李程,占克斌
葡萄糖作為一種重要的碳水化合物,不僅是細(xì)胞能量的主要來源,也是生物物質(zhì)合成中重要的供碳單位。在氧氣充足的環(huán)境下,機(jī)體通過吸收葡萄糖在細(xì)胞胞質(zhì)中經(jīng)過一系列糖代謝關(guān)鍵酶的催化生成丙酮酸,丙酮酸進(jìn)入線粒體并產(chǎn)生大量能量,這一過程稱為氧化磷酸化(oxidative phosphorylation,OxPhos)。20世紀(jì)20年代德國科學(xué)家Otto Warburg發(fā)現(xiàn),在氧供充足的環(huán)境下,腫瘤細(xì)胞能夠大量攝取葡萄糖,但其產(chǎn)生的丙酮酸并不進(jìn)入線粒體內(nèi)氧化磷酸化,而是在細(xì)胞質(zhì)中酵解形成大量乳酸。這一有氧條件下進(jìn)行糖酵解的現(xiàn)象稱為Warburg效應(yīng),亦稱有氧糖酵解(aerobic glycolysis)[1,2]。Warburg效應(yīng)是一種特有的糖酵解現(xiàn)象,涉及改變多種糖代謝關(guān)鍵酶的表達(dá)模式,調(diào)節(jié)物質(zhì)和能量代謝,并且參與調(diào)節(jié)多種信號通路,最終改變細(xì)胞的生理功能[3,4]。在健康狀態(tài)下,細(xì)胞內(nèi)糖代謝穩(wěn)態(tài)受到嚴(yán)格調(diào)控,并對環(huán)境和能量需求的變化作出適當(dāng)反應(yīng)。然而,隨著年齡的增長,這種調(diào)節(jié)能力逐漸受損。這種損傷導(dǎo)致細(xì)胞內(nèi)年齡相關(guān)性的增加OxPhos,降低Warburg效應(yīng),導(dǎo)致神經(jīng)退行性疾病的發(fā)生發(fā)展。因此,關(guān)于神經(jīng)退行性疾病中代謝調(diào)節(jié)酶和代謝途徑的研究可以揭示新的分子治療靶點(diǎn),有利于糾正體內(nèi)代謝平衡。本文簡要介紹促進(jìn)Warburg效應(yīng)進(jìn)行的關(guān)鍵調(diào)節(jié)步驟,以及Warburg效應(yīng)與神經(jīng)退行性疾病的關(guān)系。
正常成人大腦中通過Warburg效應(yīng)供能占葡萄糖代謝的10%~12%[5]。但是這個(gè)數(shù)值并不是一成不變的,糖代謝模式隨著年齡的增長而發(fā)生改變,在新生兒時(shí)期,Warburg效應(yīng)占比超過30%[6];在成人期,隨著時(shí)間改變Warburg效應(yīng)占比也發(fā)生相應(yīng)的變化,早晨Warburg效應(yīng)占比約為11%,而晚上占比幾乎達(dá)到20%[7]。且Warburg效應(yīng)占比在腦區(qū)的分布也不相同,內(nèi)、外側(cè)頂葉和前額葉皮質(zhì)區(qū)Warburg效應(yīng)顯著升高,而小腦及內(nèi)側(cè)顳葉則明顯偏低[5],這種年齡及分區(qū)的差異性對神經(jīng)退行性疾病的研究具有重要意義。
Warburg效應(yīng)受多種關(guān)鍵酶調(diào)控,不同調(diào)控酶對神經(jīng)系統(tǒng)發(fā)揮不同作用。第一個(gè)限速酶是將葡萄糖轉(zhuǎn)入細(xì)胞膜內(nèi)的葡萄糖轉(zhuǎn)移酶家族(the Glut-transport-family,Glut),在人體內(nèi)有14種不同類型的Glut,它們各自有特定的葡萄糖親和力。其中Glut-1和Glut-3在哺乳動(dòng)物大腦中葡萄糖轉(zhuǎn)運(yùn)的胰島素敏感性穩(wěn)態(tài)中起重要作用。Glut-1主要表達(dá)于星形膠質(zhì)細(xì)胞和形成血腦屏障的毛細(xì)血管內(nèi)皮,而Glut-3是主要的神經(jīng)元葡萄糖轉(zhuǎn)運(yùn)體[8]。