)算周期Δ內(nèi)的計(jì)算結(jié)果,得到每個(gè)微元面Part的平均磨損率I。平均磨損率定義為[31-32]

式中I單位面積上壁面的磨損速率,kg/(m2·s);為單元面積上碰撞的顆粒數(shù)目;m為碰撞顆粒的質(zhì)量流率,kg/s;(d)為與顆粒粒徑相關(guān)的函數(shù);d為顆粒中值直徑,mm;為顆粒對(duì)壁面的沖擊角;()為此相對(duì)速度的函數(shù),取1;為顆粒相對(duì)于壁面的速度,m/s;face為壁面計(jì)算單元面積,m2。

式中F為顆粒形狀因子,顆粒為球形取0.2;為布氏硬度。沖擊角函數(shù)可通過(guò)分段性函數(shù)擬合得到。

式中()沖擊角函數(shù);為沖擊角;a為常數(shù)。

利用平均磨損率與磨蝕深度的關(guān)系,得到時(shí)間段間隙表面幾何形態(tài)的磨蝕深度變化量Δδ,直到間隙表面幾何形態(tài)與實(shí)際運(yùn)行中磨蝕程度近似一致截止。令Δδ為局部磨蝕深度,則壁面磨蝕深度的漸變模型為

式中I為微元面對(duì)應(yīng)的平均磨損率,kg/(m2·s);Δ為磨蝕時(shí)間,s;ρ為過(guò)流壁面的材料密度,kg/m3;δ為微元面對(duì)應(yīng)的磨蝕深度,m。

2 磨蝕計(jì)算結(jié)果與分析

2.1 頂蓋臺(tái)階面和端面平均磨蝕率變化及分析

圖4為一個(gè)磨蝕周期內(nèi)不同時(shí)段頂蓋臺(tái)階面和端面平均磨蝕率分布圖。由圖4可知,在初始階段,繞流活動(dòng)導(dǎo)葉轉(zhuǎn)軸的流體,由于過(guò)流段面面積急劇減少,在臺(tái)階面中心為卡門渦,兩側(cè)為高速下沖流體。臺(tái)階面兩側(cè)表現(xiàn)為沖擊磨蝕,中間為卡門渦磨蝕,故頂蓋臺(tái)階面兩側(cè)和中間平均磨蝕率均較大,形成“w”型初始磨蝕坑。隨著磨蝕坑的形成,卡門渦對(duì)頂蓋臺(tái)階面磨蝕的影響相對(duì)變小,使得頂蓋兩側(cè)沖擊磨蝕成為磨蝕的主要因素。

注:T為一個(gè)磨蝕周期。

頂蓋端面在初始階段,由于回流渦的產(chǎn)生,顆粒較少的碰撞和摩擦過(guò)流壁面,因此平均磨蝕率較小。頂蓋端面下游由于活動(dòng)導(dǎo)葉翼型產(chǎn)生漸縮流道及上沖流,使得平均磨蝕率增大,在磨蝕0.6后,由于活動(dòng)導(dǎo)葉端面形成較大磨蝕坑,上沖流的影響減小,使得頂蓋端面下游的平均磨蝕率又重現(xiàn)減小的趨勢(shì)。

2.2 活動(dòng)導(dǎo)葉臺(tái)階面和端面平均磨蝕率變化及分析

圖5為不同時(shí)空域下活動(dòng)導(dǎo)葉臺(tái)階面和端面平均磨蝕率分布圖。從圖中5可以看出,活動(dòng)導(dǎo)葉臺(tái)階面由于非對(duì)稱翼型的原因,使得臺(tái)階回流渦在活動(dòng)導(dǎo)葉臺(tái)階面一側(cè)發(fā)展較充分,圓盤切割效應(yīng)使一側(cè)平均磨蝕率較大,并逐漸形成蜂窩狀磨蝕坑,隨著磨蝕坑發(fā)展,顆粒圓盤切割效應(yīng)逆流向臺(tái)階內(nèi)發(fā)展。

圖5 不同時(shí)空域下活動(dòng)導(dǎo)葉臺(tái)階面和端面平均磨蝕率

活動(dòng)導(dǎo)葉端面由于臺(tái)階渦后下沖流的沖擊磨蝕,在活動(dòng)導(dǎo)葉端面流體再附點(diǎn)附近形成最大磨蝕率,從而形成初始的磨蝕帶。隨著帶狀磨蝕坑的發(fā)展和再附點(diǎn)后移,使得活動(dòng)導(dǎo)葉端面的最大磨蝕率的位置逐漸后移。

