李慧娟, 葉 亮, 張 方綜述, 宋 勇審校
免疫系統(tǒng)是一個(gè)受到嚴(yán)格調(diào)控并且相互緊密聯(lián)系的細(xì)胞網(wǎng)絡(luò),發(fā)揮著維持及修復(fù)機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)的功能。然而,免疫系統(tǒng)的異常激活會(huì)造成鄰近組織的損傷及各種病理生理過(guò)程的發(fā)生。嘌呤系統(tǒng)是一個(gè)高度進(jìn)化的選擇性系統(tǒng),能夠微調(diào)免疫細(xì)胞的功能,比如細(xì)胞與細(xì)胞間的相互作用,細(xì)胞因子和趨化因子的分泌,表面抗原的脫落,以及產(chǎn)生活性氧(reactive oxy gen species, ROS)等[1]。嘌呤介質(zhì)ATP,在正常生理狀態(tài)下,主要位于細(xì)胞內(nèi),濃度大約1~10mM,而在細(xì)胞外ATP濃度則處于很低的水平(10~100nM)。當(dāng)機(jī)體出現(xiàn)組織紊亂的情況,包括炎癥,缺氧,缺血,惡性腫瘤等,胞內(nèi)的ATP會(huì)大量釋放到胞外,既作為感覺(jué)信號(hào)又作為傳出信號(hào)引發(fā)免疫反。 ATP釋放到細(xì)胞外后,被胞外的核苷酸水解酶CD39水解轉(zhuǎn)化為ADP和AMP,AMP再在CD73協(xié)同作用下去磷酸生成免疫抑制性的腺苷,并且CD39是這一過(guò)程的限速酶,腺苷激活免疫細(xì)胞表面的腺苷受體,介導(dǎo)嘌呤的免疫調(diào)節(jié)效應(yīng)[2]。
1982年Rowe等[3]研究首次發(fā)現(xiàn)EB病毒感染的B淋巴細(xì)胞表面存在一種特殊的分子標(biāo)志物,隨后被命名為CD39,該分子是一個(gè)整合的細(xì)胞膜蛋白,是一個(gè)鈣鎂離子依賴的胞外核苷酸水解酶,能水解ATP,ADP生成AMP。人類CD39是一個(gè)含有約510個(gè)氨基酸的蛋白,有7個(gè)N-糖基化位點(diǎn)及11個(gè)半胱氨酸殘基與2個(gè)跨膜區(qū)域。在結(jié)構(gòu)上,CD39由兩個(gè)跨膜結(jié)構(gòu)區(qū)域組成,一個(gè)小的胞質(zhì)區(qū)域和一個(gè)大的胞外疏水區(qū)域,胞質(zhì)區(qū)域含有N端和C端,胞外區(qū)域含有5個(gè)ATP酶保守區(qū)域(apyrase conserved regions, ACRs),是維持該分子的酶活性、結(jié)構(gòu)完整性必需的[4]。
CD39廣泛表達(dá)于多種組織器官,如膀胱,腦,乳腺,結(jié)腸,子宮,胃,前列腺等,并且主要表達(dá)于內(nèi)皮細(xì)胞和免疫細(xì)胞[5-7]。不同類型細(xì)胞CD39的表達(dá)也存在顯著差異,B淋巴細(xì)胞,單核細(xì)胞和中性粒細(xì)胞CD39的表達(dá)率達(dá)90%以上,CD4+T細(xì)胞(包括記憶性T細(xì)胞和調(diào)節(jié)性T細(xì)胞)表達(dá)率約20%~30%,而CD8+T細(xì)胞表達(dá)率低于5%,自然殺傷細(xì)胞(natural killing cell,NK)表達(dá)率2%~5%[8]。
CD39的主要生物學(xué)作用是催化水解胞外二三磷酸核苷酸,目前研究較多的是催化水解細(xì)胞外的ATP為ADP及AMP。CD73,胞外-5′核苷酸酶(ecto-5′nucleotidase),一種通過(guò)糖基-磷脂酰肌醇錨定于細(xì)胞膜外的多功能糖蛋白,與CD39共同表達(dá)于細(xì)胞膜外,進(jìn)一步催化水解AMP為腺苷。CD39是這一重要過(guò)程的水解限速酶,并且這一過(guò)程也是細(xì)胞外腺苷生成的主要來(lái)源[2]。有極少一部分腺苷是通過(guò)煙酰胺腺嘌呤二核苷酸(nicotinamide adenine di-nucleotide,NAD)糖水解酶水解細(xì)胞外的NAD,生成ADP核糖,進(jìn)一步降解生成AMP,在CD73協(xié)同作用下生成腺苷。