阿爾茨海默癥(Alzheimer‘s disease,AD)患者腦組織中Glut-1和Glut-3的表達(dá)被證實(shí)明顯下降[9]。當(dāng)葡萄糖通過細(xì)胞膜進(jìn)入細(xì)胞質(zhì)后,在己糖激酶-2(hexokinase-2,Hk-2)作用下形成6-磷酸葡萄糖(glucose-6-phosphate,G6P)[10]。HK-2具有調(diào)控細(xì)胞增殖,拮抗線粒體損傷,調(diào)節(jié)自噬等作用[11]。有研究指出在AD患者及AD轉(zhuǎn)基因小鼠中HK-2的表達(dá)明顯下調(diào),且其與線粒體外膜上的孔隙型電壓依賴型陰離子通道(pore-like voltage-dependent anion channel,VDAC)解離增加,導(dǎo)致VDAC及凋亡因子釋放增加[12],VDAC的增加可加劇線粒體及突觸可塑性的損傷,加速AD的進(jìn)展[13]。丙酮酸激酶(pyruvate kinase)是Warburg效應(yīng)中糖酵解的最終代謝酶,它催化磷酸烯醇式丙酮(phosphoenolpyruvate,PEP)生成丙酮酸以及釋放ATP[14],它有4種常見的同工酶,在腦組織中M2型丙酮酸激酶(pyruvate kinase M2,Pkm2)存在最多[15],研究發(fā)現(xiàn)Pkm2可拮抗氧化應(yīng)激引起的細(xì)胞凋亡,延緩衰老,減少活性氧(ROS)的釋放[16],在轉(zhuǎn)錄水平調(diào)控缺氧誘導(dǎo)因子1 α(hypoxia inducible factor 1α,Hif1α)的表達(dá),因此調(diào)控Pkm2上調(diào)Warburg效應(yīng)是治療神經(jīng)退行性疾病可行性靶點(diǎn)。糖代謝類型選擇的關(guān)鍵是丙酮酸脫氫酶激酶(pyruvate dehydrogenase kinase,Pdk)調(diào)控丙酮酸的去向。Pdk1能夠在多個(gè)位點(diǎn)磷酸化丙酮酸脫氫酶(pyruvate dehydrogenase,PDH)從而使其失活,抑制丙酮酸在線粒體中的氧化從而促進(jìn)反應(yīng)向Warburg效應(yīng)方向進(jìn)行[17],Pdk2/Pdk4涉及痛性糖尿病神經(jīng)病變發(fā)生機(jī)制[18]。Warburg反應(yīng)最后一步是增加乳酸脫氫酶A(lactate dehydrogenase A,Ldha)的表達(dá)使得丙酮酸生成乳酸這一可逆反應(yīng)傾向乳酸生成方向,最終堆積大量乳酸[19]。
無翅基因(Wingless/Int,WNT)信號通路在胚胎期主要作用于神經(jīng)發(fā)育,而在成人期則參與維持神經(jīng)內(nèi)環(huán)境穩(wěn)態(tài),具有調(diào)節(jié)突觸可塑性及突觸功能的作用。Wnt信號通路從細(xì)胞外到細(xì)胞內(nèi)傳導(dǎo)途徑為:Wnt蛋白,Wnt受體蛋白,β-連環(huán)蛋白(β-catenin),APC復(fù)合蛋白(一種是GSK-3β激酶,另一種是axin或conductin),Lef/Tcf轉(zhuǎn)錄因子家族等。WNT/β-catenin通路障礙涉及多種神經(jīng)退行性疾病的發(fā)生[20,21]。WNT/β-catenin通路上調(diào)PDK1,下調(diào)PDH,促進(jìn)糖代謝向Warburg反應(yīng)方向進(jìn)行。且上調(diào)WNT/β-catenin通路,能夠激活磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3k)/蛋白激酶 B(protein kinase B,Akt)通路,穩(wěn)定Hif1α的表達(dá)[22],Hif1α具有上調(diào)Glut1、Glut3、HK2、Pkm2、LDHA等多種糖酵解關(guān)鍵酶的表達(dá)作用,因此,細(xì)胞在有氧條件下才能激活糖酵解[23]。Hif1α本身也具有抗β-淀粉樣蛋白(Aβ)沉積保護(hù)神經(jīng)作用[24]。
