彭 艷,劉勇敢,楊 揚,楊 毅,劉 娜,孫 翊
(上海大學(xué)機(jī)電工程與自動化學(xué)院,上海 200072)
果蔬具有豐富的營養(yǎng)物質(zhì),是人類生活中必不可少的食物[1]。中國是一個農(nóng)業(yè)大國,從1994年起僅水果產(chǎn)量就已躍居世界首位[2]。根據(jù)2003年聯(lián)合國糧農(nóng)組織的統(tǒng)計,中國的果蔬年產(chǎn)量約為3.58億t,約占全世界果蔬年產(chǎn)量的28%[3],截止2013年果蔬種植面積仍呈波動增長趨勢[4]。果蔬采摘是果蔬生產(chǎn)鏈中最耗時、最費力的一個環(huán)節(jié)[5],但目前果蔬采摘作業(yè)主要依靠人工完成,存在效率低、成本高、勞動量大等問題。近年來,由于人口老齡化問題導(dǎo)致人力資源嚴(yán)重匱乏,已成為許多發(fā)達(dá)國家和發(fā)展中國家共同面臨的問題[2]。人工采摘作業(yè)的成本在整個生產(chǎn)成本中所占比例高達(dá)33%~50%,因此實現(xiàn)果蔬采摘的自動化作業(yè)變得越來越迫切[6-7]。然而,果蔬的生長環(huán)境比較復(fù)雜,外皮大多較為脆弱,形狀也復(fù)雜多變[8],在采摘過程中極易造成損傷,這將直接影響果蔬的儲存、加工和銷售,從而最終影響市場價格和經(jīng)濟(jì)效益[9]。因此,研究和開發(fā)能夠減小果蔬損傷率的機(jī)械手對于解放勞動力、提高生產(chǎn)效率以及保證果蔬品質(zhì)等具有重要意義。在保證穩(wěn)定抓取的前提下,有效避免機(jī)械手對果蔬的損傷、實現(xiàn)柔順作業(yè),是果蔬采摘機(jī)器人技術(shù)的研究重點[1,6,8-10]。
近年來,傳統(tǒng)的工業(yè)機(jī)械手相關(guān)技術(shù)已經(jīng)趨于成熟,其使用不再嚴(yán)格局限于工業(yè)環(huán)境[11],很多農(nóng)業(yè)采摘機(jī)器人的末端執(zhí)行器直接使用工業(yè)用機(jī)械手,但存在體積大、靈活性差、成本高、采摘效率低[12-13]、通用性較差、與環(huán)境的相容性較低等問題,且構(gòu)造和控制較復(fù)雜、柔性差,難以實現(xiàn)無損采摘。果蔬采摘機(jī)械手的應(yīng)用需要具有以下特點:1)作業(yè)對象處于高度的非結(jié)構(gòu)化與不確定的未知可變環(huán)境中[14]。因此,果蔬采摘機(jī)械手要具有高度的操作對象適應(yīng)性,并且盡可能避免對周圍環(huán)境及果蔬造成破壞傷害。2)能夠應(yīng)對采摘對象的質(zhì)地脆弱易傷性及個體形狀差異性。3)結(jié)構(gòu)簡單、可控性好、普及性好、可靠性高、價格合理[15]。4)包裹性強(qiáng)。傳統(tǒng)機(jī)械手與果蔬的接觸面積通常較小甚至是點接觸,這種機(jī)械手一般難以改變他們的形狀以適應(yīng)多變的抓握對象[14,16-17],難以與果蔬的形狀緊密匹配。針對果蔬采摘的特點,國內(nèi)外學(xué)者對果蔬采摘機(jī)械手進(jìn)行了大量的研究工作,研制出了自由度較多的末端執(zhí)行器,如Arima等[18]研制了6自由度黃瓜采摘手;以及靈活性與柔韌性較高的欠驅(qū)動末端執(zhí)行器和硬質(zhì)連續(xù)體執(zhí)行器,如美國俄亥俄大學(xué)的研究人員研制出了一種西紅柿采摘機(jī)械手[19]、國內(nèi)浙江大學(xué)金波等[20]研制了欠驅(qū)動結(jié)構(gòu)的機(jī)械手等??傮w來看,這些機(jī)械手大多由剛性鉸鏈或者桿件構(gòu)成,能夠?qū)崿F(xiàn)對目標(biāo)物體精確的抓取操作,但是變形范圍小、自由度受限、剛性強(qiáng)、缺乏必要的感知能力以及柔順控制[21],即使在剛性材料表面鑲嵌一層軟體材料,也難以針對被采摘果蔬的特點實現(xiàn)包裹性抓取和采摘。