2.3 活動(dòng)導(dǎo)葉轉(zhuǎn)軸背面平均磨蝕率變化及分析

圖6為不同時(shí)空域下轉(zhuǎn)軸背面磨蝕率分布圖。由于圓柱繞流,轉(zhuǎn)軸背面出現(xiàn)較對(duì)稱排列的卡門渦街,圓盤切割效應(yīng)造成轉(zhuǎn)軸背面出現(xiàn)了幾乎對(duì)稱的2個(gè)磨蝕坑。在0.4時(shí)刻,轉(zhuǎn)軸背面對(duì)稱位置上的磨蝕率出現(xiàn)最大值。在轉(zhuǎn)軸背面幾何形態(tài)磨蝕到一定程度后,其磨蝕率逐漸趨于穩(wěn)定。

圖6 不同時(shí)空域轉(zhuǎn)軸背面平均磨蝕率

2.4 活動(dòng)導(dǎo)葉端面間隙磨蝕形態(tài)變化預(yù)測(cè)

圖7為0~時(shí)刻水輪機(jī)活動(dòng)導(dǎo)葉端面間隙表面幾何形態(tài)變化過(guò)程。在0.2時(shí)刻頂蓋臺(tái)階面、頂蓋端面和活動(dòng)導(dǎo)葉端面由于磨蝕表面已經(jīng)開(kāi)始出現(xiàn)不規(guī)則的磨蝕坑。在0.2~0.4時(shí)刻,活動(dòng)導(dǎo)葉端面間隙主要過(guò)流壁面的形態(tài)變化最為劇烈。由于非對(duì)稱漸縮翼型的影響,在0.4、0.6、0.8和磨蝕坑深度比較高的區(qū)域都在間隙流右側(cè)(從進(jìn)口方向看),如頂蓋臺(tái)階面右側(cè)和活動(dòng)導(dǎo)葉臺(tái)階面右側(cè)。從0.2到時(shí)刻,回流渦的產(chǎn)生,使得渦的外緣處沙粒不斷侵蝕活動(dòng)導(dǎo)葉臺(tái)階面,磨蝕深度加深,再附點(diǎn)區(qū)域的磨蝕深度和面積也在逐漸加大并隨著回流渦向上游移動(dòng)而移動(dòng)。

圖7 不同時(shí)刻下間隙流表面形態(tài)

3 活動(dòng)導(dǎo)葉端面間隙磨蝕形態(tài)的驗(yàn)證與分析

根據(jù)甘肅酒泉三元水電開(kāi)發(fā)有限公司水輪機(jī)活動(dòng)導(dǎo)葉間隙磨蝕的數(shù)據(jù),以過(guò)流壁面預(yù)測(cè)磨蝕形態(tài)與實(shí)際磨蝕形態(tài)基本一致為一個(gè)磨蝕周期,將一個(gè)磨蝕形態(tài)變化周期分為5個(gè)時(shí)間階段(如表2所示),每個(gè)磨蝕階段機(jī)組實(shí)際運(yùn)行1 361 h,對(duì)應(yīng)數(shù)值計(jì)算磨蝕時(shí)間為4.9×106s;整個(gè)磨蝕周期機(jī)組運(yùn)行6 805 h,對(duì)應(yīng)數(shù)值計(jì)算磨蝕時(shí)間24.5×106s。

表2 機(jī)組運(yùn)行時(shí)間與磨蝕量預(yù)測(cè)時(shí)間對(duì)比

將水輪機(jī)活動(dòng)導(dǎo)葉機(jī)組實(shí)際運(yùn)行6 805 h后,活動(dòng)導(dǎo)葉端面間隙流的磨蝕情況與數(shù)值模擬結(jié)果進(jìn)行磨蝕位置和深度的對(duì)比分析。圖8為頂蓋下表面磨蝕位置的數(shù)值模擬結(jié)果與實(shí)際磨蝕情況的對(duì)比圖。由圖8可知,數(shù)值模擬所得到的頂蓋下表面的磨蝕位置為頂蓋臺(tái)階面以及頂蓋端面,頂蓋端面出現(xiàn)帶狀和塊狀磨蝕區(qū)域,頂蓋臺(tái)階面出現(xiàn)塊狀磨蝕帶,與實(shí)際磨蝕位置一致,這些位置的平均磨蝕率主要分布在1.6~2.0 kg/(m2·s)。