繼8月哈弗F系發(fā)布,9月哈弗F5入市后,11月6日晚,哈弗F7在上海以《蒙面唱將》的節(jié)目形式發(fā)布上市。作為哈弗F系旗艦車型,AI智能網(wǎng)聯(lián)SUV—哈弗F7推出1.5GDIT、2.0GDIT兩種版本,共6款車型,官方指導(dǎo)價(jià)10.9萬元到14.9萬元。
乳酸是腦細(xì)胞的能量基礎(chǔ),但因血液中的乳酸無法通過血腦屏障,致使血液中的乳酸在腦內(nèi)無法起作用[25]。腦內(nèi)的乳酸主要依靠星形膠質(zhì)細(xì)胞通過Warburg效應(yīng)產(chǎn)生堆積,再向周圍神經(jīng)元釋放,形成乳酸代謝流[26]。乳酸的積聚具有以下益處:①乳酸形成過程中產(chǎn)生NAD+,維持NADH/NAD+氧化還原平衡,并促進(jìn)糖酵解和生物合成的進(jìn)行。②能量從線粒體呼吸鏈轉(zhuǎn)移到乳酸堆積減少ROS的生成和防止氧化應(yīng)激引起的神經(jīng)元凋亡。③目前越來越多的證據(jù)表明乳酸是腦內(nèi)一個(gè)新穎的信號分子[27]。它可通過促進(jìn)神經(jīng)元突觸可塑性相關(guān)基因(如Egr-1、c-FOS、Arc、C/EBP)的表達(dá)而改善突觸可塑性[28],促進(jìn)神經(jīng)發(fā)生[29]。乳酸的釋放可以促進(jìn)長時(shí)程記憶的形成[30,31]。
葡萄糖代謝中OxPhos比Warburg效應(yīng)產(chǎn)生的ATP多15倍。盡管如此,有氧糖酵解仍是大腦中普遍存在的代謝途徑。大量實(shí)驗(yàn)證據(jù)表明,這一途徑為大腦的發(fā)育發(fā)展提供了必要的分子基礎(chǔ)。Warburg效應(yīng)是出生后腦神經(jīng)早期發(fā)育的主要代謝途徑,參與軸突伸長、突觸發(fā)生和髓鞘化過程[32]。此外,Warburg效應(yīng)在成年期提供生物分子對神經(jīng)元的結(jié)構(gòu)組成部分的突觸和更新的活動(dòng)相關(guān)的變化。OxPhos主要存在于樹突棘上,而Warburg效應(yīng)主要在胞質(zhì)中進(jìn)行,于突觸而言是更重要的能量來源。Warburg效應(yīng)介導(dǎo)了突觸活動(dòng)的增加,促進(jìn)線粒體穩(wěn)態(tài)和神經(jīng)保護(hù)[32]。能量代謝的缺陷可導(dǎo)致突觸傳遞相關(guān)的離子梯度的維持和恢復(fù)障礙。
細(xì)胞內(nèi)呼吸作用產(chǎn)生的ROS損傷了線粒體被認(rèn)為是衰老的關(guān)鍵促進(jìn)因素,線粒體損傷是細(xì)胞衰老的標(biāo)志,促進(jìn)了神經(jīng)退行性疾病的發(fā)生發(fā)展。在AD患者中,Aβ寡聚物可以在線粒體基質(zhì)內(nèi)聚集,以阻礙電子傳遞,引起氧自由基增加,導(dǎo)致氧化應(yīng)激增加細(xì)胞凋亡。而Warburg效應(yīng)可減少ROS的產(chǎn)生[33],且有證據(jù)表明Warburg效應(yīng)通過改善代謝及氧化應(yīng)激延長腦部壽命[34],這對于神經(jīng)退行性疾病及神經(jīng)元的損傷具有重要保護(hù)作用。
