游利軍, 程秋洋, 康毅力, 田 鍵, 楊 斌
(西南石油大學(xué)油氣藏地質(zhì)及開發(fā)工程國家重點實驗室,四川成都 610500)
水力壓裂形成的裂縫網(wǎng)絡(luò)使頁巖氣藏經(jīng)濟開發(fā)[1-3]。壓裂過程入地液量巨大,但壓裂液的返排率普遍低于50%,有的甚至低于10%[4-6]。壓裂液滯留儲層會產(chǎn)生水相圈閉等一系列儲層損害,影響頁巖氣井壓裂改造效果[7-9]。在關(guān)井條件下頁巖自吸對壓裂液濾失和分布有重要作用[10-11]。目前頁巖自吸試驗主要探究基塊和單一裂縫自吸行為,但仍無法合理解釋自吸與壓裂液滯留、返排率低的關(guān)系??紤]壓裂液含水率超過90%[12-13],研究頁巖裂縫網(wǎng)絡(luò)水相自吸有助于進一步理解壓裂液濾失機制[14-19]。筆者開展頁巖基塊、單一裂縫、“T”型裂縫網(wǎng)絡(luò)水相自吸試驗,并對比致密砂巖水相自吸,揭示頁巖裂縫網(wǎng)絡(luò)水相自吸與壓裂液濾失的聯(lián)系。
試驗頁巖巖樣取自重慶市彭水縣龍馬溪組頁巖露頭,其石英平均含量45.7%,長石平均含量8.7%,黏土礦物平均含量28.5%。黏土礦物以伊利石和伊/蒙間層礦物為主,伊利石平均含量46.0%,伊/蒙間層礦物平均含量42.7%,高嶺石平均含量11.3%。頁巖巖樣物性參數(shù)見表1。開展致密砂巖水相自吸對比試驗,巖樣物性參數(shù)見表2。試驗流體采用3%KCl溶液。
表1 試驗選用頁巖巖樣的物性參數(shù)
表2 試驗選用致密砂巖物性參數(shù)Table 2 Physical property parameters of tightsandstone sample
自吸試驗如圖1所示,Ⅰ、Ⅱ表示頁巖基塊、單一裂縫水相自吸,作為對照組;Ⅲ、Ⅳ為不同組合方式的頁巖裂縫-基塊水相自吸,模擬頁巖氣藏水力壓裂形成的“T”型裂縫網(wǎng)絡(luò)[20]。對于試驗巖樣不同組合定義表述為:裂縫-基塊組合代表裂縫巖樣在下,基塊巖樣在上;基塊-裂縫組合代表基塊巖樣在下,裂縫巖樣在上。
為增強試驗可對比性,在同一巖塊上相近位置沿水平頁理鉆取巖心柱,然后將巖樣長度處理約為4 cm;為減小孔滲差異,同一裂縫-基塊組合的上、下兩塊巖樣均由同一長巖心柱截取;參照行業(yè)標準SY/T53589(2010),烘干過程中每間隔1 h對巖樣稱重,直至最后兩次稱重差值小于10 mg,以此判定巖樣初始含水飽和度近乎一致。利用自制的巖心造縫機統(tǒng)一沿過軸線截面造縫,保證縫面大小接近,考慮頁巖裂縫面黏土礦物粒度小,各人造巖樣縫面粗糙度差異近似忽略,利用同一型號的橡膠帶固定裂縫巖樣,以保證縫寬不變(圖2);注入適量3%KCl溶液至自吸試驗裝置中,保持巖樣底端被液體浸沒5 mm;觀察自吸現(xiàn)象并拍照,利用電子天平(精度為0.1 mg)實時動態(tài)對自吸巖樣稱重。頁巖縱向?qū)Ρ仍囼炞晕鼤r間為24 h;頁巖與致密砂巖對比分析試驗自吸時間為168 h。
圖1 頁巖裂縫網(wǎng)絡(luò)水相自吸示意圖Fig.1 Schematic of water phase spontaneous imbibition of shale fracture network
圖2 頁巖和致密砂巖巖樣人工造縫縫面Fig.2 Artificial joint surface of shale and tight sandstone samples
圖3 頁巖自吸量與時間的關(guān)系Fig.3 Relationship between shale imbibition amount and time
