余萬(wàn) 李春 楊陽(yáng)
摘 要: 水平軸洋流機(jī)是捕獲洋流能的主要設(shè)備,其葉片外形直接影響捕能效率。通過(guò)Bezier參數(shù)化曲線描述定速定槳距洋流機(jī)的葉片弦長(zhǎng)和扭角分布規(guī)律,采用葉素動(dòng)量理論計(jì)算其水動(dòng)特性。以額定流速下能量利用系數(shù)系數(shù)最大為目標(biāo),基于遺傳算法建立了葉片外形優(yōu)化模型。同時(shí),為了避免因汽蝕導(dǎo)致功率輸出不穩(wěn)定的現(xiàn)象,在優(yōu)化過(guò)程中以汽蝕作為約束條件,與經(jīng)典設(shè)計(jì)方法Wilson理論設(shè)計(jì)葉片進(jìn)行了比較。結(jié)果表明:優(yōu)化葉片在葉根處的扭角更小,具有更佳的抗扭性能;葉根和葉尖處弦長(zhǎng)均更小,節(jié)省了材料;在設(shè)計(jì)流速范圍內(nèi),優(yōu)化葉片在低流速下效率更高,平均提高了4.6%,具有更好的啟動(dòng)性能。
關(guān)鍵詞: 洋流機(jī); 葉片; 汽蝕; 遺傳算法; 優(yōu)化
中圖分類號(hào): TK 83 文獻(xiàn)標(biāo)志碼: A
Application of Genetic Algorithm to the Optimization
Design of Horizontal Axis Tidal Turbine Blade
YU Wan, LI Chun, YANG Yang
(School of Energy and Power Engineering/Shanghai Key Laboratory of Multiphase Flow and Heat Transfer
in Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract: Horizontal axis tidal turbine is the key equipment to capture energy of the current.The blade shape can directly affect the capture efficiency.In this paper,the distribution of chord length and twist angle for tidal turbine blade with fixed speed and pitch was described by Bezier parametric curves.Bladeelement momentum theory was applied to calculate its hydraulic dynamic characteristics.With the goal of maximizing the power coefficient at the constant flow velocity,the optimization model of blade shape was built based on genetic algorithm.Meanwhile,in order to avoid the instability of power output caused by cavitation,the cavitation resistance was used as constraints in the optimization model.Compared with the classical Wilson theory of blade design,the results showed that the torsional angle has reduced in the hub of the optimized blade and the better torsion properties was achieved.The root and tip chord length of the blade decreased,which could save materials.Within the range of designed flow rate,higher efficiency was achieved for the optimized blade under low flow rate.The efficiency increased by 4.6% on average.The better startup performance was achieved as well.
Keywords: tidal turbine; blade; cavitation; genetic algorithm; optimization
在全球氣候變暖的背景下,隨著能源短缺和經(jīng)濟(jì)高速發(fā)展,可再生能源發(fā)電技術(shù)更需進(jìn)一步的飛躍,不僅要求處理溫室效應(yīng)而且要求保護(hù)自然環(huán)境以及與自然環(huán)境和諧共存。世界各國(guó)可持續(xù)發(fā)展的主要方向轉(zhuǎn)向開(kāi)發(fā)和利用綠色可再生能源。潮流能作為一種對(duì)環(huán)境幾乎不會(huì)產(chǎn)生污染的可再生能源,蘊(yùn)藏量豐富,而且具備相對(duì)成熟的利用技術(shù),開(kāi)發(fā)潛力極為巨大[1-2]。
葉片的性能直接影響著洋流機(jī)的性能,也是洋流機(jī)捕獲洋流能的唯一部件,其制造成本也占整個(gè)發(fā)電機(jī)組的百分之二十左右[2]。葉片設(shè)計(jì)是洋流能利用效率的優(yōu)劣和洋流機(jī)運(yùn)行安全以及發(fā)電機(jī)組成本控制的關(guān)鍵因素。目前在國(guó)內(nèi)外洋流機(jī)葉片設(shè)計(jì)大多數(shù)是采用了風(fēng)力機(jī)的葉片設(shè)計(jì)方法[3],其中最為常用方法是與相關(guān)的約束模型結(jié)合的葉素動(dòng)量理論,如Wilson模型[4-5]和Glauert模型[6]。其中,Wilson在Glauert研究的基礎(chǔ)上考慮了升阻比和葉尖損失的影響提出的以單葉素截面輸出最大功率為設(shè)計(jì)目標(biāo)的葉片設(shè)計(jì)方法應(yīng)用最為廣泛[8-9]。該設(shè)計(jì)方法速度快,僅考慮了單個(gè)葉素的氣動(dòng)性能而忽略了葉素之間的相互影響。
洋流機(jī)工作環(huán)境和水泵相似,因此需要考慮洋流機(jī)葉片的汽蝕問(wèn)題。汽蝕現(xiàn)象是在流體流動(dòng)過(guò)程中,當(dāng)某一局部區(qū)域的壓力不大于水溫相對(duì)應(yīng)的汽化壓力時(shí),流體就會(huì)在該局部區(qū)域發(fā)生汽化[9-10]。汽化壓力被定義為液體發(fā)生汽化時(shí)的壓力,和液體種類、溫度有關(guān)[11]。汽化產(chǎn)生的氣泡順流進(jìn)入高壓區(qū)發(fā)生破裂,引發(fā)周圍液體高頻碰撞從而導(dǎo)致材料受到破壞[12-13]。