AD是一種認(rèn)知相關(guān)的神經(jīng)退行性疾病,有文獻(xiàn)表明散發(fā)形式的AD是一種年齡相關(guān)的代謝損傷性疾病[35,36]。除經(jīng)典的Aβ沉積(一種神經(jīng)元-中樞機(jī)制)假說外,近期有研究提出逆Warburg效應(yīng)(一種神經(jīng)元-星型膠質(zhì)細(xì)胞機(jī)制)假說。該假說理論認(rèn)為:大腦能量代謝既存在于神經(jīng)元也存在于星形膠質(zhì)細(xì)胞內(nèi),神經(jīng)元因缺乏糖酵解相關(guān)調(diào)節(jié)酶,僅能依靠OxPhos進(jìn)行糖代謝;而星形膠質(zhì)細(xì)胞則通過上調(diào)Warburg效應(yīng)釋放乳酸進(jìn)行代謝。因此當(dāng)一些神經(jīng)元的線粒體功能受損時(shí),能量的需求將增加,這將導(dǎo)致星形膠質(zhì)細(xì)胞中的Warburg效應(yīng)增加,這種糖代謝的重編程使乳酸產(chǎn)物增加堆積,接下來未受損的神經(jīng)元消耗堆積的乳酸上調(diào)OxPhos供給能量,這個(gè)過程稱為逆Warburg效應(yīng)。病理性衰老誘發(fā)能量代謝失衡,而這種失衡上調(diào)了神經(jīng)元中OxPhos,其誘發(fā)的氧化應(yīng)激增加損傷了神經(jīng)元中的線粒體,造成供能障礙,營養(yǎng)短缺,神經(jīng)元凋亡,最終造成癡呆。比較Aβ學(xué)說及逆Warburg效應(yīng)學(xué)說在AD疾病過程中差異:①神經(jīng)元選擇易損性:Aβ學(xué)說認(rèn)為神經(jīng)元損傷歸因于Aβ的毒性作用,對于各種類型的神經(jīng)元而言這種毒性作用均是隨機(jī)非選擇性的,這與AD發(fā)生的神經(jīng)元選擇易損性是相悖的;但逆Warburg效應(yīng)學(xué)說認(rèn)為代償性上調(diào)OxPhos致氧化應(yīng)激增加損傷神經(jīng)元,其易損性依賴于神經(jīng)元對能量代謝的需求,從內(nèi)嗅皮質(zhì)到齒狀回、錐體細(xì)胞的能量需求更大,所以更具有易損性,從而表現(xiàn)為神經(jīng)元選擇易損性。②年齡特異性發(fā)病率:Aβ學(xué)說認(rèn)為AD是基因遺傳病,年齡被認(rèn)為是達(dá)到一定毒性濃度所需的時(shí)間,該病的年齡特異性由人口種群及環(huán)境因素等影響遺傳結(jié)構(gòu)而決定,所以其年齡特異性發(fā)病率呈鐘型分布;而逆Warburg效應(yīng)認(rèn)為散發(fā)型AD是一種由線粒體損傷增加的代謝性疾病,年齡在這種模型中是通過增加分子功能紊亂,損傷分子保真度,以及降低代謝率致病,因此該年齡特異性發(fā)病率呈指數(shù)上升符合AD年齡特異性發(fā)病率分布趨勢。③逆癌癥發(fā)?。毫餍胁W(xué)上癌癥與AD年齡發(fā)病率具有類似的統(tǒng)計(jì)學(xué)分布,在生物學(xué)上,癌癥與AD糖代謝相關(guān)酶表現(xiàn)為同向調(diào)節(jié),而二者具有反向的代謝效應(yīng),那么診斷這兩種疾病的概率為負(fù)相關(guān)。雖然Aβ學(xué)說在生物學(xué)上與逆癌癥發(fā)病率一致,但在流行病發(fā)病分布趨勢上不一致;而逆Warburg效應(yīng)學(xué)說在這兩方面卻是一致的。逆Warburg效應(yīng)學(xué)說的提出為AD的治療提出了新思路:①通過不同的治療方法上調(diào)Warburg效應(yīng),如:通過激活星形膠質(zhì)細(xì)胞表達(dá)的離子通道型谷氨酸受體被證實(shí)能上調(diào)糖酵解增加乳酸[37];抑制增加Warburg效應(yīng)的星型膠質(zhì)細(xì)胞中的脯氨酸羥化酶能夠上調(diào)Warburg效應(yīng)中關(guān)鍵酶,及穩(wěn)定Hif1α的表達(dá)[38];生酮飲食可促進(jìn)乳酸生成且被證實(shí)對AD治療有改善作用[39]。②調(diào)節(jié)ROS:體內(nèi)過高或過低的ROS均有害,過高的ROS可通過上調(diào)抗氧化酶來調(diào)節(jié),ROS過低時(shí)治療的重點(diǎn)是維持ROS,而不是一味降低ROS。