從頁巖單塊及組合巖樣自吸試驗結(jié)果(圖3)看,在自吸初始3 h內(nèi),Ⅰ號基塊平均自吸速率0.064 g/h,累積自吸量0.192 g;Ⅱ號裂縫平均自吸速率0.091 g/h,累積自吸量0.273 g。裂縫平均自吸速率相比基塊提高42.19%,累積自吸量增加0.081 g。表明裂縫會誘使水相沿裂縫面快速自吸,提高水相侵入深度,增加濾失量[21]。Ⅲ號基塊-裂縫組合的平均自吸速率0.049 g/h,累積自吸量1.178 g,而Ⅳ號裂縫-基塊組合平均自吸速率0.204 g/h,累積自吸量1.683 g;結(jié)合試驗現(xiàn)象觀察發(fā)現(xiàn),Ⅲ號組合約在13 h時基塊-裂縫接觸端見水,水潤濕接觸面積約為1/10,由于下端基塊為上端裂縫自吸供液量小,整體自吸速率提高不明顯;Ⅳ號組合約在0.7 h時裂縫-基塊接觸端見水;0.5~0.7 h平均自吸速率0.145 g/h,水迅速潤濕整個接觸面,0.7~1.2 h平均自吸速率提高到0.172 g/h。對比分析認為,Ⅳ號下端裂縫為水相提供快速自吸通道,使裂縫-基塊接觸端見水早,促使上端基塊自吸相對提前,加速了水相向基塊滲吸擴散,也加快了整體自吸進程;在毛管力作用下,水可能進入基塊深部。
圖4 頁巖自吸量與時間開平方根的關(guān)系Fig.4 Relationship between shale imbibition amount and square root of time
頁巖和致密砂巖自吸量與時間關(guān)系曲線如圖5所示。致密砂巖整體自吸效率[23]均高于頁巖:致密砂巖Ⅳ號組合自吸量為4.287 g,頁巖Ⅳ號組合自吸量為1.454 g,前者自吸量是后者的3倍;致密砂巖Ⅲ號組合自吸量為5.691 g,頁巖Ⅲ號組合自吸量為1.825 g,兩者自吸量之比也接近3。因致密砂巖巖樣孔隙度平均為15.42%,頁巖巖樣平均孔隙度為5.75%,前者與后者數(shù)值比為2.7。分析認為,致密砂巖更好的孔滲條件不僅提供水更大的賦存空間也促進水快速擴散分布,有效降低了自吸前緣含水飽和度,為自吸提供了動力,表現(xiàn)出更高的自吸效率。
圖5 頁巖和致密砂巖自吸量與時間的關(guān)系Fig.5 Relationship between imbibition amount and time of shale and sandstone
自吸進行到第10 min時,頁巖Ⅳ號與致密砂巖Ⅲ號組合自吸量曲線出現(xiàn)交點,累積自吸量為0.160 g。相交前,頁巖Ⅳ號組合自吸量一直高于Ⅲ號致密砂巖組合,證實裂縫增加了頁巖有效滲透率,提高了自吸速率;相交后,同時間節(jié)點Ⅲ號致密砂巖組合自吸效率均高于Ⅳ號頁巖組合。分析認為,頁巖孔隙結(jié)構(gòu)復(fù)雜[24]、非均質(zhì)性強、潤濕不均勻[9,25],阻礙了裂縫-基塊間水相擴散滲流,削弱了裂縫水相自吸產(chǎn)生的積極效應(yīng),降低了整體自吸效率;而致密砂巖非均質(zhì)性相對較弱,潤濕比較均勻,水相自吸液面高度呈現(xiàn)活塞式推進,良好的孔滲條件有利于水相擴散滲流。此外,頁巖孔隙中吸附氣含量高[26],水相逆流自吸進入孔隙置換吸附氣發(fā)生置換,氣體排出過程可能也會阻礙水相自吸。
裂縫與基塊兩種不同尺度下的自吸存在相互促進機制:裂縫增大水相與基塊接觸面,為水相進入基塊提供快速供液通道;自吸降低裂縫內(nèi)含水飽和度,反饋促進裂縫持續(xù)快速的自吸。如圖6所示,頁巖Ⅳ號組合下端裂縫巖樣自吸量始終高于Ⅱ號裂縫巖樣,同時頁巖Ⅲ號組合下端基塊自吸量也一直高于Ⅰ號基塊巖樣;另一方面,Ⅳ號組合上端基塊最終自吸量0.656 g,Ⅲ號組合上端裂縫僅0.397 g,前者高于后者0.259 g(圖7)。水相未穿透下端巖樣時會優(yōu)先沿著頁巖頁理自吸[26],整體自吸高度呈現(xiàn)不均勻推進;水相自吸穿透下端巖樣后,上端巖樣為水相的進一步自吸提供了動力和通道,同時強化下端巖樣最終的水相自吸深度。