CD39在許多惡性腫瘤中的表達(dá)水平是升高的[8-9]。Jeremy等[7]研究發(fā)現(xiàn)相對(duì)于正常組織,CD39在腎,肺,卵巢,胰腺,甲狀腺等腫瘤組織中的表達(dá)水平顯著升高,并具有統(tǒng)計(jì)學(xué)意義,暗示著CD39異常表達(dá)升高與惡性腫瘤的發(fā)生發(fā)展有關(guān)。CD39的表達(dá)受許多因素的影響,例如白細(xì)胞介素6(interlenkin-6, IL-6)[10],IL-7[11],IL-27[12],轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)[13],低氧誘導(dǎo)因子-1(hypoxia inducible factor-1,HIF-1)[14],stat3,獨(dú)立的鋅指蛋白生長(zhǎng)因子1轉(zhuǎn)錄因子[15], 氧化應(yīng)激[16]。目前已經(jīng)有許多研究表明,CD39在腫瘤發(fā)生發(fā)展中扮演重要的角色。對(duì)肝腫瘤、胃腫瘤根治術(shù)后的患者,腫瘤組織CD39表達(dá)升高與較高的復(fù)發(fā)率和較短的生存期有關(guān),是不良預(yù)后的獨(dú)立危險(xiǎn)因素[17-19]。CD39對(duì)腫瘤細(xì)胞的增殖和轉(zhuǎn)移也有影響。Shaun等[20]研究發(fā)現(xiàn)CD39基因缺陷的小鼠皮下接種黑色素瘤細(xì)胞,接種瘤及肺部轉(zhuǎn)移瘤的生長(zhǎng)都受到顯著的抑制,腫瘤血管的生成也明顯減少。表達(dá)CD39的Treg細(xì)胞抑制NK細(xì)胞的細(xì)胞毒性作用和細(xì)胞因子的產(chǎn)生,抑制黑色素瘤肝轉(zhuǎn)移瘤的生長(zhǎng)[21]。而對(duì)CD39基因過(guò)表達(dá)的小鼠皮下接種結(jié)腸癌細(xì)胞,其肝轉(zhuǎn)移瘤的數(shù)量及大小都是顯著增強(qiáng)的[22]。
越來(lái)越多的研究表明腫瘤細(xì)胞及其所處的微環(huán)境對(duì)腫瘤的發(fā)生發(fā)展至關(guān)重要,在腫瘤微環(huán)境中,腫瘤和免疫細(xì)胞密切接觸釋放許多免疫調(diào)節(jié)性的因子,形成一個(gè)免疫抑制性的微環(huán)境,從而促進(jìn)腫瘤的生長(zhǎng)。目前越來(lái)越多的研究指出CD39主要是通過(guò)產(chǎn)生腺苷,腺苷與腫瘤中浸潤(rùn)的免疫細(xì)胞上的4種G蛋白偶聯(lián)的腺苷受體(A1,A2A,A2B,A3受體)結(jié)合影響其功能,從而形成免疫抑制性的微環(huán)境,促進(jìn)腫瘤的發(fā)展[23]。
3.1單核吞噬細(xì)胞系統(tǒng)單核吞噬細(xì)胞系統(tǒng),包括單核細(xì)胞,巨噬細(xì)胞和樹(shù)突狀細(xì)胞,是調(diào)節(jié)固有免疫和調(diào)節(jié)性免疫的重要組分,在炎癥反應(yīng)和宿主防御過(guò)程中發(fā)揮重要作用[24]。腺苷通過(guò)作用于單核吞噬細(xì)胞系統(tǒng)中細(xì)胞上的腺苷受體,影響其分化、成熟及激活[25]。
巨噬細(xì)胞主要有2種亞型,M1型和M2型。M1型巨噬細(xì)胞主要出現(xiàn)在慢性炎癥部位。以釋放促炎性的細(xì)胞因子為特征,如IL-1β,IL18,IL-6和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)。腫瘤中浸潤(rùn)的巨噬細(xì)胞也稱做腫瘤相關(guān)的巨噬細(xì)胞,主要為M2型的巨噬細(xì)胞,以釋放抑炎性的細(xì)胞因子,如IL-10等,以及組織重構(gòu)分子為特征,其通過(guò)抑制抗腫瘤的淋巴細(xì)胞介導(dǎo)的免疫效應(yīng)以及促進(jìn)基質(zhì)的沉積和重塑,促進(jìn)腫瘤細(xì)胞的增殖,轉(zhuǎn)移及腫瘤血管的生成[26]。Zanin等[27]研究發(fā)現(xiàn),抑炎性的M2型巨噬細(xì)胞表達(dá)CD39和CD73明顯高于促炎性的M1型巨噬細(xì)胞,M2型巨噬細(xì)胞通過(guò)表面的核苷酸水解酶促進(jìn)腫瘤微環(huán)境中腺苷的產(chǎn)生,自分泌的腺苷作用于巨噬細(xì)胞本身,增強(qiáng)其抑炎作用。腺苷主要作用于其表面的A2B受體,促進(jìn)巨噬細(xì)胞的替代激活,上調(diào)M2型巨噬細(xì)胞標(biāo)志分子,如精氨酸酶1,組織型基質(zhì)金屬蛋白酶抑制劑1(tissue inhibitor of metalloproteinases-1,TIMP-1)和巨噬細(xì)胞半乳糖型C型凝集素1(macrophage galactose-type C-type lectin 1,mgl1)[28]。在黑色素瘤中,激活腺苷A1、A2A、A3受體能夠調(diào)節(jié)巨噬細(xì)胞的分化,增強(qiáng)腫瘤中巨噬細(xì)胞的浸潤(rùn),同時(shí)促進(jìn)黑色素瘤的生長(zhǎng)及血管生成[29]。
