毛國(guó)平,胡軍國(guó),嚴(yán)邦祥,陳慧玲,陳茂欽
摘要 介紹了國(guó)內(nèi)外關(guān)于土壤呼吸空間格局的研究現(xiàn)狀,多數(shù)研究結(jié)果發(fā)現(xiàn)森林土壤呼吸空間格局的日間變化基本保持一致,另外土壤呼吸空間格局的日變化和生長(zhǎng)季節(jié)的月變化同樣保持穩(wěn)定。但是,由于生長(zhǎng)季與非生長(zhǎng)季的各種環(huán)境因子差異較大,導(dǎo)致生長(zhǎng)季和非生長(zhǎng)季的土壤呼吸空間格局有較大差異。另外,土壤呼吸空間格局經(jīng)過環(huán)境擾動(dòng)影響(如火燒及土壤干旱)后會(huì)發(fā)生顯著的變化。最后對(duì)今后森林土壤呼吸空間格局研究方向進(jìn)行了展望。
關(guān)鍵詞 森林土壤呼吸;空間格局;日變化;月變化;季節(jié)變化;擾動(dòng)
中圖分類號(hào) S714 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 0517-6611(2018)06-0016-05
Research Progress on the Spatial Pattern of Soil Respiration in Forest Ecosystem
MAO Guoping1,2,HU Junguo1,YAN Bangxiang3 et al (1.College of Information Engineering,Zhejiang Agriculture & Forestry University,Hangzhou,Zhejiang 311300;2.Agricultural Bureau of Jingning County of Zhejiang Province,Jingning,Zhejiang 323500;3.Forest Technology Extension Center,F(xiàn)orestry Bureau of Jingning County of Zhejiang Province,Jingning,Zhejiang 323500)
Abstract The research status of soil respiration spatial pattern at home and abroad was introduced. Most of the research results showed that the diurnal variation of forest soil respiration pattern and the monthly variation in the growing season were stable. However,due to the differences between the environmental factors in the growing season and the nongrowing season,the soil respiration spatial pattern of the growing season and the nongrowing season was quite different. In addition,environmental disturbances such as fire and soil drought after the impact of soil respiration spatial pattern will change significantly. Finally, the direction of future research on the spatial pattern of forest soil respiration was anticipated.
Key words Forest soil respiration;Spatial pattern;Diurnal variation;Monthly variation;Seasonal variation;Disturbance