軟體手出現(xiàn)后,因其優(yōu)越的性能引起了國內(nèi)外學(xué)者的廣泛關(guān)注[22-26],迅速成為機(jī)器人領(lǐng)域的研究熱點。軟體手的設(shè)計靈感來源于自然界中的軟體動物觸角,如水母、章魚和海星等[27-29],通常由柔軟材料制成,具有較大的變形能力和無限的自由度,可在較大范圍內(nèi)根據(jù)目標(biāo)物體的形狀改變自身的形狀和尺寸[30]。因此軟體手可通過變形實現(xiàn)與被抓取物體的形態(tài)匹配并最終實現(xiàn)穩(wěn)定的抓取動作。
新型軟體手的出現(xiàn)為解決剛性果蔬采摘機(jī)械手靈活度差、柔順性差、自由度受限、復(fù)雜環(huán)境適應(yīng)性差等問題提供了新的思路和方法。以氣壓和線纜作為驅(qū)動,德國Festo和北京航空航天大學(xué)合作研制了象鼻+章魚觸手[31](圖1a)和氣動肌肉[32-33]等。美國哈佛大學(xué)Whiteside課題組以彈性硅膠為材料,結(jié)合3D打印技術(shù),設(shè)計制造了以氣動網(wǎng)絡(luò)為執(zhí)行器的軟體手[34-36](圖1b),具有承壓小、變形大[37]、運動靈活,能夠與環(huán)境實現(xiàn)互容等特點;Ge等[38]提出了一種新的 4D打印技術(shù)可使軟體手具有可控的形狀記憶行為;日本東芝公司設(shè)計的Toshiba靈巧手[39](圖1c),能夠?qū)崿F(xiàn)抓取、移動物體和擰螺釘?shù)葎幼?,具有較好的柔順性[40];北航文力研究組研制的軟體手爪可以根據(jù)被抓取物體的大小形狀調(diào)整其有效長度[41](圖1d);Galloway等[42]設(shè)計了基于多氣腔結(jié)構(gòu)和纖維增強(qiáng)結(jié)構(gòu)的兩款海底生物采樣軟體手(圖 1e和 1f),可以靈活地實現(xiàn)對海底多種形狀生物體的采樣。智能材料的運用,可以直接將物理刺激轉(zhuǎn)化為位移,如介電彈性體(dielectric elastomer)[43-44](圖 1g)、導(dǎo)電聚合物(electro active polymer,EAP)[45-46]、形狀記憶合金(shape memory alloy,SMA)[47](圖1h)、形狀記憶聚合物(shape memory polymer,SMP)[48]等在軟體機(jī)器人上的應(yīng)用,具有廣闊的發(fā)展前景。因此,將軟體手應(yīng)用于水果采摘作業(yè)將有望克服傳統(tǒng)剛性機(jī)械手的缺陷,減小對果蔬的傷害。表1對比了各種機(jī)械手的相關(guān)特性[30,49],可以看出軟體手更適合于形狀多變的果蔬順應(yīng)抓取。