樹(shù)突狀細(xì)胞的分化和功能也受腺苷的調(diào)節(jié)[30]。異常的樹(shù)突狀細(xì)胞與其表面A2B腺苷受體的激活有關(guān),單核細(xì)胞向樹(shù)突狀細(xì)胞分化過(guò)程中,腺苷作用與A2B受體,改變細(xì)胞的表型,使其介于單核細(xì)胞和樹(shù)突狀細(xì)胞的中間狀態(tài),上調(diào)促血管性、促炎性、免疫抑制性和免疫耐受性的因子,包括血管內(nèi)皮生長(zhǎng)因子、IL-8、IL-6、IL-10、環(huán)氧化酶-2、TGF-β和吲哚胺2,3-雙氧酶。Cekic等[31]發(fā)現(xiàn)A2B受體能抑制樹(shù)突狀細(xì)胞的激活,更為重要的是,A2B受體能抑制樹(shù)突狀細(xì)胞的腫瘤抗原提呈作用,下調(diào)γ干擾素(interferon-γ, IFNγ)和IFNγ誘導(dǎo)的CXC趨化因子配體10(CXC-chemokine ligand 10,CXCL10),抑制對(duì)T細(xì)胞的招募和活化,從而發(fā)揮免疫調(diào)節(jié)和免疫抑制作用。
3.2淋巴細(xì)胞T淋巴細(xì)胞是機(jī)體執(zhí)行細(xì)胞免疫的主要細(xì)胞,在細(xì)胞免疫中抗原由抗原提呈細(xì)胞處理成多肽,與MHC結(jié)合后形成復(fù)合體,作用于T細(xì)胞表面的T細(xì)胞受體,在共刺激分子的協(xié)同作用下,激活T淋巴細(xì)胞,進(jìn)一步增殖、分化,發(fā)揮效應(yīng)功能。效應(yīng)性T細(xì)胞的活化及效應(yīng)過(guò)程均受腺苷的影響,腺苷作用于T細(xì)胞表面的A2A受體,引起一系列抑制性的T細(xì)胞效應(yīng)[4]:①胞內(nèi)cAMP水平升高,抑制T細(xì)胞受體介導(dǎo)的T細(xì)胞活化和增殖;②抑制效應(yīng)性T細(xì)胞IL-2的分泌,IL-2的減少下調(diào)共刺激分子CD28和CD2的表達(dá),從而抑制T細(xì)胞的增殖和對(duì)共刺激分子的反應(yīng);③抑制促炎性細(xì)胞因子的產(chǎn)生,如IFN-γ和TNF-α;④抑制細(xì)胞毒性的效應(yīng)分子的產(chǎn)生,如穿孔素和Fas配體;⑤促進(jìn)CD4+T細(xì)胞分化為調(diào)節(jié)性T細(xì)胞。
調(diào)節(jié)性T細(xì)胞(regulatory T cells, Treg )在對(duì)自身抗原免疫無(wú)應(yīng)答和抑制異常免疫反應(yīng)發(fā)揮重要作用的同時(shí),也抑制了抗腫瘤的免疫反應(yīng),促進(jìn)腫瘤的免疫逃逸[32]。在腫瘤微環(huán)境中,Treg細(xì)胞水平升高,Treg細(xì)胞表面高表達(dá)CD39,CD39逐漸被認(rèn)為是Treg細(xì)胞表面的特異性標(biāo)志分子[33]。Treg細(xì)胞表面的CD39發(fā)揮核苷酸水解酶的作用促進(jìn)腺苷的產(chǎn)生,這也是Treg細(xì)胞發(fā)揮免疫抑制作用的重要過(guò)程。Treg細(xì)胞來(lái)源的腺苷,作用于效應(yīng)性T細(xì)胞表面的A2A受體,抑制效應(yīng)性T細(xì)胞的增殖、遷移及抗腫瘤效應(yīng)[34-35],作用于NK細(xì)胞表面的A2A受體,抑制NK細(xì)胞的細(xì)胞毒性作用和細(xì)胞因子的產(chǎn)生,介導(dǎo)一系列免疫抑制效應(yīng)[36-37]。Treg細(xì)胞還能通過(guò)分泌攜帶CD39和CD73的外泌體抑制效應(yīng)性T細(xì)胞的增殖和細(xì)胞因子的分泌[38]。另一方面,自分泌的腺苷反過(guò)來(lái)也能調(diào)節(jié)Treg細(xì)胞的功能,腺苷作用于Treg細(xì)胞表面的A2A受體促進(jìn)Treg細(xì)胞的增殖,上調(diào)細(xì)胞毒T淋巴細(xì)胞相關(guān)抗原4(cytotoxic T lymphocyte-associated antigen-4, CTLA-4)和程序性細(xì)胞死亡蛋白1(programmed cell death protein 1, PD-1)的表達(dá),增強(qiáng)其免疫抑制功能[39]。