ALS是在脊髓前角和大腦皮質(zhì)的運(yùn)動(dòng)神經(jīng)元萎縮的退行性神經(jīng)病變。這些神經(jīng)元的功能障礙和過早凋亡引起痙攣、反射亢進(jìn)、肌肉萎縮和全身麻痹。ALS患者及ALS老鼠模型中WNT/β-catenin通路被證實(shí)明顯上調(diào),Warburg效應(yīng)關(guān)鍵酶Pdk,LDHA的表達(dá)亦明顯增加,在這些因素下Warburg效應(yīng)明顯上調(diào),Warburg效應(yīng)的上調(diào)抑制了OxPhos[40]。ALS患者表現(xiàn)這種糖代謝的異常,且有證據(jù)表明能量代謝異常促進(jìn)了ALS的進(jìn)展[41]。20%的家族遺傳發(fā)病的ALS患者存在抗氧化酶SOD1基因的突變,在能量代謝異常的運(yùn)動(dòng)神經(jīng)元細(xì)胞中,過表達(dá)突變的SOD1基因(如G39A-SOD1),這種基因突變導(dǎo)致運(yùn)動(dòng)神經(jīng)元細(xì)胞選擇性凋亡[42]。正常的SOD1通過增加葡萄糖代謝,協(xié)調(diào)促進(jìn)抗氧化應(yīng)激和氨基酸消耗/ER應(yīng)激的代謝重編程。在突變的SOD1的存在下,該重編程無法啟動(dòng)并轉(zhuǎn)化為細(xì)胞毒性。這種細(xì)胞毒性可造成線粒體功能障礙,這種缺陷限制了ATP對中樞神經(jīng)系統(tǒng)組織和肌肉的供能,這種能量代謝的失衡加速了ALS疾病進(jìn)展[43]。因此,以WNT/β-catenin通路作為潛在治療靶點(diǎn)是治療ALS的新思路。
HD是一種罕見的漸進(jìn)性神經(jīng)退行性疾病,伴有不自主運(yùn)動(dòng),運(yùn)動(dòng)遲緩、僵硬、肌張力障礙、認(rèn)知障礙、抑郁、易怒和其他精神癥狀[44]。這種疾病是由擴(kuò)張重復(fù)的CAG序列在外顯子1的亨廷頓基因編碼亨廷頓蛋白(Htt)。亨廷頓基因突變(mHtt)涉及多種細(xì)胞功能障礙,特別是線粒體功能的障礙[45]。在重復(fù)CAG序列作用下ATP/ADP比的明顯下降[46],表明在HD疾病進(jìn)展中OxPhos的降低,轉(zhuǎn)化為Warburg效應(yīng)。研究發(fā)現(xiàn)HD患者中PI3K/Akt通路激活上調(diào),調(diào)節(jié)參與糖代謝的蛋白質(zhì)的表達(dá)[47],PI3K/Akt通路的激活增加了YAC128小鼠及HD患者的乳酸/丙酮酸比例[48,49],上調(diào)了Warburg效應(yīng)。這種能量代謝障礙加速了細(xì)胞凋亡,加快了HD病程發(fā)展。因此,抑制PI3K/Akt通路是治療HD的新思路。
雖然近年來已在一些神經(jīng)退行性疾病的分子機(jī)制方面取得一定進(jìn)展,但是對于很多神經(jīng)退行性疾病的發(fā)病機(jī)制目前仍不明確。在神經(jīng)發(fā)育過程中Warburg效應(yīng)的異常往往和認(rèn)知、運(yùn)動(dòng)功能等退行性疾病密切相關(guān),因此在神經(jīng)退行性疾病中對Warburg效應(yīng)的研究有助于了解這些疾病的發(fā)病機(jī)制。此外,作為腫瘤的一個(gè)標(biāo)志,Warburg效應(yīng)對于星形膠質(zhì)細(xì)胞癌、腦膜瘤等神經(jīng)系統(tǒng)腫瘤的治療和研究也非常重要??傊?,了解神經(jīng)退行性疾病中的Warburg效應(yīng)有助于揭示神經(jīng)退行性疾病的病理機(jī)制,對代謝紊亂相關(guān)的神經(jīng)退行性疾病的研究及防治具有重要意義。
[1]Bar-Or D,Carrick M,Tanner A 2nd,et al.Overcoming the Warburg effect:Is it the key to survival in sepsis[J]?J Crit Care,2018,43:197-201.