由于軟體手屬于近些年發(fā)展起來的新興技術(shù),因此在果蔬采摘中的應(yīng)用也處于起步階段。如意大利研究者M(jìn)uscato等[50]采用螺旋排列橡膠片開發(fā)了柑橘軟體采摘手,該軟體手通過三個手指將柑橘抓緊后,機(jī)械臂后移拉緊以便于果梗進(jìn)入切割區(qū)域(圖 2a);由 Cambridge Consultants公司研發(fā)的配有視覺系統(tǒng)的六指軟體采摘手,能夠識別果蔬類別和成熟度,并且軟體手能夠根據(jù)果蔬的形狀進(jìn)行柔順抓取[51](圖2b);Tortga AgTech公司投資設(shè)計的草莓采摘機(jī)器人,其末端執(zhí)行器采用柔軟的硅膠材料并制作成網(wǎng)格形狀,可實現(xiàn)草莓的定時柔順采摘[52](圖2c)。由此可見,軟體手在形狀和大小不同、易碎的果蔬采摘中將會發(fā)揮更大的作用。
圖1 軟體手實例Fig.1 Examples of soft robotic gripper
表1 機(jī)械手相關(guān)特性比較Table 1 Comparison of relative characteristics of manipulators
圖2 軟體采摘手[50-52]Fig.2 Soft picking grippers[50-52]
執(zhí)行器是軟體手設(shè)計的關(guān)鍵,從根本上決定了軟體手的性能。軟體手是軟體機(jī)器人領(lǐng)域的一個分支,其驅(qū)動源的類型和結(jié)構(gòu)往往具有相通性[53]。目前較為常用的驅(qū)動源主要包括化學(xué)反應(yīng)、電荷刺激、加壓流體、彈性材料、形狀記憶合金等。與剛性機(jī)械手相比,軟體手的控制和結(jié)構(gòu)比較簡單,操作和安裝也很方便,而且具有高度的靈活性、適應(yīng)性和通用性,能夠與被抓取的果蔬形成很好的互容效果。軟體手的出現(xiàn)克服了傳統(tǒng)果蔬采摘機(jī)械手僵硬、環(huán)境適應(yīng)性差等缺陷,具有“一手多用”的功能。根據(jù)驅(qū)動方式的不同,軟體手在果蔬采摘作業(yè)中展現(xiàn)出了不同的特點。
氣壓驅(qū)動主要包括氣動人工肌肉[54-55]和超彈性氣動驅(qū)動[56-59]2種方式。氣動人工肌肉是目前較為成熟的執(zhí)行器,由外層編織套和內(nèi)層橡膠管組成,可通過驅(qū)動氣壓的改變產(chǎn)生伸縮運動[60-61],其驅(qū)動結(jié)構(gòu)如圖3a所示。加壓時,氣動肌肉膨脹,從而產(chǎn)生軸向收縮力[62];當(dāng)編織角θ0達(dá)到極限角θ時停止變形,因此可通過調(diào)節(jié)氣壓實現(xiàn)氣動人工肌肉的收縮運動。
利用超彈性材料制成的氣動執(zhí)行器是一種簡單有效的執(zhí)行器,在加壓或者受力時可以產(chǎn)生大變形,主要有加壓流體彈性硅膠執(zhí)行器[63-64]和纖維增強(qiáng)執(zhí)行器[65]2大類。其中通過加壓流體驅(qū)動的軟體手由于其質(zhì)量輕、功率高、成本低和制造容易等特點得到了較為廣泛的應(yīng)用,也是目前較為流行的軟體手驅(qū)動方式之一。這種材料具有非線性特性,其結(jié)構(gòu)主要由內(nèi)嵌氣道的主體氣腔和限制層組成。如圖 3b所示,可通過調(diào)節(jié)氣室內(nèi)部氣壓△P使軟體手產(chǎn)生不同程度的彎曲變形[66-68]。另一種是通過纖維約束的思路設(shè)計的纖維增強(qiáng)型執(zhí)行器,由超彈性材料(如硅酮、軟玻璃、高密度聚乙烯纖維等)和不可伸展材料(編織物或纖維)[34,65]組合而成。當(dāng)加壓流體激活氣腔時,由于纖維約束的不對稱性會驅(qū)動空氣室延伸,實現(xiàn)彎曲變形如圖3c所示。通過改變纖維線的繞線方式和數(shù)量、增加氣室的數(shù)量均可以實現(xiàn)多種更為復(fù)雜的運動方式[69-70]。