CD39是免疫抑制性的腺苷產(chǎn)生過(guò)程中的重要限速酶,靶向CD39則可能成為一個(gè)新的腫瘤免疫治療的方法。目前已經(jīng)有許多研究發(fā)現(xiàn)抑制CD39能恢復(fù)受到抑制的抗腫瘤效應(yīng)。在體外實(shí)驗(yàn),將黑色素瘤細(xì)胞與PBMC共培養(yǎng),抑制CD39活性能部分恢復(fù)效應(yīng)性T細(xì)胞和NK細(xì)胞的細(xì)胞毒性作用[40]。在體內(nèi)試驗(yàn),B16黑色素瘤細(xì)胞和MCA-38結(jié)腸腫瘤細(xì)胞皮下接種小鼠,腹腔注射CD39的化學(xué)抑制劑POM1,5 mg或10 mg/kg,10 d,接種瘤的生長(zhǎng)受到顯著抑制。POM1的抑制作用與CD39基因缺陷的小鼠其接種瘤的生長(zhǎng)受到抑制類似,但對(duì)CD39缺陷的老鼠腹腔注射POM1并不會(huì)進(jìn)一步抑制腫瘤的生長(zhǎng),表明這一作用是POM1抑制了CD39而介導(dǎo)的。并且POM1處理小鼠過(guò)程中沒(méi)有發(fā)現(xiàn)肝腎毒性的現(xiàn)象,也為CD39抑制劑的安全性提供了證據(jù)[21]。針對(duì)抑制CD39能下調(diào)免疫抑制性的腺苷,促進(jìn)抗腫瘤效應(yīng),目前已經(jīng)研發(fā)出了抗CD39單克隆抗體,主要有BY40和BA54G,能顯著阻斷CD39的酶活性[8]。Jeremy等[7]研究發(fā)現(xiàn)CD39阻斷抗體BY40能逆轉(zhuǎn)腫瘤對(duì)CD4+和CD8+T細(xì)胞增殖的抑制,上調(diào)細(xì)胞毒性的T淋巴細(xì)胞和NK細(xì)胞的細(xì)胞毒性作用??梢?jiàn),利用CD39化學(xué)抑制劑、單克隆抗體在體內(nèi)外實(shí)驗(yàn)中對(duì)腫瘤細(xì)胞生長(zhǎng)的抑制和免疫細(xì)胞功能的恢復(fù)已經(jīng)取得了顯著療效,這為抗腫瘤治療提供了新途徑。
CD39在腫瘤免疫中的作用已經(jīng)有了一定的了解,大量研究均證實(shí)靶向CD39能抑制腫瘤細(xì)胞的增殖,逆轉(zhuǎn)免疫細(xì)胞功能,增強(qiáng)免疫效應(yīng)。CD39的免疫抑制作用主要是通過(guò)促進(jìn)腺苷的產(chǎn)生介導(dǎo)的,腺苷與腺苷受體結(jié)合抑制抗腫瘤免疫,阻斷這條作用鏈中的任一環(huán)節(jié)都能抑制CD39的免疫抑制性。近來(lái),靶向多種免疫抑制性通路能協(xié)同性的增強(qiáng)抗腫瘤免疫效應(yīng)。目前靶向CD39-腺苷通路的抗腫瘤治療與其他抗腫瘤免疫治療相結(jié)合在抗腫瘤治療中收到廣泛關(guān)注。已經(jīng)有研究發(fā)現(xiàn)靶向腺苷A2A受體或者CD73能增強(qiáng)抗PD-1及抗CTLA-4單抗抗腫瘤效應(yīng),協(xié)同性得增強(qiáng)抗腫瘤免疫[8, 41-42]。但是目前還沒(méi)有研究發(fā)現(xiàn)靶向CD39與其他免疫治療聯(lián)用能否進(jìn)一步增強(qiáng)抗腫瘤效應(yīng),還有待進(jìn)一步研究發(fā)現(xiàn)。
[1] Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth[J]. Oncogene, 2017,36(3):293-303.
[2] Faas MM, Saez T, de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses?[J] Mol Aspects Med, 2017,55:9-19.
[3] Rowe M, Hildreth JE, Rickinson AB,etal. Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity[J]. Int J Cancer, 1982,29(4):373-381.