圖8 頂蓋下表面磨蝕位置的數(shù)值模擬結(jié)果與實(shí)際對(duì)比圖

圖9為頂蓋下表面磨蝕監(jiān)測(cè)點(diǎn)的設(shè)置示意圖。其中圖9a、圖9b分別表示時(shí)刻活動(dòng)導(dǎo)葉間隙流模型頂蓋下表面的實(shí)際磨蝕幾何形態(tài),在頂蓋端面設(shè)置8個(gè)監(jiān)測(cè)點(diǎn),頂蓋臺(tái)階面設(shè)置13個(gè)監(jiān)測(cè)點(diǎn),圖9c為實(shí)際磨蝕情況圖片。頂蓋端面的8個(gè)點(diǎn)分別等距布置在頂蓋端面磨蝕較重的區(qū)域,頂蓋臺(tái)階面的13個(gè)監(jiān)測(cè)點(diǎn)等距布置在活動(dòng)導(dǎo)葉臺(tái)階面處磨蝕較深的區(qū)域,計(jì)算模型上的監(jiān)測(cè)點(diǎn)按比例與實(shí)際布置點(diǎn)相同。由數(shù)值模擬結(jié)果圖9a可知在2,3,4,5,6監(jiān)測(cè)點(diǎn)上磨蝕較深,圖9b在3,4,5,9,13監(jiān)測(cè)點(diǎn)上磨蝕較深。與實(shí)際磨蝕情況圖9c進(jìn)行比較,結(jié)果基本一致。

圖9 頂蓋下表面磨蝕監(jiān)測(cè)點(diǎn)

圖10為頂蓋下表面所設(shè)監(jiān)測(cè)點(diǎn)深度與實(shí)際磨蝕相應(yīng)位置磨蝕深度對(duì)比。由圖10可知,計(jì)算結(jié)果和實(shí)際磨蝕深度大致吻合,頂蓋臺(tái)階面磨蝕深度平均誤差為6%;頂蓋端面磨蝕深度平均誤差為7.8%,說(shuō)明簡(jiǎn)化流動(dòng)模型和磨蝕預(yù)測(cè)計(jì)算模型可較準(zhǔn)確的預(yù)測(cè)活動(dòng)導(dǎo)葉端面間隙流的磨蝕情況。

圖10 頂蓋下表面監(jiān)測(cè)點(diǎn)磨蝕深度

圖11為活動(dòng)導(dǎo)葉上表面磨蝕數(shù)值模擬結(jié)果與實(shí)際磨蝕情況對(duì)比圖。由圖11可以看出,數(shù)值模擬得到的活動(dòng)導(dǎo)葉上表面的磨蝕位置與實(shí)際磨蝕位置一致,主要為活動(dòng)導(dǎo)葉轉(zhuǎn)軸背面、活動(dòng)導(dǎo)葉臺(tái)階面以及活動(dòng)導(dǎo)葉端面。磨蝕具體區(qū)域和形狀與實(shí)際圖片吻合,即活動(dòng)導(dǎo)葉轉(zhuǎn)軸背面的磨蝕主要集中在緊靠頂蓋下表面的區(qū)域,磨蝕形狀為2個(gè)幾乎對(duì)稱的塊狀磨蝕坑;活動(dòng)導(dǎo)葉臺(tái)階面的磨蝕集中在以進(jìn)口為正方向的左側(cè)的塊狀磨蝕坑;活動(dòng)導(dǎo)葉端面的磨蝕形狀為帶狀磨蝕坑。

