楊艷麗
摘 ?要: 針對傳統(tǒng)高精度分類算法在面對不定因子時,無法確定計算數(shù)據(jù)信噪度,造成計算精度不佳的問題,提出基于屬性約簡的粗糙集數(shù)據(jù)的高精度分類算法。通過對影響粗糙集數(shù)據(jù)分類精度的各影響因素進行詳細分析,對粗糙集數(shù)據(jù)屬性進行約簡,抵消對應不定因子以及信噪數(shù)據(jù),提高粗糙集數(shù)據(jù)分類精度。實驗結果表明,采用改進分類算法相比傳統(tǒng)分類方法,其分類精度及抗噪性均有提高,且其記錄結果數(shù)據(jù)致盲率較低,具有一定優(yōu)勢。
關鍵詞: 粗糙集數(shù)據(jù); 高精度分類算法; 屬性約簡; 屬性集; 數(shù)據(jù)集; 抗噪性
中圖分類號: TN911?34; TP393 ? ? ? ? ? ? ? ? 文獻標識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2018)10?0154?03
Abstract: In allusion to the poor calculation accuracy problem caused by inability to determine the signal?to?noise degree of calculated data when uncertain factors are met in the traditional high?precision classification algorithm, a high?precision classification algorithm based on attribute reduction is proposed for rough set data. The attributes of rough set data are reduced by detailedly analyzing various factors affecting the classification accuracy of rough set data to counteract the corresponding uncertain factors and signal?to?noise data, and improve the classification accuracy of rough set data. The experimental results show that in comparison with the traditional classification method, the improved classification algorithm has certain advantages in that it has higher classification accuracy and noise immunity, and the blind rate of the recorded result data is low.
Keywords: rough set data; high accuracy classification algorithm; attribute reduction; attribute set; data set; noise immunity
3.1 ?試驗數(shù)據(jù)設置
試驗從某數(shù)據(jù)網(wǎng)站上下載了數(shù)個執(zhí)行粗糙數(shù)據(jù),將執(zhí)行粗糙數(shù)據(jù)進行粗糙集數(shù)據(jù)的高精度分類計算。為保證試驗的準確性,需要對試驗數(shù)據(jù)參數(shù)進行設定,試驗數(shù)據(jù)設定結果如表2所示。
3.2 ?試驗結果分析
分別從計算抗性上以及計算精度上進行對比,使用傳統(tǒng)高精度分類算法與改進高精度分類算法進行比較,在不同的試驗參數(shù)下,分別記錄數(shù)據(jù)致盲過程的變化量以及在三種試驗計算環(huán)境下的試驗結果,見表3。
通過上述表3中數(shù)據(jù)可以看出,本設計的粗糙集數(shù)據(jù)的高精度分類計算方法在計算精準度上明顯高于傳統(tǒng)計算方法。對比不同的計算過程跟蹤結果,本文計算方法更具有計算抗性。圖1為兩種方法計算致盲點數(shù)據(jù)變化。計算致盲點數(shù)據(jù)是描述計算流程的重要指標,計算致盲點數(shù)據(jù)與計算準確率成一定的倍數(shù)關系。計算致盲點數(shù)據(jù)分布越有規(guī)律說明計算準確率越高。通過圖可以看出粗糙集數(shù)據(jù)的高精度分類計算方法的計算致盲點數(shù)據(jù)分布成規(guī)律遞增的趨勢,但傳統(tǒng)高精度分類計算方法的計算致盲點數(shù)據(jù)分布雜亂無序;因此本設計的粗糙集數(shù)據(jù)的高精度分類計算方法比傳統(tǒng)高精度分類計算方法更具準確性。
本設計的粗糙集數(shù)據(jù)的高精度分類計算方法導入粗糙集數(shù)據(jù)實現(xiàn)屬性約簡計算,有效地排除不定因子異己信噪數(shù)據(jù)的干擾,通過屬性約簡方式實現(xiàn)粗糙數(shù)據(jù)的高精度分類計算。希望通過本文的研究能夠提升高精度分類計算方法的計算精準度。
[1] 王旭,謝沐男,鄧蕾.基于粗糙集的物流資源分類方法研究[J].計算機工程與應用,2016,52(14):67?71.
WANG Xu, XIE Munan, DENG Lei. Research on classification method of logistics resources based on rough set [J]. Computer engineering and applications, 2016, 52(14): 67?71.
[2] 劉繼宇,王強,羅朝暉,等.基于粗糙集的加權KNN數(shù)據(jù)分類算法[J].計算機科學,2015,42(10):281?286.
LIU Jiyu, WANG Qiang, LUO Zhaohui, et al. Weighted KNN data classification algorithm based on rough set [J]. Computer science, 2015, 42(10): 281?286.
[3] 徐久成,李濤,孫林,等.基于信噪比與鄰域粗糙集的特征基因選擇方法[J].數(shù)據(jù)采集與處理,2015,30(5):973?981.
XU Jiucheng, LI Tao, SUN Lin, et al. Feature gene selection based on SNR and neighborhood rough set [J]. Journal of data acquisition & processing, 2015, 30(5): 973?981.
[4] 熊方,張賢勇.變精度粗糙集的區(qū)域屬性約簡及其結構啟發(fā)算法[J].計算機應用,2016,36(11):2954?2957.
XIONG Fang, ZHANG Xianyong. Regional attribute reduction and their structural heuristic algorithms for variable precision rough sets [J]. Journal of computer applications, 2016, 36(11): 2954?2957.
[5] MA X, WANG G, YU H. Heuristic algorithms for finding distribution reducts in probabilistic rough set model [J]. International journal of engineering science & technology, 2015, 2(3): 1?14.
[6] HAN Y, LI M C, GUO X C, et al. The text classification attribute reduction algorithm based on the rough set theory [J]. Journal of Northeast Dianli University, 2016, 1(5): 145?150.
[7] JIAO N. Research on knowledge reduction algorithm based on variable precision tolerance rough set theory [J]. Computer science, 2015, 5(8): 120?135.
[8] LI X, ZENG W, SHI Y, et al. Resting state fMRI data classification method based on K?means algorithm optimized by rough set [J]. 2017, 8(6): 84?92.
[9] KUMAR S U, INBARANI H H. A novel neighborhood rough set based classification approach for medical diagnosis [J]. Procedia computer science, 2015, 47: 351?359.
[10] 龐幫艷,張艷敏.基于粗糙集的公共網(wǎng)絡入侵檢測方法研究[J].現(xiàn)代電子技術,2017,40(4):28?31.
PANG Bangyan, ZHANG Yanmin. Research of public network intrusion detection method based on rough set theory [J]. Modern electronics technique, 2017, 40(4):28?31.