[4] Cekic C, Linden J. Purinergic regulation of the immune system[J]. Nat Rev Immunol, 2016,16(3):177-192.
[5] Allard B, Beavis PA, Darcy PK,etal. Immunosuppressive activities of adenosine in cancer[J]. Curr Opin Pharmacol, 2016,29:7-16.
[6] Antonioli L, Blandizzi C, Pacher P,etal. Immunity, inflammation and cancer: a leading role for adenosine[J]. Nat Rev Cancer, 2013,13(12):842-857.
[7] Bastid J, Regairaz A, Bonnefoy N,etal. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity[J]. Cancer Immunol Res, 2015,3(3):254-265.
[8] Allard B, Longhi MS, Robson SC,etal. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets[J]. Immunol Rev, 2017,276(1):121-144.
[9] Bastid J, Cottalorda-Regairaz A, Alberici G,etal. ENTPD1/CD39 is a promising therapeutic target in oncology[J]. Oncogene, 2013,32(14):1743-1751.
[10] Sanmarco LM, Ponce NE, Visconti LM,etal. IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection[J]. Biochim Biophys Acta, 2017,1863(4):857-869.
[11] Younas M, Hue S, Lacabaratz C,etal. IL-7 modulates in vitro and in vivo human memory T regulatory cell functions through the CD39/ATP axis[J]. J Immunol, 2013,191(6):3161-3468.
[12] Mascanfroni ID, Yeste A, Vieira SM,etal. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39[J]. Nat Immunol, 2013,14(10):1054-1063.
[13] Li J, Wang L, Chen X,etal. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-beta-mTOR-HIF-1 signaling in patients with non-small cell lung cancer[J]. Oncoimmunology, 2017,6(6):e1320011.
[14] Bullen JW, Tchernyshyov I, Holewinski RJ,etal. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1[J]. Sci Signal, 2016,9(430):ra56.
[15] Chalmin F, Mignot G, Bruchard M,etal. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression[J]. Immunity, 2012,36(3):362-373.
[16] Zhong SY, Chen YX, Fang M,etal. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39[J]. PLoS One, 2014,9(4):e95387.