當(dāng)氣壓逐漸增大時,氣動軟體手會產(chǎn)生變形,與要采摘的果蔬逐漸順應(yīng)互容,從而實現(xiàn)果蔬的包裹性采摘[70-72],如圖 4所示。氣動軟體手具有制造方便、經(jīng)濟(jì)實用、性能穩(wěn)定等優(yōu)點,并且適應(yīng)了果蔬采摘的特點,使果蔬的無損采摘變?yōu)榭赡?。此外,氣動軟體手對操作者的技能要求低,更容易普及,已經(jīng)有相關(guān)成果開始商業(yè)化;但缺點在于對裝配精度要求較高,且需要額外的氣源作為輔助機(jī)構(gòu)。
拉線是一種柔軟且在長度方向上有較高拉伸強(qiáng)度的組件,因此,能夠在軟體結(jié)構(gòu)中穿過復(fù)雜的路徑且承受較大的力而不改變自身的尺寸。拉線驅(qū)動的基本原理是在結(jié)構(gòu)上選取一些固定點,然后用線纜將其連接起來,并通過滑輪外連驅(qū)動電機(jī),依靠驅(qū)動線的收放來驅(qū)動軟體手的動作[73](圖5a)。這類拉線裝置具有較為復(fù)雜的結(jié)構(gòu)且需要控制系統(tǒng)[74](圖5b),因此增大了使用難度。
圖3 氣動執(zhí)行器[67,70]Fig.3 Pneumatic actuators[67,70]
圖4 氣動軟體手的應(yīng)用[70-72]Fig.4 Application of pneumatic soft robotic grippers[70-72]
繩纜驅(qū)動軟體手由軟材料和欠驅(qū)動結(jié)構(gòu)結(jié)合而成,通過對單根線纜張力的控制驅(qū)動手指運動,確保了對不同形狀物體的適應(yīng)能力。但是這種作動方式類似于欠驅(qū)動,相鄰指節(jié)間存在較大位移量,故在果蔬采摘時拉線手指只能形成簡單的弧面接觸,不能對形狀不規(guī)則的果蔬實現(xiàn)包裹式抓取,其應(yīng)用如圖5c、5d所示[75]??梢钥闯?,拉線軟體手的抓取效果不如氣動軟體手。由于手指要承受線纜的拉力,因此制作拉線軟體手時一般選擇楊氏模量較大的軟材料,這也增加了拉線軟體手的抓握能力[76],可以采摘和抓取相對大或重的果蔬。拉線軟體手制作容易、成本也較低,但是受限于龐大的驅(qū)動系統(tǒng)很難實現(xiàn)小型化和集成化[37]。
圖5 拉線軟體手[73-75]Fig.5 Pull soft robotic grippers[73-75]
形狀記憶合金 (shape memory alloy,SMA)是一種智能材料,受力易變形,表現(xiàn)出一定的被動柔性,且溫度變化時形狀也會發(fā)生變化(如圖6a),當(dāng)材料冷卻時可回復(fù)至原來的長度[77-78],屬于一種線性驅(qū)動,有彎曲和扭轉(zhuǎn) 2種作動方式[79],具有較高的質(zhì)量應(yīng)力比,被廣泛應(yīng)用于軟體手的驅(qū)動。
這種材料的變化特性源于材料本身的相變,可根據(jù)操作對象的形狀做出自適應(yīng)調(diào)整,而且SMA控制方便,無需外加輔助裝置(包括壓縮機(jī)、泵、閥門等)[80],通過改變電流脈沖信號的形式可以控制SMA材料的變形。在果蔬采摘應(yīng)用中該作動方式可以實現(xiàn)柔順采摘果蔬作業(yè)并且能夠?qū)咝纬砂j(luò)保護(hù)。由于執(zhí)行器的剛度低、柔性好,不僅對于外皮精致的小型果蔬會有較好的采摘效果,而且可在狹小空間內(nèi)對抓取目標(biāo)進(jìn)行操作。