森林生態(tài)系統(tǒng)作為陸地生態(tài)系統(tǒng)的主體,是大氣CO2濃度的主要調(diào)控者[1]。森林生態(tài)系統(tǒng)碳存儲(chǔ)了整個(gè)陸地生態(tài)系統(tǒng)超過50%的碳,其中60%~70%的碳存儲(chǔ)于森林土壤中[2-3],因此森林土壤是一個(gè)巨大的碳庫(kù),土壤呼吸是將土壤碳傳輸?shù)酱髿獾闹匾緩絒4-5]。作為森林生態(tài)系統(tǒng)的第二大碳排出生態(tài)過程,森林土壤呼吸在全球碳循環(huán)中起著重要作用[6-7]。由于森林土壤呼吸的變化會(huì)直接影響森林存儲(chǔ)碳的能力,因此需要對(duì)森林土壤呼吸進(jìn)行精確量化,是衡量森林生態(tài)系統(tǒng)土壤碳平衡的重要環(huán)節(jié),森林生態(tài)系統(tǒng)的土壤呼吸在全球碳循環(huán)和碳平衡中起著關(guān)鍵作用,精確量化森林生態(tài)系統(tǒng)的土壤碳通量成為研究生態(tài)系統(tǒng)碳循環(huán)和全球氣候變化的熱點(diǎn)之一。
由于森林生態(tài)系統(tǒng)生物種類繁多,且各種環(huán)境因子在空間上復(fù)雜多變[8],土壤呼吸本身作為一個(gè)復(fù)雜的生態(tài)過程,且易受到諸多環(huán)境因素的影響,表現(xiàn)出強(qiáng)烈的空間異質(zhì)性[9-10],土壤呼吸在空間上的變化受到多種因素的影響,如土壤溫濕度[11]、凋落物數(shù)量[12]、根系生物量[13]、植被的物種組成[14]、土壤微生物量[15]等。土壤呼吸空間異質(zhì)性對(duì)精確估算區(qū)域土壤呼吸帶來(lái)相當(dāng)大的困難,忽視土壤呼吸空間異質(zhì)性可能會(huì)錯(cuò)估土壤碳通量[16]。因此,了解土壤呼吸在空間上的變化機(jī)制是準(zhǔn)確量化區(qū)域土壤呼吸的前提[17-18]。由于地統(tǒng)計(jì)學(xué)考慮了土壤呼吸的空間自相關(guān)作用,能夠得到空間上連續(xù)的數(shù)據(jù)來(lái)更加全面地描述區(qū)域內(nèi)數(shù)據(jù)的變化情況[19-20],從而獲得直觀的土壤呼吸空間格局,這不僅可以揭示土壤呼吸的空間分布規(guī)律,還能結(jié)合其他土壤屬性在空間上的變化規(guī)律來(lái)解釋各種生態(tài)過程之間的聯(lián)系,因此能更好地研究土壤特性的空間異質(zhì)性,且地統(tǒng)計(jì)學(xué)已經(jīng)廣泛應(yīng)用于土壤呼吸異質(zhì)性研究中[21-22]。
隨著研究土壤呼吸空間格局方法的不斷完善,關(guān)于土壤呼吸空間格局的研究也在不斷深入。在關(guān)于區(qū)域土壤呼吸的研究中,了解土壤碳通量在整個(gè)區(qū)域的空間變化情況對(duì)于有效量化土壤呼吸以及研究土壤呼吸空間上的變化機(jī)制至關(guān)重要,對(duì)土壤呼吸空間格局時(shí)間上變化的研究也越來(lái)越受到重視,研究土壤呼吸空間格局的時(shí)空變化,對(duì)準(zhǔn)確量化區(qū)域土壤呼吸總量以及研究區(qū)域碳平衡具有重要意義。雖然很多學(xué)者已經(jīng)研究各種生態(tài)尺度上的土壤呼吸空間格局及其空間變化上的驅(qū)動(dòng)因子[23-24],然而土壤呼吸空間格局在時(shí)間上的變化容易受到忽視,如果忽視土壤呼吸空間格局在時(shí)間上的變化,會(huì)對(duì)量化特定時(shí)間段內(nèi)的土壤呼吸帶來(lái)不確定性,因此研究土壤呼吸空間格局在時(shí)間上的變化同樣重要。筆者著重闡述現(xiàn)有的研究關(guān)于土壤呼吸空間格局的日間變化、日變化、月變化、季節(jié)變化以及土壤呼吸空間格局經(jīng)過環(huán)境干擾之后的變化。
1 地統(tǒng)計(jì)學(xué)方法介紹
克里金空間插值方法是地統(tǒng)計(jì)學(xué)在生態(tài)環(huán)境資源領(lǐng)域中應(yīng)用最廣泛、也是最為成熟的一種方法??死锝鸱椒ㄊ茄芯繉?duì)象屬性在空間上變化的方法,通過待估點(diǎn)周圍一定范圍的實(shí)測(cè)點(diǎn)的屬性值進(jìn)行線性組合得到一個(gè)最優(yōu)的無(wú)偏估計(jì)值,這種空間變異性通常用試驗(yàn)性變異函數(shù)來(lái)表達(dá)。變異函數(shù)一般包括自變異函數(shù)和交叉變異函數(shù),用來(lái)決定變量屬性的空間自相性。采用半方差分析法計(jì)算土壤呼吸及其影響因子的空間異質(zhì)性程度,半方差函數(shù)又稱半變異函數(shù),以區(qū)域化變量理論為基礎(chǔ)。半方差函數(shù)的計(jì)算公式為
(h)=12N(h)N(h)i=1[z(xi)-z(xi)+h]2