圖6 各組合下端巖樣和單巖樣自吸量與時間的關(guān)系Fig.6 Relationship between imbibition amount and time of bottom of combination and single samples
圖7 各組合上端巖樣自吸量與時間的關(guān)系Fig.7 Relationship between imbibition amount and time of top sample from different combination
在原地條件下,水相自吸存在兩個動力:飽和度差異影響的自吸毛管力和孔滲差異引起的自吸液重新分布擴散動力。水力壓裂形成的頁巖裂縫網(wǎng)絡(luò)為壓裂液滯留提供了賦存空間,且裂縫網(wǎng)絡(luò)越發(fā)育,由于次級裂縫與初級壓裂縫含水飽和度的差異,自吸勢提高越明顯,最終吸入量越大[27-28];同時縫網(wǎng)面積越大,壓裂液通過裂縫向基塊滲流擴散范圍越廣,裂縫-基塊間跨尺度的導(dǎo)流能力差異和頁巖儲層超低含水飽和度特征[29]有利于壓裂液重新分布以降低自吸前緣含水飽和度,提升自吸動力。頁巖儲層裂縫-基塊跨尺度水相自吸行為,彼此自吸相互促進,提高頁巖整體水相自吸量。
頁巖儲層頁理結(jié)構(gòu)發(fā)育,以伊利石和伊/蒙間層為主的黏土礦物平行頁理沉積分布[30],頁理膠結(jié)程度低、滲透性好,屬于高滲透帶;同時垂直頁理方向分布親油有機質(zhì)會抑制水相滲吸[31],故水優(yōu)先沿平行頁理自吸。水迅速潤濕頁理面后黏土礦物表面易發(fā)生水化作用,水分子滲透進入伊/蒙間層晶層,引起晶層間距顯著膨脹擴大,壓縮孔隙體積,但因頁巖自身孔隙度低,當(dāng)壓縮孔隙無法完全消耗水化膨脹[32]的能量時,能量過剩將引發(fā)巖石局部爆裂,產(chǎn)生新裂縫。
其次,試驗過程發(fā)現(xiàn),自吸萌生了宏觀新裂縫,白色可溶鹽晶體沿新裂縫析出;致密砂巖雖未出現(xiàn)裂縫,但因孔滲相對較好,白色可溶鹽晶體從巖樣孔隙中析出(圖8)。試驗采用的3%KCl溶液常用于常規(guī)儲層巖樣自吸評價試驗,但頁巖自身可溶鹽含量高,自吸流體與巖石不配伍導(dǎo)致水-巖作用明顯。在孔隙度約為10%的巖石中滲透水化力高達30 MPa,且水化應(yīng)力有隨孔隙度降低而增加的趨勢[33],鑒于頁巖低孔低滲特性,且有機質(zhì)孔隙度更低,常規(guī)手段難以精確測量。水相自吸進入頁巖基塊甚至有機質(zhì)孔隙,可溶鹽溶解后構(gòu)成礦化度差異,產(chǎn)生較高滲透水化力,一旦作用在頁理弱結(jié)構(gòu)面和裂縫尖端,勢必促使微米級裂縫擴展導(dǎo)致宏觀頁理縫出現(xiàn)。
考慮頁巖工程地質(zhì)的特殊性,宏觀尺度上定義水-巖作用促使頁理縫萌生;而在微米尺度上應(yīng)客觀定義為微米縫的擴展延伸。其作用機制為:水進入黏土礦物晶層,水-巖作用導(dǎo)致黏土微結(jié)構(gòu)破壞和顆粒間黏結(jié)力減小,即巖石膠結(jié)強度降低。宏觀上表現(xiàn)為巖石內(nèi)聚力和內(nèi)摩擦角降低,導(dǎo)致巖石強度或巖石I型斷裂韌性下降,阻止裂紋失穩(wěn)擴展的能力被削弱[34]。當(dāng)水化作用產(chǎn)生水化應(yīng)力、毛細管力、孔隙壓力共同作用微米縫尖端時,引起裂紋尖端處應(yīng)力集中,使應(yīng)力強度因子增加;當(dāng)應(yīng)力強度因子大于斷裂韌性時裂紋擴展或延伸。多條微裂紋匯合貫通后形成宏觀裂紋,宏觀裂紋進一步發(fā)展形成裂縫[35]。分析認為水相侵入觸發(fā)水-巖作用促進了宏觀頁理縫的萌生。
圖8 頁巖與致密砂巖自吸過程實物圖Fig.8 Physical map of spontaneous imbibition process of shale and tight sandstone