圖11 活動(dòng)導(dǎo)葉上表面磨蝕的數(shù)值模擬結(jié)果與實(shí)際對(duì)比圖

圖12為活動(dòng)導(dǎo)葉上表面磨蝕監(jiān)測(cè)點(diǎn)的設(shè)置示意圖。圖12a、圖12b分別表示時(shí)刻活動(dòng)導(dǎo)葉間隙流模型活動(dòng)導(dǎo)葉上表面的磨蝕幾何形態(tài),在活動(dòng)導(dǎo)葉端面和活動(dòng)導(dǎo)葉臺(tái)階面分別設(shè)置8個(gè)監(jiān)測(cè)點(diǎn),圖12c為實(shí)際磨蝕情況圖片。頂蓋端面的8個(gè)點(diǎn)分別等距布置在活動(dòng)導(dǎo)葉端面磨蝕較重的區(qū)域,頂蓋臺(tái)階面的8個(gè)監(jiān)測(cè)點(diǎn)等距布置在活動(dòng)導(dǎo)葉臺(tái)階面處磨蝕較深的區(qū)域,計(jì)算模型上的監(jiān)測(cè)點(diǎn)按比例與實(shí)際布置點(diǎn)相同。由數(shù)值模擬結(jié)果圖a可知在1,2,3監(jiān)測(cè)點(diǎn)上磨蝕較深,圖b在1,2,4監(jiān)測(cè)點(diǎn)上磨蝕較深。與實(shí)際磨蝕情況圖c進(jìn)行比較,結(jié)果基本一致。

圖12 活動(dòng)導(dǎo)葉上表面磨蝕監(jiān)測(cè)點(diǎn)

圖13為活動(dòng)導(dǎo)葉臺(tái)階面和端面所設(shè)監(jiān)測(cè)點(diǎn)磨蝕深度與實(shí)際相應(yīng)位置磨蝕深度對(duì)比。由圖可以看出,計(jì)算結(jié)果和實(shí)際磨蝕深度大致吻合,活動(dòng)導(dǎo)葉臺(tái)階面磨蝕深度平均誤差為8%;活動(dòng)導(dǎo)葉端面磨蝕深度平均誤差為10.2%,說(shuō)明簡(jiǎn)化流動(dòng)模型和磨蝕預(yù)測(cè)計(jì)算模型可以比較準(zhǔn)確的預(yù)測(cè)活動(dòng)導(dǎo)葉端面間隙流的磨蝕問(wèn)題。

圖13 活動(dòng)導(dǎo)葉臺(tái)階面和端面監(jiān)測(cè)點(diǎn)磨蝕深度

4 結(jié) 論

本文在離散相模型的框架內(nèi),建立了水輪機(jī)活動(dòng)導(dǎo)葉間隙泥沙流動(dòng)數(shù)值計(jì)算模型,分析了挾沙水在活動(dòng)導(dǎo)葉間隙內(nèi)部速度以及磨蝕分布情況,主要結(jié)論如下:

1)活動(dòng)導(dǎo)葉轉(zhuǎn)軸背面尾跡中出現(xiàn)交錯(cuò)排列的完全卡門渦街,轉(zhuǎn)軸背面出現(xiàn)對(duì)稱的磨蝕坑。

2)高速度的流體沖擊頂蓋臺(tái)階面造成磨蝕,下臺(tái)階下游再附點(diǎn)向下游移動(dòng);活動(dòng)導(dǎo)葉上表面的回流區(qū)磨蝕少,顆粒集中在渦的外緣,此處磨蝕增加;隨著活動(dòng)導(dǎo)葉臺(tái)階處回流渦外緣處顆粒不斷地侵蝕壁面,此處出現(xiàn)較深磨蝕坑,回流渦向上游移動(dòng),活動(dòng)導(dǎo)葉端面再附點(diǎn)也隨著逆流動(dòng)方向向上游遷移,導(dǎo)致活動(dòng)導(dǎo)葉端面的磨蝕坑出現(xiàn)逆流動(dòng)的向上游壁面區(qū)域的磨蝕面積明顯增加;由于活動(dòng)導(dǎo)葉翼型為不對(duì)稱漸縮翼型,磨蝕在右側(cè)(從入口方向看)的磨蝕較嚴(yán)重。

3)從0.2到0.4(為一個(gè)磨蝕周期)時(shí)刻,水輪機(jī)活動(dòng)導(dǎo)葉磨蝕形態(tài)變化最劇烈。

4)數(shù)值模擬結(jié)果與實(shí)際磨蝕測(cè)量數(shù)據(jù)表明磨蝕位置和深度基本一致,平均誤差在10.2%以內(nèi),說(shuō)明模型簡(jiǎn)化的合理性,計(jì)算模型選擇和數(shù)值模擬結(jié)果是有效的。本文可對(duì)流體機(jī)械過(guò)流部件表面磨蝕預(yù)測(cè)方法提供參考。

致謝:感謝甘肅省酒泉市三元水電開(kāi)發(fā)有限公司為本文提供水輪機(jī)活動(dòng)導(dǎo)葉端面、轉(zhuǎn)軸以及頂蓋端面的磨蝕測(cè)量數(shù)據(jù)。

[1] 趙當(dāng). 水輪機(jī)導(dǎo)水機(jī)構(gòu)漏水影響原因分析及處理[J]. 科技風(fēng),2013(23):13.