[2]Koppenol WH,Bounds PL,Dang CV.Otto Warburg's contributions to current concepts of cancer metabolism[J].Nat Rev Cancer,2011,11:325-337.
[3]Yang L,Zhang W,Wang Y,et al.Hypoxia-induced miR-214 expression promotes tumour cell proliferation and migration by enhancing the Warburg effect in gastric carcinoma cells[J].Cancer Lett,2018,414:44-56.
[4]Abdel-Haleem AM,Lewis NE,Jamshidi N,et al.The emerging facets of non-cancerous Warburg effect[J].Front Endocrinol(Lausanne),2017,8:279.
[5]Vaishnavi SN,Vlassenko AG,Rundle MM,et al.Regional aerobic glycolysis in the human brain[J].Proc Natl Acad Sci U S A,2010,107:17757-17762.
[6]Settergren G,Lindblad BS,Persson B.Cerebral blood flow and exchange of oxygen,glucose,ketone bodies,lactate,pyruvate and amino acids in infants[J].Acta Paediatr Scand,1976,65:343-353.
[7]Boyle PJ,Scott JC,Krentz AJ,et al.Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans[J].J Clin Invest,1994,93:529-535.
[8]McEwen BS,Reagan LP.Glucose transporter expression in the central nervous system:Relationship to synaptic function[J].Eur J Pharmacol,2004,490:13-24.
[9]Mooradian AD,Chung HC,Shah GN.GlUT-1 expression in the cerebra of patients with Alzheimer's disease[J].Neurobiol Aging,1997,18:469-474.
[10]Wolf A,Agnihotri S,Micallef J,et al.Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme[J].J Exp Med,2011,208:313-326.
[11]RobertsDJ,MiyamotoS.HexokinaseⅡ integratesenergy metabolism and cellular protection:Akting on mitochondria and TORCing to autophagy[J].Cell Death Differ,2015,22:348-357.
[12]Cuadrado-Tejedor M,Vilarino M,Cabodevilla F,et al.Enhanced expression of the voltage-dependent anion channel 1 (VDAC1)in Alzheimer's disease transgenic mice:An insight into the pathogenic effects of amyloid-beta[J].JAlzheim Dis,2011,23:195-206.
[13]Manczak M,Sheiko T,Craigen WJ,et al.Reduced VDAC1 protects against Alzheimer's disease,mitochondria,and synaptic deficiencies[J].J Alzheim Dis,2013,37:679-690.
[14]左茹娟,楊增明.瓦氏效應(yīng)——哺乳動(dòng)物生殖過程中的有氧糖酵解[J].生物化學(xué)與生物物理進(jìn)展,2015,42:132-139.
[15]Ye J,Mancuso A,Tong X,et al.Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation[J].Proc NatlAcad Sci U SA,2012,109:6904-6909.
[16]Liang J,Cao R,Wang X,et al.Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2[J].Cell Res,2017,27:329-351.
[17]Kaplon J,Zheng L,Meissl K,et al.A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence[J].Nature,2013,498:109-112.
[18]Rahman MH,Jha MK,Kim JH,et al.Pyruvate dehydrogenase kinase-mediated glycolytic metabolic shift in the dorsal root ganglion drives painful diabetic neuropathy[J].J Biol Chem,2016,291:6011-6025.
[19]Hirschhaeuser F,Sattler UG,Mueller-Klieser W.Lactate:A metabolic key player in cancer[J].Cancer Res,2011,71:6921-6925.
[20]Vallée A,Lecarpentier Y,Guillevin R,et al.Effects of cannabidiol interactions with Wnt/beta-catenin pathway and PPARgamma on oxidative stress and neuroinflammation in Alzheimer's disease[J].Acta Biochim Biophys Sin(Shanghai),2017,49:853-866.
[21]Vallée A,Lecarpentier Y,Guillevin R,et al.Aerobic glycolysis hypothesis through wnt/beta-catenin pathway in exudative age-related macular degeneration[J].J Mol Neurosci,2017,62:1-12.
[22]Vallée A,Vallée JN.Warburg effect hypothesis in autism spectrum disorders[J].Mol Brain,2018,11:1.
[23]Semenza GL.HIF-1 mediates the Warburg effect in clear cell renal carcinoma[J].J Bioenerg Biomembr,2007,39:231-234.