水力壓裂形成了由初級壓裂縫、天然裂縫和水-巖作用產(chǎn)生的次級衍生縫組成的復(fù)雜裂縫網(wǎng)絡(luò)[36]。壓后燜井期間,滑溜水和支撐劑填充初級裂縫,僅有滑溜水滲吸進入次級裂縫。高返排壓力下,導(dǎo)流能力較強的初級裂縫中的壓裂液返排率高;次級裂縫因自身導(dǎo)流能力差,受到的返排壓力又比較低,返排困難導(dǎo)致大量壓裂液滯留。目前對壓裂液大量滯留誘發(fā)的儲層損害和產(chǎn)能削弱問題,礦場主要采取經(jīng)驗燜井和快速返排措施以降低損害程度,但若燜井時間設(shè)計不合理會削弱壓裂液與頁巖作用對儲層改造的積極效應(yīng)。
基于頁巖水相自吸試驗結(jié)果分析認為,頁巖裂縫網(wǎng)絡(luò)水相自吸擴大了頁巖儲層中壓裂液的分布范圍,拓寬了壓裂液與頁巖接觸面積,有利于增強水-巖作用萌生新裂縫(圖8),進一步優(yōu)化改造儲層。在地層條件下,水-巖作用協(xié)同時間效應(yīng)導(dǎo)致頁巖膠結(jié)強度降低,裂縫尖端流體壓力與地應(yīng)力和巖石強度間的平衡被打破,燜井所維持的流體超壓條件還能促進裂縫擴展延伸和微裂縫萌生,使簡單的裂縫網(wǎng)絡(luò)(圖9(a))演變成次級裂縫發(fā)育的復(fù)雜裂縫網(wǎng)絡(luò)(圖9(b))。在毛管力起主導(dǎo)作用下,次級裂縫中的水通過逆流自吸進入基塊,促進氣體從基塊中解吸-擴散-滲流進入裂縫,有助于提高頁巖儲層早期產(chǎn)氣量[37]。與之相對的,壓裂液返排率越高,壓裂液滯留量越少,水-巖作用對裂縫網(wǎng)絡(luò)的積極改造程度就越低,且水相逆流自吸對基塊內(nèi)氣體解吸-擴散-滲流進入裂縫的作用也越弱,一定程度上削弱了燜井對早期產(chǎn)氣量的積極作用。
頁巖氣井水力壓裂過程的入地液量巨大,壓后返排率低,大量壓裂液滯留儲層。壓后燜井的出發(fā)點就是在降低壓裂液返排量和污水處理成本的同時,利用水-巖作用對儲層的積極改造的優(yōu)勢,通過優(yōu)選入井壓裂液,將可能產(chǎn)生儲層損害的滯留壓裂液轉(zhuǎn)化為進一步改造儲層的動力[5,38]:一方面,憑借水-巖作用消耗部分滯留壓裂液,緩解水相圈閉、結(jié)垢堵塞等損害;另一方面,利用水-巖作用產(chǎn)生的微裂縫提高裂縫網(wǎng)絡(luò)密度,改善氣體滲流通道,同時促進水相逆流自吸使基塊內(nèi)氣體的解吸-擴散-滲流進入裂縫,提高氣體產(chǎn)量,達到變害為利的目的。
圖9 頁巖儲層裂縫網(wǎng)絡(luò)示意圖Fig.9 Schematic of simple and complex fracture network of shale reservoir
(1)頁巖裂縫網(wǎng)絡(luò)快速自吸為基塊自吸充足供液,基塊自流擴散為裂縫進一步自吸提供動力,裂縫與基塊自吸相互促進利于壓裂液重新分布,增加了壓裂液濾失量。
(2)頁巖氣藏天然裂縫和頁理發(fā)育,水相易沿頁理自吸誘發(fā)頁理縫,提高了縫網(wǎng)密度,改善了滲吸路徑,擴大了水-巖作用范圍。
(3)優(yōu)選壓裂液配方,利用水-巖作用消耗儲層滯留壓裂液,變害為利降低壓裂液滯留對儲層的損害;發(fā)揮水-巖反應(yīng)對儲層裂縫網(wǎng)絡(luò)的積極改造作用,改善氣體滲流通道,強化頁巖氣解吸-擴散-滲流過程,提高產(chǎn)氣量。
[1] WARPINSKI N R, MAYERHOFER M J, VINCENT M C, et al. Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology, 2009,48(10):39-51.