式中,(h)為隨著距離h的變化而變化的經(jīng)驗(yàn)半方差;z(xi)是對(duì)應(yīng)第i個(gè)點(diǎn)的屬性值;N(h)是距離為h點(diǎn)的數(shù)目。
2 土壤呼吸空間格局的國(guó)內(nèi)外研究現(xiàn)狀
2.1 土壤呼吸空間格局的日間變化及日變化 Archmiller等[25]在美國(guó)阿拉巴馬州東部一個(gè)長(zhǎng)葉松林中研究土壤呼吸空間格局的日變化,在研究區(qū)域內(nèi)布置了3個(gè)24 m×24 m的樣地,采集樣地上午、中午、下午的數(shù)據(jù),利用3個(gè)時(shí)間段的土壤呼吸數(shù)據(jù)進(jìn)行空間插值分析,得到樣地3個(gè)時(shí)間段的土壤呼吸空間格局分布情況(圖1)。由圖1可知,每個(gè)樣地3個(gè)時(shí)間段的土壤呼吸空間格局并未發(fā)生明顯的變化,土壤呼吸空間格局從上午到下午的日間變化基本保持一致,認(rèn)為土壤呼吸空間格局的日變化相當(dāng)穩(wěn)定,林分結(jié)構(gòu)以及土壤屬性是土壤呼吸空間格局的關(guān)鍵影響因子。另外La等[26]采集了3 d同一時(shí)間段不同土壤溫度和不同土壤濕度條件下的土壤呼吸數(shù)據(jù),3 d的數(shù)據(jù)都用半方差空間模型擬合,結(jié)果發(fā)現(xiàn),3 d的土壤呼吸數(shù)據(jù)擬合結(jié)果基本相似,間接表明土壤呼吸日變化保持穩(wěn)定。
2.2 土壤呼吸空間格局的月變化 Shi等[27]研究了我國(guó)東北原始闊葉紅松林土壤呼吸空間格局的月變化,在研究區(qū)域布置了300 m×300 m的樣地,分別在2014年5、7、9月采集土壤呼吸數(shù)據(jù),分別代表春季、夏季、秋季,同樣用地統(tǒng)計(jì)學(xué)方法得到5、7、9月樣地3個(gè)月份的土壤呼吸空間格局分布情況(圖2)。由圖2可知,根據(jù)5、7、9月的土壤呼吸空間格局可以發(fā)現(xiàn),土壤呼吸空間格局在生長(zhǎng)季表現(xiàn)相當(dāng)穩(wěn)定,土壤呼吸高值區(qū)在試驗(yàn)周期內(nèi)一直是高值區(qū),土壤呼吸低值區(qū)在試驗(yàn)周期內(nèi)同樣也一直是低值區(qū),并且發(fā)現(xiàn)林分結(jié)構(gòu)和土壤濕度是土壤呼吸空間變化的關(guān)鍵影響因子。Luan等[28]在我國(guó)河南寶天曼自然保護(hù)區(qū)研究土壤呼吸空間格局的月變化,結(jié)果同樣發(fā)現(xiàn)土壤呼吸空間格局的月變化在試驗(yàn)周期保持一致。
2.3 土壤呼吸空間格局的季節(jié)變化 Xu等[29]研究美國(guó)內(nèi)達(dá)華山脈的黃松林內(nèi)土壤呼吸空間格局的季節(jié)變化,在研究區(qū)域布置20 m×20 m的樣地,采集了生長(zhǎng)季和非生長(zhǎng)季的土壤呼吸數(shù)據(jù)以及其他土壤變量數(shù)據(jù),發(fā)現(xiàn)生長(zhǎng)季到非生長(zhǎng)季的土壤呼吸空間格局會(huì)發(fā)生顯著變化,因?yàn)閺纳L(zhǎng)季到非生長(zhǎng)季影響土壤呼吸空間變化的關(guān)鍵影響因子發(fā)生了改變。張濤等[30]研究三峽庫(kù)區(qū)馬尾松林土壤呼吸的空間變異特性,在研究區(qū)域布置了40 m×50 m的樣地,對(duì)比了春、夏、秋、冬季節(jié)的土壤呼吸空間格局,結(jié)果見圖3。從圖3可以看出,春季和夏季的土壤呼吸分布格局存在一定的相似性,但局部存在明顯差異,另外非生長(zhǎng)季(秋季到冬季)和生長(zhǎng)季(春季和夏季)的土壤呼吸空間格局存在明顯差異,表明研究區(qū)域內(nèi)控制土壤呼吸的主導(dǎo)因子在生長(zhǎng)季節(jié)保持相對(duì)穩(wěn)定,非生長(zhǎng)季局部的環(huán)境因子發(fā)生變化導(dǎo)致土壤呼吸速率的波動(dòng)變化。