Zhao Dang. The analysis and treatment of water leakage in hydraulic turbine water diversion mechanism[J]. Science and Technology, 2013(23): 13. (in Chinese with English abstract)

[2] 顧四行,賈瑞旗,張弋揚(yáng),等. 水輪機(jī)磨蝕與防治[J]. 水利水電工程設(shè)計(jì),2011(1):39-43.

Gu Sixing, Jia Ruiqi, Zhang Yiyang, et al. Erotion and prevention of hydraulic turbine[J]. Design of Water Resources and Hydropower Engineering, 2011(1): 39-43. (in Chinese with English abstract)

[3] 王韌. 水輪機(jī)磨蝕與防治措施[J]. 科技創(chuàng)新與應(yīng)用,2017(2):157.

Wang Ren. Turbine erosional and control measures[J]. Science and Technology Innovation and Application, 2017(2): 157. (in Chinese with English abstract)

[4] 許迎萍. 水電站水輪機(jī)磨損與防護(hù)[J]. 科技風(fēng),2014(5):9.

Xu Yingping. Erosional and protection of hydropower station[J]. Science and Technology, 2014(5): 9. (in Chinese with English abstract)

[5] Koirala R, Zhu B, Neopane H P. Effect of guide vane clearance gap on francis turbine performance[J]. Energies, 2016, 9(4): 275.

[6] 王軒,白剛. 錦屏一級(jí)水電站水輪機(jī)導(dǎo)葉端面間隙調(diào)整及影響因素分析[J]. 中國(guó)水能及電氣化,2015(12):37-41.

Wang Xuan, Bai Gang. Analysis on turbine guide vane end clearance adjustment and influence factors in Jinping first cascade hydropower station[J]. Water and Electrification of China, 2015(12): 37-41. (in Chinese with English abstract)

[7] 高忠信,陸力. CFD技術(shù)在水力機(jī)械研究中的應(yīng)用[J]. 中國(guó)水利,2008(21):76-78,82. Gao Zhongxin, Lu Li. Application of CFD technology in Hydro-machinery studies[J]. China Water Resources, 2008(21): 76-78,82. (in Chinese with English abstract)

[8] 喬文濤. 基于CFD的混流式水輪機(jī)內(nèi)流場(chǎng)計(jì)算與分析[D]. 鄭州:華北水利水電大學(xué),2016.

Qiao Wentao. Financial Field Calculation and Analysis of Francis Turbine based on CFD[D]. Zhengzhou: North China Institute of Water Conservancy and Hydropower, 2016. (in Chinese with English abstract)

[9] 易艷林,陸力. 水輪機(jī)泥沙磨損研究進(jìn)展[J]. 水利水電技術(shù),2014,45(4):160-163.

Yi Yanlin, Lu Li. Progress of research on silt abrasive erosion of hydraulic turbine[J]. China Academy of Water Resources and Hydropower, 2014, 45(4): 160-163. (in Chinese with English abstract)

[10] 肖微. 軸流轉(zhuǎn)槳式水輪機(jī)含間隙的內(nèi)部流動(dòng)數(shù)值研究與分析[D]. 西安:西安理工大學(xué),2007.

Xiao Wei. Numerical Study and Analysis of Inner Flow Field Including the Flange Clearance Region of Kaplan Turbine[D]. Xi’an: Xi’an University of Technology, 2007. (in Chinese with English abstract)

[11] 王文全,尹銳,閆妍. 不同雷諾數(shù)下混流式水輪機(jī)密封間隙通道內(nèi)流動(dòng)特征分析[J]. 排灌機(jī)械工程學(xué)報(bào),2014,32(7):611-616.