不僅如此,智能材料本身作為執(zhí)行器可實現(xiàn)對軟體手的精確控制且具備感知能力,因此可根據(jù)外果皮的要求調(diào)整抓取力。但是該材料的響應(yīng)頻率有限,驅(qū)動速率比較低[81],會對果蔬采摘的效率造成影響。此外這種軟體執(zhí)行器較為柔軟、承載能力較小,采摘果蔬時容易受到周圍障礙物的干擾,且抓取不穩(wěn)定。由于該執(zhí)行器的制造成本高、技術(shù)還不夠成熟,因此目前在果蔬采摘中的應(yīng)用率相對較低。圖6b、6c為其夾持作動圖[78]。
圖6 SMA軟體手[78-79]Fig.6 SMA soft robotic grippers[78-79]
電活性聚合物執(zhí)行器(electro active polymer,EAP)是一類易受電場影響而發(fā)生伸縮、彎曲、束緊或膨脹等形變的柔性智能材料[82-83]。根據(jù)電活性聚合物致動機(jī)理可以分為離子型(Ionic)和電子型(Dielectric)2大類[84]。在EAP薄膜兩側(cè)覆蓋柔順的電極,當(dāng)對其施加外在電場或電壓刺激時,EAP薄膜在電場的作用下會產(chǎn)生變形運動。由于其響應(yīng)速度快且變形量大,得到了廣泛的關(guān)注[85],其電子型介電彈性執(zhí)行器的原理如圖7a所示[86]。
這種執(zhí)行器可以承受很大的變形,同時維持較大的輸出力[87],而且完全電控,執(zhí)行作動時不需要額外的輔助機(jī)構(gòu)。在果蔬采摘中,可根據(jù)果蔬的形狀做出自適應(yīng)調(diào)整,對果蔬形成包裹抓取,并且采摘抓取比較穩(wěn)定,響應(yīng)速率快,如圖7b、7c所示[88-90]。但是離子型EAP軟體手機(jī)械強(qiáng)度較低,容易受到果蔬周圍障礙物的阻擋,而電子型EAP軟體手需要較大的電壓支撐。有研究表明,對于60 μm厚的硅膠膜的驅(qū)動電壓為3.5 kV[44],因此,使用成本會比較高,而且EAP存在較多的失效形式,如應(yīng)力松弛、電擊穿、褶皺等[88],從而將會對果蔬采摘造成一定的不利影響。因此目前在果蔬采摘中該執(zhí)行器應(yīng)用率也比較低,其主要原因與SMA執(zhí)行器類似,都屬于智能材料,具有很高的柔順性,但由于該技術(shù)也處于起步階段,不適合采摘質(zhì)量和形狀較大的果蔬。不同的是EAP執(zhí)行器驅(qū)動的軟體手能夠在 100 ms實現(xiàn)打開和關(guān)閉[89],反應(yīng)速度快、效率非常高,因此在果蔬采摘中的應(yīng)用要強(qiáng)于SMA軟體手。
圖7 EAP軟體手[86,89-90]Fig.7 EAP soft robotic grippers[86,89-90]
建模分析是機(jī)械手運動控制的基礎(chǔ)。通過分析末端執(zhí)行器、機(jī)械手各運動構(gòu)件的位置姿態(tài)與果蔬之間的關(guān)系,構(gòu)建果蔬采摘的運動學(xué)模型,是路徑規(guī)劃、實現(xiàn)穩(wěn)定抓取控制的基礎(chǔ)。運動學(xué)模型包括正運動學(xué)模型、逆運動學(xué)模型和微分運動學(xué)模型[91-92],而對果蔬采摘機(jī)械手的運動學(xué)建模研究主要是正運動學(xué)建模。文獻(xiàn)[42]表明這種方法相對比較簡單,即在給定關(guān)節(jié)角度和速度的情況下可實現(xiàn)末端執(zhí)行器的有效抓取。