2.4 土壤呼吸空間格局在火燒后的變化 Hu等[31]研究大興安嶺土壤呼吸空間格局在計(jì)劃火燒影響后的變化,在研究區(qū)域布置20 m×30 m的樣地,采集樣地遭遇火燒前后的土壤呼吸數(shù)據(jù),結(jié)果見圖4。根據(jù)圖4中火燒前后土壤呼吸空間格局可知,火燒能顯著改變先前的土壤呼吸空間格局,認(rèn)為樣地經(jīng)過火燒影響后,減少了原有的立木覆蓋,導(dǎo)致土壤微生物活動(dòng)以及土壤濕度均發(fā)生明顯變化,這些改變使土壤有機(jī)質(zhì)及土壤微生物碳的分布發(fā)生變化,從而改變?cè)械耐寥篮粑臻g格局[32]。Kobziar等[33]研究表明,對(duì)照地、火燒地及火燒后翻耕地的土壤呼吸變異系數(shù)(CV)分別為42%、49%和66%,其研究結(jié)果同樣表明火燒會(huì)顯著改變?cè)械耐寥篮粑臻g格局。
2.5 土壤呼吸空間格局受干旱條件影響后的變化 Martin等[34]研究美國(guó)威斯康辛州背部的森林土壤呼吸空間格局受干旱條件影響后的變化,分別采集了樣地在春季、夏季、秋季及干旱季節(jié)的土壤呼吸數(shù)據(jù),對(duì)比4個(gè)季節(jié)的土壤呼吸空間格局,結(jié)果見圖5。從圖5可見,春季到秋季的土壤呼吸空間格局表現(xiàn)相當(dāng)穩(wěn)定,高值區(qū)和低值區(qū)的分布幾乎沒有改變,結(jié)果與前人研究一致,但是干旱季節(jié)的土壤呼吸空間格局與非旱季的土壤呼吸空間格局有明顯的差異,Martin等[34]發(fā)現(xiàn),由于旱季土壤缺少水分,從而抑制了土壤微生物攝取土壤有機(jī)物,導(dǎo)致土壤微生物呼吸受到限制,最終降低了土壤呼吸強(qiáng)度,干旱條件會(huì)改變土壤呼吸空間格局。
3 展望
根據(jù)上述關(guān)于土壤呼吸空間格局的研究現(xiàn)狀可發(fā)現(xiàn),在沒有環(huán)境因子擾動(dòng)的情況下,森林土壤呼吸空間格局的日變化、生長(zhǎng)季的月變化在避免環(huán)境干擾的情況下基本能保持穩(wěn)定,這種土壤呼吸空間格局的穩(wěn)定性能夠給量化特定時(shí)間內(nèi)的區(qū)域土壤呼吸帶來(lái)便利,但是由于生長(zhǎng)季和非生長(zhǎng)季的各種環(huán)境因子之間發(fā)生明顯的變化,導(dǎo)致2個(gè)季節(jié)土壤呼吸空間變化上的關(guān)鍵影響因子有差異,從而生長(zhǎng)季和非生長(zhǎng)季的土壤呼吸空間格局有明顯變化。另外,土壤呼吸空間格局經(jīng)過環(huán)境因子的擾動(dòng)(如經(jīng)過火燒及干旱影響)后,由于環(huán)境擾動(dòng)會(huì)改變?cè)械耐寥缹傩苑植记闆r,從而導(dǎo)致環(huán)境擾動(dòng)會(huì)改變?cè)械耐寥篮粑臻g格局,這給準(zhǔn)確量化區(qū)域土壤呼吸帶來(lái)了挑戰(zhàn)。
目前有關(guān)降雨對(duì)土壤呼吸空間格局影響的研究不夠全面,降雨在生態(tài)系統(tǒng)中已經(jīng)被揭露為一個(gè)能調(diào)控生物多樣性和生態(tài)系統(tǒng)功能的重要因素[35-36]。降雨不僅直接影響生態(tài)過程,還能通過其他環(huán)境因子間復(fù)雜的相互作用間接影響[37]。如降雨通過影響土壤溫濕度等特性[38],凋落物的分解[39]及地上生物量等[40]能直接或通過相互作用來(lái)影響土壤呼吸。由于降雨對(duì)地上地下生態(tài)系統(tǒng)都有復(fù)雜的影響,這給降雨直接對(duì)土壤呼吸空間格局的影響帶來(lái)很多不確定性。特別對(duì)降雨事件頻發(fā)且降雨強(qiáng)度大的熱帶和亞熱帶區(qū)域來(lái)說(shuō),有關(guān)降雨對(duì)該地區(qū)休眠期土壤呼吸空間格局影響的研究仍不夠全面,由于休眠期大氣溫度較低,降雨后蒸發(fā)量較小,降雨對(duì)該時(shí)期土壤影響具有較長(zhǎng)的時(shí)間持續(xù)性[41],并且休眠期土壤呼吸的二氧化碳排放量占全年總量的10%~50%[42],目前有關(guān)降雨對(duì)休眠期土壤呼吸空間格局影響的研究比較缺乏,研究降雨對(duì)區(qū)域土壤呼吸空間格局的影響是準(zhǔn)確量化區(qū)域土壤呼吸的重要過程,能夠提高土壤呼吸監(jiān)測(cè)和評(píng)價(jià)的可靠性,對(duì)森林生態(tài)系統(tǒng)碳循環(huán)有重要意義。
參考文獻(xiàn)
[1] LI W B,YUAN F H.Research progress on spatial heterogeneity of soil respiration in forest ecosystem[J].World forestry research,2014,27(2):11-16.