Wang Wenquan, Yin Rui, Yan Yan. Analysis of flow in side chamber and path of comb-labyrinth seal in francis turbine at different Reynolds numbers[J]. Journal of Drainage and Irrigation Machinery Engin, 2014, 32(7): 611-616. (in Chinese with English abstract)

[12] 馮建軍,羅興锜,吳廣寬,等. 間隙流動(dòng)對(duì)混流式水輪機(jī)效率預(yù)測(cè)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):53-58. Feng Jianjun, Luo Xingqi, Wu Guangkuan, et al. Influence of clearance flow on efficiency prediction of francis turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 53-58. (in Chinese with English abstract)

[13] 胡全友,劉小兵,趙琴. 基于兩相流動(dòng)理論的混流式水輪機(jī)葉輪內(nèi)泥沙磨損的數(shù)值模擬[J]. 水電能源科學(xué),2016,34(7):183-186.

Hu Quanyou, Liu Xiaobing, Zhao Qin. Numerical simulation of sediment wear in francis turbine impeller based on two-phase flow theory[J]. Journal of Hydroelectric Energy Science, 2016, 34(7): 183-186. (in Chinese with English abstract)

[14] 黃劍峰,張立翔,姚激,等. 水輪機(jī)泥沙磨損兩相湍流場(chǎng)數(shù)值模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(2):145-150.

Huang Jianfeng, Zhang Lixiang, Yao Ji, et al. Numerical simulation of two-phase turbulent flow in turbine sediment Wear[J]. Journal of Hydraulic Engineering and Engineering, 2016, 34(2): 145-150. (in Chinese with English abstract)

[15] 李遠(yuǎn)余. 高比速混流式水輪機(jī)固液兩相數(shù)值模擬[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2014.

Li Yuanyu. High-speed Mixed-Flow Turbines Solid-Liquid Two-Phase Numerical Simulation[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese with English abstract)

[16] 張廣,魏顯著. 泥沙濃度及粒徑對(duì)水輪機(jī)轉(zhuǎn)輪內(nèi)部流動(dòng)影響的數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):94-100.

Zhang Guang, Wei Xianzhu. Numerical analysis for effects of concentration and diameter of sediment on solid-liquid two-phase flow in hydraulic turbine runner[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 94-100. (in Chinese with English abstract)

[17] 張廣,魏顯著,宋德強(qiáng). 活動(dòng)導(dǎo)葉端面間隙泥沙磨蝕數(shù)值預(yù)測(cè)研究[J]. 大電機(jī)技術(shù),2017(3):64-68.

Zhang Guang, Wei Xianzhu, Song Deqiang. Study on numerical prediction of sediment wear in end face of guide vane[J]. Large Electric Machine Technology, 2017(3): 64-68. (in Chinese with English abstract)

[18] 廖偉麗,李建中. 水輪機(jī)活動(dòng)導(dǎo)葉含端面間隙的水動(dòng)力學(xué)研究[J]. 水利學(xué)報(bào),2003(2):43-47,54.

Liao Weili, Li Jianzhong. Study on hydrodynamics of turbine guide vanes with end face clearances[J]. Chinese Journal of Water Resources, 2003(2): 43-47, 54. (in Chinese with English abstract)

[19] 譚倫慧,李彥瑞. 徑向式導(dǎo)水機(jī)構(gòu)活動(dòng)導(dǎo)葉端面間隙流場(chǎng)數(shù)值模擬分析[J]. 能源視界,2015(12):253-254.

Tan Lunhui, Li Yanrui. Numerical simulation for hydro- turbine guide vanes including end clearance[J]. Science& Technology Vision, 2015(12): 253-254. (in Chinese with English abstract)

[20] Koirala Ravi, Thapa Bhola. A review on flow and sediment erosion in guide vanes of Francis turbines[J]. Renewable & Sustainable Energy Reviews, 2017, 75: 1054-1065.

[21] Thapa Biraj Singh, Dahlhaug Ole Gunnar. Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine[J]. Renewable Energy, 2017, 107: 253-261.

[22] 鄧麗穎. 復(fù)雜流動(dòng)下泥沙起動(dòng)機(jī)理的研究[D]. 長(zhǎng)沙:湖南大學(xué),2009.

Deng Liying. The Sediment’s Incipience Mechanism under Complex Flow[D]. Changsha: Hunan University, 2009. (in Chinese with English abstract)

[23] 閏潔,李文春,樊建人,等. 繞流中顆粒與柱體碰撞和磨蝕的直接數(shù)值模擬[J]. 浙江大學(xué)學(xué)報(bào),2007,41(4):589-593.