[2] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007,91(4):475-499.
[3] HILL R J, ZHANG E, KATZ B J, et al. Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007,91(4):501-521.
[4] ZHOU Q, DILMORE R, KLEIT A N, et al. Evaluating fracturing fluid flowback in marcellus using data mining technologies[R]. SPE 173364, 2015.
[5] CHENG Y. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs[J]. Journal of Canadian Petroleum Technology, 2012,51(2):143-151.
[6] KING G E. Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells[R]. SPE 152596, 2012.
[7] 康毅力,陳強,游利軍,等.頁巖氣藏水相圈閉損害實驗研究及控制對策:以四川盆地東部龍馬溪組露頭頁巖為例[J].油氣地質(zhì)與采收率,2014,21(6):87-91.
KANG Yili, CHEN Qiang, YOU Lijun, et al. Laboratory investigation of water phase trapping damage in shale gas reservoir-a case of Longmaxi shale in the eastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2014,21(6):87-91.
[8] PAGELS M. Quantifying fracturing fluid damage on reservoir rock to optimize production[R]. SPE 168738, 2013.
[9] BOSTROM N, CHERTOV M, PAGELS M, et al. The time-dependent permeability damage caused by fracture fluid[R]. SPE 168140, 2014.
[10] 高樹生,胡志明,郭為,等.頁巖儲層吸水特征與返排能力[J].天然氣工業(yè),2013,33(12):71-76.
GAO Shusheng, HU Zhiming, GUO Wei, et al. Water absorption characteristics of gas shale and the fracturing fluid flowback capacity[J]. Natural Gas Industry, 2013,33(12):71-76.
[11] ALMULHIM A, ALHARTHY N, TUTUNCU A N, et al. Impact of imbibition mechanism on flowback behavior: a numerical study[R]. SPE 171799, 2014.
[12] ZHANG J, ZHU D, HILL A D. Water-induced fracture conductivity damage in shale formations[R]. SPE 173346, 2015.
[13] WILLBERG D M, STEINSBERGER N, HOOVER R, et al. Optimization of fracture cleanup using flowback analysis[R]. SPE 39920, 1998.
[14] BENNION D B, THOMAS F B. Formation damage issues impacting the productivity of low permeability, low initial water saturation gas producing formations[J]. Journal of Energy Resources Technology, 2005,127(3):240-247.
[15] LAN Q, GHANBARI E, DEHGHANPOUR H, et al. Water loss versus soaking time: spontaneous imbibition in tight rocks[J]. Energy Technology, 2014,2(12):1033-1039.
[16] MAKHANOV K, HABIBI A, DEHGHANPOUR H, et al. Liquid uptake of gas shales: a workflow to estimate water loss during shut-in periods after fracturing operations[J]. Journal of Unconventional Oil and Gas Resources, 2014,7:22-32.
[17] PAKTINAT J, PINKHOUSE J A, JOHNSON N J, et al. Case studies: optimizing hydraulic fracturing performance in northeastern fractured shale formations[R]. SPE 104306, 2006.
[18] ROYCHAUDHURI B, TSOTSIS T T, JESSEN K. An experimental and numerical investigation of spontaneous imbibition in gas shales[R]. SPE 147652, 2011.
[19] SHAOUL J R, VAN ZELM L F, DE PATER C J. Damage mechanisms in unconventional-gas-well stimulation: a new look at an old problem[J]. SPE Production & Operations, 2011,26(4):388-400.
[20] 陳添,汪志明,楊剛.煤巖T型縫壓裂實驗及壓力曲線分析[J].特種油氣藏,2013,20(3):123-126.
CHEN Tian, WANG Zhiming, YANG Gang. Experiments of fracturing and pressure curve analysis of T-shape fractures of coal bed [J]. Special Oil and Gas Reservoirs, 2013,20(3):123-126.
[21] 游利軍,康毅力.裂縫性致密砂巖氣藏水相毛管自吸調(diào)控[J].地球科學(xué)進展,2013,28(1):79-85.