[2] WATSON R T,NOBLE I R,BOLIN B,et al.Land use,landuse change,and forestry:A special report of the intergovernmental panel on climate change[M].Cambridge:Cambridge University Press,2000.
[3] LORENZ K,LAL R.Carbon sequestration in forest ecosystems[M].Berlin:Springer,2010.
[4] HURSH A,BALLANTYNE A,COOPER L,et al.The sensitivity of soil respiration to soil temperature,moisture,and carbon supply at the global scale[J].Global change biology,2017,23(5):2090-2103.
[5] GOMEZCASANOVAS N,ANDERSONTEIXEIRA K,ZERI M,et al.Gap filling strategies and error in estimating annual soil respiration[J].Global change biology,2013,19(6):1941-1952.
[6] BONDLAMBERTY B,THOMSON A.Temperatureassociated increases in the global soil respiration record[J].Nature,2010,464(7288):579-582.
[7] FANG C,YE J S,GONG Y H,et al.Seasonal responses of soil respiration to warming and nitrogen addition in a semiarid alfalfapasture of the Loess Plateau,China[J].Sci Total Environ,2016,569/570:1466-1477.
[8] LI Y,CHEN G K,LIN D M,et al.Carbon storage and its distribution of forest ecosystems in Zhejiang Province,China[J].Chinese journal of plant ecology,2016,40(4):354-363.
[9] CHEN C,HONG T,LIN Y M,et al.Spatial variation of soil respiration in a coastal protection forest in southeastern China[J].J Soils Sediments,2017,17:2284-2295.
[10] LI W B,BAI Z,JIN C J,et al.The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest [J].Sci Total Environ,2017,590/591:242-248.
[11] ZHANG Y H,LI H J,RONG Y M,et al.Study on spatial heterogeneity of soil respiration in Taiyuan Basin[J].Acta Ecol Sin,2010,30(23):6606-6612.
[12] BRCHET L,DANTEC V L,PONTON S,et al.Shortand longterm influence of iitter quality and quantity on simulated heterotrophic soil respiration in a lowland tropical forest[J].Ecosystems,2017,20(6):1190-1204.
[13] PACALDO R S,VOLK T A,BRIGGS R D,et al.Soil CO2 effluxes,temporal and spatial variations,and root respiration in shrub willow biomass crops fields along a 19year chronosequence as affected by regrowth and removal treatments[J].GCB Bioenergy,2014,6(5):488-498.
[14] HUANG W J,LIU J X,HAN T F,et al.Different plant covers change soil respiration and its sources in subtropics[J].Biology and fertility of soils,2017,53(4):469-478.
[15] SCOTTDENTON L E,SPARKS K L,MONSON R K.Spatial and temporal controls of soil respiration rate in a highelevation,subalpine forest[J].Soil biology & biochemistry,2003,35(4):525-534.
[16] YAN J X,LI H J,LI J J.Spatial heterogeneity of soil respiration in a coniferbroadleaf mixed forest in the Pangquangou Nature Reserve Area[J].Acta ecologica sinica,2015,35(24):8184-8193.
[17] HU J G,ZHOU J,ZHOU G M,et al.Improving estimations of spatial distribution of soil respiration using the bayesian maximum entropy algorithm and soil temperature as auxiliary data [J].PloS one,2015,11(1):1-19.
[18] HU H Q,HU T X,SUN L.Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the Greater Xingan Mountains,China[J].J For Res,2016,27(5):1153-1162.