Yan Jie, Li Wenchun, Fan Jianren, et al. Direct numerical simulation of collisions and erosions between particles and cylinder in circular cylinder wake[J]. Journal of Zhejiang University, 2007, 41(4): 589-593. (in Chinese with English abstract)

[24] 姚軍. 氣固兩相圓柱繞流的直接數(shù)值模擬研究和肋條彎管抗磨機(jī)理的數(shù)值試驗(yàn)研究[D]. 杭州:浙江大學(xué),2002.

Yao Jun. Direct Numerical Simulation of Particle Dispersion in the Temporal Wake of a Circular Cylinder& Numerical Investigation of a New Method for Protecting Bends from Erosion in Gas-Particle Flows[D]. Hangzhou: Zhejiang University, 2002. (in Chinese with English abstract)

[25] 魏治強(qiáng),郝曉青. 淺析基于Mixture模型的固液兩相流[C]// 第十三屆沈陽(yáng)科學(xué)學(xué)術(shù)年會(huì)論文集,2016:743-747

Wei Zhiqiang, He Xiaoqing. Analysis of solid - liquid two- phase flow based on mixture model[C]//The Proceedings of the 13th Shenyang Science Academic Conference, 2016: 743-747. (in Chinese with English abstract)

[26] 邱曉,丁玨,王忠杰,等. 湍流分離流中顆粒的擴(kuò)散機(jī)制[J]. 上海大學(xué)學(xué)報(bào),2016,22(5):586-596.

Qiu Xiao, Ding Jue, Wang Zhongjie, et al. Particles diffusion mechanism in turbulent separation flow[J]. Journal of Shanghai University, 2016, 22(5): 586-596. (in Chinese with English abstract)

[27] Scharnowski Sven, Bolgar Istvan. Characterization of turbulent structures in a transonic backward-facing step flow[J]. Flow Turbulence and Combustion, 2017, 98(4): 947-967.

[28] Fluent Ansys. Theory Guide[M]. US: ANSYS Inc, 2009.

[29] Ge W, Li J. Macro-scale phenomena reproduced in microscopic systems-pseudo-particle modeling of Fluidization[J]. Chemical Engineering Science, 2003, 58(8): 1565-1585.

[30] Sun Q H, Li J H. A novel pseudo-particle model for gas-solid two-phase flow[J]. Engineering Chemistry and Metallurgy, 1999, 3: 19.

[31] Quamrul H, Mazumder. Prediction of erosion due to solid particle impact in single-phase and multiphase flows[C]// ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2005: 775-786.

[32] Mclaury B S. A Model to Predict Solid Particle Erosion in Oilfield Geometries[D]. Tulsa:University of Tulsa, 1993.

Prediction of erosional shape evolution in end-surface clearance of turbine guide vane

Han Wei1,2, Chen Yu1, Liu Yi1,2※, Wei Sanze3, Li Guangxian1, Jin Junjun1

(1.730050; 2.730050; 3.735000)

Most of the existing erosional prediction is based on the premise of constant flow boundary conditions. However, when the flow surfaces are corroded, the hydrodynamic parameters changed with the change of the flow boundary. Thus, the existing erosional prediction approach is difficult to be consistent with the reality. The practice shows that the end clearance surface and the shaft of the turbine guide vane are corroded by sand-laden water, which is a development process of non-homogeneous and backward. The generation of erosional damage has a negative impact on the normal operation of the unit and the safety of production. In order to accurately describe the physical reality of the erosional shape evolution of the end clearance surface,in this article, we proposed erosional differential quadrature concept. The approximate expression of the geometric shape in the main erosional surface was constructed by creating as much surfaces. The numerical simulation methods combined RNG(Re- normalization group) turbulence model with DPM (discrete phase model) was applied. According to the test and numerical results of the full flow field for San-yuan hydropower company, the calculated boundary conditions and initial conditions were set. The model inflow boundary could be assumed to be velocity inlet and outflow. The inlet speed was 10 m/s, and the pressure of inlet was 1.9 MPa. The model of the end clearance flow of turbine guide vane under sand-laden water was simplified as the flow around a circular cylinder and a step, and then the three-dimensional unsteady numerical calculation was carried out. The average erosional rate distributions were obtained on the main erosional surface at different stage. The main erosional surfaces include the back of shaft as well as the step surface of the guide vane and the head cover. The mathematical model and approximate solution method of average erosional rate and erosional time related to erosional depth variation on flow surface were established. The surface morphology of the clearance flow model was changed according to the amount of erosional depth variation. When the geometrical form of the clearance flow surface was approximately the same as the degree of erosion in the actual operation, the geometrical form of model was no longer changed. Thereby, the gradual erosional shape of the flow surface was predicted. The temporal and spatial evolution of the erosional morphology on the flow wall during the period of erosion was analyzed, and then the flow evolution mechanism of the backflow on the end surface and the step surface of the turbine guide vane was analyzed. As the particles at the outer edge of the vortex in the step surface of the guide vane continually to erode the surfaces, where the deep erosional pits appeared, the vortex developed backwards, the reattachment position on the guide vane surface was also migrated upstream, and then the erosional area had a significant increase and also migrated upstream. In addition, the main reason for the erosion behind the shaft was the generation of the Karman Vortex Street. Due to the airfoil of guide vane was the asymmetric reduction, the erosion on the right side (observing from the entrance direction) was more serious. When the period was from 0.2to 0.4, the change degree of erosional morphology on turbine guide vanes were the most intense. The numerical results were approximately similar to the erosional depth on the erosional surface under the actual running time of the unit, which verified the validity of the method. This paper provides a reference for effective prediction of the erosional condition of fluid machinery. In addition, it also provides a theoretical reference for structural design, erosional protection and material selection in the end clearance surface of turbine guide vane.