[17] Cai XY, Li J,etal. Overexpression of CD39 and high tumoral CD39+/CD8+ratio are associated with adverse prognosis in resectable gastric cancer[J]. Int J Clin Exp Pathol 2015,8(11):14757-14764.
[18] Cai XY, Ni XC, Yi Y,etal. Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection[J]. Medicine (Baltimore), 2016,95(40):e4989.
[19] Cai XY, Wang XF, Li J,etal. High expression of CD39 in gastric cancer reduces patient outcome following radical resection[J]. Oncol Lett, 2016,12(5):4080-4086.
[20] Jackson SW, Hoshi T, Wu Y,etal. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice[J]. Am J Pathol, 2007,171(4):1395-1404.
[21] Sun X, Wu Y, Gao W,etal. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice[J]. Gastroenterology, 2010,139(3):1030-1040.
[22] Kunzli BM, Bernlochner MI, Rath S,etal. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer[J]. Purinergic Signal, 2011,7(2):231-241.
[23] 劉陽(yáng)珷玥,楊 亭,趙 力,等.腺苷及其受體對(duì)中性粒細(xì)胞在炎癥中的作用與機(jī)制研究進(jìn)展[J].醫(yī)學(xué)研究生學(xué)報(bào),2014,27(11):1214-1218.
[24] Mantovani A, Biswas SK, Galdiero MR,etal. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013,229(2):176-185.
[25] Hasko G, Pacher P. Regulation of macrophage function by adenosine[J]. Arterioscler Thromb Vasc Biol, 2012,32(4):865-869.
[26] Sica A. Role of tumour-associated macrophages in cancer-related inflammation[J]. Exp Oncol, 2010,32(3):153-158.
[27] Zanin RF, Braganhol E, Bergamin LS,etal. Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase[J]. PLoS One, 2012,7(2):e31205.
[28] Csoka B, Selmeczy Z, Koscso B,etal. Adenosine promotes alternative macrophage activation via A2A and A2B receptors[J]. FASEB J, 2012,26(1):376-386.
[29] Koszalka P, Golunska M, Urban A,etal. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration[J]. PLoS One, 2016,11(3):e0151420.
[30] Novitskiy SV, Ryzhov S, Zaynagetdinov R,etal. Adenosine receptors in regulation of dendritic cell differentiation and function[J]. Blood, 2008,112(5):1822-1831.
[31] Cekic C, Sag D, Li Y,etal. Adenosine A2B receptor blockade slows growth of bladder and breast tumors[J]. J Immunol, 2012,188(1):198-205.
[32] 毛曉明.醫(yī)學(xué)研究生的新知識(shí)儲(chǔ)備——組織內(nèi)調(diào)節(jié)性T細(xì)胞的表型及功能[J].醫(yī)學(xué)研究生學(xué)報(bào),2017,30(4):337-341.
[33] Gu J, Ni X, Pan X,etal. Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions[J]. Cell Mol Immunol, 2017,14(6):521-528.
[34] Sundstr?m P SH, Langenes V. Regulatory T Cells from Colon Cancer Patients Inhibit Effector T-cell Migration through an Adenosine-Dependent Mechanism.[J]. Cancer Immunol Res, 2016,4(3):183-193.
[35] Ma SR, Deng WW, Liu JF,etal. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma[J]. Mol Cancer, 2017,16(1):99.
[36] Lokshin A, Raskovalova T, Huang X,etal. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells[J]. Cancer Res, 2006,66(15):7758-7765.
[37] Hu G, Wu P, Cheng P,etal. Tumor-infiltrating CD39+gammadeltaTregs are novel immunosuppressive T cells in human colorectal cancer[J]. Oncoimmunology, 2017,6(2):e1277305.
[38] Smyth LA, Ratnasothy K, Tsang JY,etal. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function[J]. Eur J Immunol, 2013,43(9):2430-2440.
[39] Kinsey GR, Huang L, Jaworska K,etal. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection[J]. J Am Soc Nephrol, 2012,23(9):1528-1537.
[40] Shen L, Sundstedt A, Ciesielski M,etal. Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models[J]. Cancer Immunol Res, 2015,3(2):136-148.
[41] Beavis PA, Milenkovski N, Henderson MA,etal. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses[J]. Cancer Immunol Res, 2015,3(5):506-517.
[42] Allard B, Pommey S, Smyth MJ,etal. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs[J]. Clin Cancer Res, 2013,19(20):5626-5635.