[19] DORMANN C F,MCPHERSON J M,ARAU′JO B M,et al.Methods to account for spatial autocorrelation in the analysis of species distributional data:A review[J].Ecography,2007,30(5):609-628
[20] LAVOIE M,MACK M C.Spatial heterogeneity of understoryvegetation and soil in an Alaskan upland boreal forest fire chronosequence[J].Biogeochemistry,2012,107(1/2/3):227-239.
[21] KOSUGI Y,MITANI T,ITOH M,et al.Spatial and temporal variation in soil respiration in a southeast Asian tropical rainforest[J].Agricultural and forest meteorology,2007,147(1/2):35-47.
[22] FTI S,BALOGH J,NAGY Z,et al.Soil moisture induced changes on finescale spatial pattern of soil respiration in a semiarid sandy grassland[J].Geoderma,2014,213(1):245-254.
[23] BONDLAMBERTY B,THOMSON A.Temperatureassociated increases in the global soil respiration record[J].Nature,2010,464(7288):579-582.
[24] RAICH J W,POTTER C S,BHAGAWATI D.Interannual variability in global soil respiration,1980-94[J].Global change biology,2002,8(8):800-812.
[25] ARCHMILLER A A,SAMUELSON L J,LI Y R.Spatial variability of soil respiration in a 64yearold longleaf pine forest[J].Plant soil,2016,403(1):419-435.
[26] LA SCALA JR N,MARQUES JR J,PEREIRA G T,et al.Shortterm temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil[J].Soil Biology & biochemistry,2000,32(10):1459-1462.
[27] SHI B K,GAO W F,CAI H Y,et al.Spatial variation of soil respiration is linked to the forest structure and soil parameters in an oldgrowth mixed broadleavedKorean pine forest in northeastern China[J].Plant soil,2016,400(1/2):263-274.
[28] LUAN J W,LIU S R,ZHU X L,et al.Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests[J].Soil biology & biochemistry,2012,44(1):143-150.
[29] XU M,QI Y.Soilsurface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California[J].Global change biology,2001,7(6):667-677.
[30] 張濤,羅雷,雷杰,等.三峽庫(kù)區(qū)馬尾松林土壤呼吸的空間變異特征[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,36(1):28-34.
[31] HU H Q,HU T X,SUN L.Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the Greater Xing'an Mountains,China[J].J For Res,2016,27(5):1153-1162.
[32] NILSSON K S,HYVNEN R,AGREN G I.Using the continuousquality theory to predict microbial biomass and soil organic carbon following organic amendments[J].Eur J Soil Sci,2005,56(3):397-406.
[33] KOBZIAR L N,STEPHENS S L.The effects of fuels treatments on soil carbon respiration in a Sierra Nevada pine plantation[J].Agricultural and forest meteorology,2006,141(2/3/4):161-178.
[34] MARTIN J G,BOLSTAD P V.Variation of soil respiration at three spatial scales:Components within measurements,intrasite variation and patterns on the landscape[J].Soil biology & biochemistry,2009,41:530-543.
[35] ZHOU X H,TALLEY M,LUO Y Q.Biomass,litter,and soil respiration along a precipitation gradient in Southern Great Plains,USA[J].Ecosystems,2009,12(8):1369-1380.
[36] EPSTEIN H E,LAUENROTH W K,BURKE I C,et al.Ecological responses of dominant grasses along two climatic gradients in the Great Plains of the United States[J].J Veg Sci,1996,7(6):777-788.
[37] ZHANG B W,TAN X R,WANG S S,et al.Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semiarid steppe[J].Functional ecology,2017,31(6):1301-1311.
[38] DENG Q,ARAS S,YU C L,et al.Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field[J].Agriculture,ecosystems and environment,2017,248:29-37.
[39] MCCULLEY R L,BURKE I C,NELSON J A,et al.Regional patterns in carbon cycling across the Great Plains of North America[J].Ecosystems,2005,8:106-121.
[40] DERNER J D,HICKMAN K R,POLLEY H W.Decreasing precipitation variability does not elicit major aboveground biomass or plant diversity responses in a mesic rangeland[J].Rangeland ecology and management,2011,64(4):352-357
[41] LIANG L Y,PENG S L,SUN J M,et al.Estimation of annual potential evapotranspiration at regional scale based on the effect of moisture on soil respiration[J].Ecological modelling,2010,221(22):2668-2674.
[42] SCHINDLBACHER A,ZECHMEISTERBOLTENSTERN A,GLATZEL G,et al.Winter soil respiration from an Austrian mountain forest[J].Agricultural and forest meteorology,2007,146(3 /4):205-215.