computer simulation; models; erosion; turbine guide vane; end-surface clearance flow; spatiotemporal evolution

2017-08-06

2018-01-04

國(guó)家自然科學(xué)基金資助項(xiàng)目(51669012);西華大學(xué)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(szjj2017-092)

韓 偉,副教授,博士,主要從事水力機(jī)械內(nèi)部固液兩相流動(dòng)理論研究。Email:hanwei@lut.cn

劉 宜,教授級(jí)高工,主要從事水力機(jī)械流動(dòng)理論及優(yōu)化設(shè)計(jì)方法研究。Email:18811212509@163.com

10.11975/j.issn.1002-6819.2018.04.012

TK730

A

1002-6819(2018)-04-0100-08

韓 偉,陳 雨,劉 宜,魏三則,李光賢,金俊俊. 水輪機(jī)活動(dòng)導(dǎo)葉端面間隙磨蝕形態(tài)演變預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):100-107.doi:10.11975/j.issn.1002-6819.2018.04.012 http://www.tcsae.org

Han Wei, Chen Yu, Liu Yi, Wei Sanze, Li Guangxian, Jin Junjun. Prediction of erosional shape evolution in end-surface clearance of turbine guide vane[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 100-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.012 http://www.tcsae.org

猜你喜歡
頂蓋導(dǎo)葉水輪機(jī)
水輪機(jī)過(guò)流面非金屬材料的修復(fù)及防護(hù)
大中型水斗式水輪機(jī)的關(guān)鍵技術(shù)
水輪機(jī)虛擬仿真動(dòng)畫制作的研究
壓氣機(jī)導(dǎo)葉用GTD222合金鑄造技術(shù)研究
模具制造(2019年4期)2019-06-24 03:36:50
淺談天窗版頂蓋面品不良問(wèn)題的解決
模具制造(2019年4期)2019-06-24 03:36:42
水輪機(jī)過(guò)流部件改造與節(jié)能增效
核電反應(yīng)堆壓力容器頂蓋J型接頭內(nèi)壁殘余應(yīng)力
焊接(2016年1期)2016-02-27 12:54:45
頂蓋后橫梁非標(biāo)斜楔模具設(shè)計(jì)
腈綸打包機(jī)油缸頂蓋螺栓斷裂原因
混流式模型水輪機(jī)導(dǎo)葉水力矩試驗(yàn)
浠水县| 阳江市| 洪洞县| 安阳市| 靖宇县| 襄樊市| 宽城| 璧山县| 化德县| 汝城县| 天水市| 天长市| 普定县| 祁连县| 望江县| 潜江市| 新龙县| 汶川县| 洛南县| 九寨沟县| 嘉禾县| 年辖:市辖区| 子长县| 格尔木市| 沙坪坝区| 宜丰县| 乾安县| 清水县| 都昌县| 玉龙| 邻水| 山阳县| 黑河市| 凭祥市| 健康| 河曲县| 漳平市| 铜陵市| 山东| 资阳市| 平昌县|