[24]Soucek T,Cumming RR,Maher P,et al.The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide[J].Neuron,2003,39:43-56.
[25]Cremer JE,Braun LD,Oldendorf WH.Changes during development in transport processes of the blood-brain barrier[J].Biochim Biophys Acta,1976,448:633-637.
[26]Dienel GA,Hertz L.Glucose and lactate metabolism during brain activation[J].J Neurosci Res,2001,66:824-838.
[27]Mosienko V,Teschemacher AG,Kasparov S.Is L-lactate a novel signaling molecule in the brain[J]?J Cereb Blood Flow Metab,2015,35:1069-1075.
[28]Yang J,Ruchti E,Petit JM,et al.Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons[J].Proc Natl Acad Sci U SA,2014,111:12228-12233.
[29]Carrard A,Elsayed M,Margineanu M,et al.Peripheral administration of lactate produces antidepressant-like effects[J].Mol Psychiatry,2018,23:488.
[30]Suzuki A,Stern SA,Bozdagi O,et al.Astrocyte-neuron lactate transport is required for long-term memory formation[J].Cell,2011,144:810-823.
[31]Alberini CM,Cruz E,Descalzi G,et al.星形膠質(zhì)細(xì)胞糖原和乳酸:學(xué)習(xí)和記憶機(jī)制探索新發(fā)現(xiàn)[J].神經(jīng)損傷與功能重建,2017,12:封3.
[32]Basorth C,Tan YW,Lau D,et al.Synaptic activity drives a genomic program that promotes a neuronal Warburg effect[J].J Biol Chem,2017,292:5183-5194.
[33]Brand KA,Hermfisse U.Aerobic glycolysis by proliferating cells:A protective strategy against reactive oxygen species[J].FASEB J,1997,11:388-395.
[34]Myers MG Jr,Olson DP.Central nervous system control of metabolism[J].Nature,2012,491:357-363.
[35]Demetrius LA,Simon DK.An inverse-Warburg effect and the origin ofAlzheimer's disease[J].Biogerontology,2012,13:583-594.
[36]Demetrius LA,Driver J.Alzheimer's as a metabolic disease[J].Biogerontology,2013,14:641-649.
[37]Pellerin L,Magistretti PJ.Ampakine cx546 bolsters energetic response of astrocytes:A novel target for cognitive-enhancing drugs acting as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA)
receptor modulators[J].J Neurochem,2005,92:668-677.
[38]Rosafio K,Pellerin L.Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1alpha-mediated transcriptional regulation[J].Glia,2014,62:477-490.
[39]Gasior M,Rogawski MA,Hartman AL.Neuroprotective and disease-modifying effects of the ketogenic diet[J].Behav Pharmacol,2006,17:431-439.
[40]Libro R,Bramanti P,Mazzon E.The role of the wnt canonical signaling in neurodegenerative diseases[J].Life Sci,2016,158:78-88.
[41]Valbuena GN,Rizzardini M,Cimini S,et al.Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular
model of amyotrophic lateral sclerosis[J].Mol Neurobiol,2016,53:2222-2240.
[42]Sangwan S,Eisenberg DS.Perspective on SOD1 mediated toxicity in amyotrophic lateral sclerosis[J].Postepy Biochem,2016,62:362-369.
[43]Tefera TW,Borges K.Metabolic dysfunctions in amyotrophic lateral sclerosispathogenesisand potentialmetabolic treatments[J].Front Neurosci,2016,10:611.
[44]Finkbeiner S.Huntington's disease[J].Cold Spring Harb Perspect Biol,2011,3:826-829.
[45]Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection[J].Ann N YAcad Sci,2008,1147:395-412.
[46]Seong IS,Ivanova E,Lee JM,et al.HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism[J].Hum Mol Genet,2005,14:2871-2880.
[47]Humbert S,Bryson EA,Cordelieres FP,et al.The IGF-1/akt pathway isneuroprotective in huntington'sdisease and involveshuntingtin phosphorylation byAkt[J].Dev Cell,2002,2:831-837.
[48]Lopes C,Ribeiro M,Duarte AI,et al.IGF-1 intranasal administration rescueshuntington'sdiseasephenotypesin YAC128 mice[J].Mol Neurobiol,2014,49:1126-1142.
[49]Naia L,Ferreira IL,Cunhaoliveira T,et al.Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's disease human lymphoblasts[J].Mol Neurobiol,2015,51:331-348.