YOU Lijun, KANG Yili. Water capillary imbibition behavior management in fractured tight gas reservoirs[J]. Advances in Earth Science, 2013,28(1):79-85.
[22] MAKHANOV K, DEHGHANPOUR H, KURU E. An experimental study of spontaneous imbibition in horn river shales[R].SPE 162650, 2012.
[23] 游利軍,康毅力.油氣儲層巖石毛細管自吸研究進展[J].西南石油大學(xué)學(xué)報(自然科學(xué)版),2009,31(4):112-116.
YOU Lijun, KANG Yili. Progress in research on spontaneous capillary imbibition of oil and gas reservoir rocks[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009,31(4):112-116.
[24] 何金鋼.流體敏感性損害對頁巖納米孔的影響[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2014,38(1):98-104.
HE Jingang.Influence of fluid sensitivity damage on nano-pores of shale reservoir[J].Journal of China University of Petroleum(Edition of Natural Science), 2014,38(1):98-104.
[25] 劉向君,熊健,梁利喜,等.川南地區(qū)龍馬溪組頁巖潤濕性分析及影響討論[J].天然氣地球科學(xué),2014,25(10):1644-1652.
LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J]. Natural Gas Geoscience, 2014,25(10):1644-1652.
[26] 鄒才能.非常規(guī)油氣藏地質(zhì)[M].2版.北京:地質(zhì)出版社,2013.
[27] DEHGHANPOUR H, LAN Q, SAEED Y, et al. Spontaneous imbibition of brine and oil in gas shales: effect of water adsorption and resulting microfractures[J]. Energy & Fuels, 2013,27(6):3039-3049.
[28] 任凱,葛洪魁,楊柳,等.頁巖自吸實驗及其在返排分析中的應(yīng)用[J].科學(xué)技術(shù)與工程,2015,35(30):106-109.
REN Kai, GE Hongkui, YANG Liu, et al. Imbibition experiment of shale and its application in flowback analysis[J]. Science Technology and Engineering, 2015,35(30):106-109.
[29] 游利軍,謝婷,康毅力.超低含水飽和度致密砂巖氣藏損害因素[J].新疆石油地質(zhì),2012,33(6):700-703.
YOU Liujun, XIE Ting, KANG Yili. Damages of tight sandstone gas reservoirs with ultra-low water saturation[J]. Xinjiang Petroleum Geology, 2012,33(6):700-703.
[30] 許丹,胡瑞林,高瑋,等.頁巖紋層結(jié)構(gòu)對水力裂縫擴展規(guī)律的影響[J].石油勘探與開發(fā),2015,42(4):523-528.
XU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015,42(4):523-528.
[31] GHANBARI E, DEHGHANPOUR H. Impact of rock fabric on water imbibition and salt diffusion in gas shales[J]. International Journal of Coal Geology, 2015,138:55-67.
[32] 康毅力,陳強,游利軍,等.鉆井液作用下頁巖破裂失穩(wěn)行為試驗[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2016,40(4):81-89.
KANG Yili, CHEN Qiang, YOU Lijun, et al. Laboratory studies of shale fracturing behaviors with rock-drilling fluid interactions [J]. Journal of China University of Petroleum(Edition of Natural Science), 2016,40(4):81-89.
[33] SINGH H. A critical review of water uptake by shales[J]. Journal of Natural Gas Science and Engineering, 2016,34:751-766.
[34] 梁利喜,熊健,劉向君.水化作用和潤濕性對頁巖地層裂紋擴展的影響[J].石油實驗地質(zhì),2014,36(6):780-786.
LIANG Lixi, XIONG Jian, LIU Xiangjun. Effects of hydration swelling and wettability on propagation mechanism of shale formation crack[J]. Petroleum Geology & Experiment, 2014,36(6):780-786.
[35] 石秉忠,夏柏如,林永學(xué),等.硬脆性泥頁巖水化裂縫發(fā)展的CT成像與機理[J].石油學(xué)報,2012,33(1):137-142.
SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012,33(1):137-142.
[36] GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[R]. SPE 167165, 2013.
[37] DEHGHANPOUR H, ZUBAIR H A, CHHABRA A, et al. Liquid intake of organic shales[J]. Energy & Fuels, 2012,26(9):5750-5758.
[38] 鄒才能,董大忠,王玉滿,等.中國頁巖氣特征,挑戰(zhàn)及前景(二)[J].石油勘探與開發(fā),2016,43(2):166-178.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016,43(2):166-178.