但對于軟體手物理模型的建立是一項極具有挑戰(zhàn)的工作。由于自身材料特性和連續(xù)的形變,無法像剛體運動學(xué)那樣利用桿件長度和夾角進(jìn)行求解[93],即使最簡單的正運動學(xué)也無法直接套用公式進(jìn)行求解。根據(jù)軟體手以恒定曲率變形的特點,Jones等在常曲率假設(shè)的基礎(chǔ)上,運用改進(jìn)的D-H模型和幾何分析研究出一套分段常曲率(piecewise constant curvature,PPC)理論模型[94-95],這種方法比較適合連續(xù)體機(jī)械臂和軟體手指等細(xì)長結(jié)構(gòu),雖然大多數(shù)柔性細(xì)長體結(jié)構(gòu)彎曲時并不是完全由圓弧組成,但可作近似圓弧處理。Duriez等[96]提出了基于有限元分析的可變固體力學(xué)的實時建模方法,該方法既可以對軟體機(jī)器人的工作環(huán)境進(jìn)行仿真,也可對機(jī)器人進(jìn)行逆運動學(xué)控制。Polygerinos[16]提出了針對線性增強(qiáng)型氣壓執(zhí)行器的分析模型,該模型可用于基于超彈性材料的加壓流體執(zhí)行器,為軟體執(zhí)行器的設(shè)計提供了理論支持。拉線軟體執(zhí)行器有較多的建模方法[97],這些方法允許曲率產(chǎn)生變化,如雅克比法和神經(jīng)網(wǎng)絡(luò)法[53,98]等。
此外,根據(jù)軟體手具體的工作環(huán)境和操作對象的不同,也可利用材料本身的性質(zhì)與試驗數(shù)值分析方法建立執(zhí)行器的作動輸出與輸入的函數(shù)關(guān)系。由于軟體材料的變形具有非線性、涉及多學(xué)科交叉等問題,因此對其進(jìn)行精確的建模還需要進(jìn)一步的嘗試。
裝置的靈活性對于果蔬采摘工作至關(guān)重要,而果蔬采摘機(jī)械手能夠像人手一樣靈活的抓取和采摘離不開控制系統(tǒng)[99]。果蔬采摘機(jī)械手的控制通??梢苑?層:單手指控制層、多手指協(xié)調(diào)運動控制層和目標(biāo)軌跡跟蹤層[100]。
機(jī)械手對目標(biāo)果蔬進(jìn)行抓取時,其指尖的位置信息和力信息是控制系統(tǒng)必要的反饋信息。因此,基于剛性元件的控制系統(tǒng),對于反饋信息的實時性和精確度有較高的要求,這就增加了控制系統(tǒng)的難度。近年來,國內(nèi)外學(xué)者在軟體手的閉環(huán)控制相關(guān)研究方面進(jìn)行了很多探索,如Fei等[101]首次提出了由4個柔性傳感器組成的閉環(huán)反饋控制系統(tǒng),并在滾動軟體機(jī)器人中得到了應(yīng)用;Kang等[102]設(shè)計了利用慣導(dǎo) IMU(inertial measurement unit)監(jiān)控氣動肌肉動作的閉環(huán)控制系統(tǒng)。因此,對于軟體手的運動控制,可利用微型或柔性傳感器反饋關(guān)節(jié)角度,結(jié)合自適應(yīng)控制率,實現(xiàn)軟體手適應(yīng)采摘果蔬大小和形狀的抓取作業(yè)。軟體手的柔順性允許其通過形變適應(yīng)形狀不同或不確定的采摘對象,降低了對末端執(zhí)行器輸出力控制的要求,簡化了軟體手的控制[103]。根據(jù)果蔬果皮特點的差異,所選擇的控制方式也不相同。開環(huán)控制方式可充分利用材料的柔順性降低輸出力的控制精度,適合操作像白菜、蘋果和梨等外皮有一定耐壓能力的果蔬;而像草莓、葡萄等外皮較為脆軟的果蔬選擇閉環(huán)控制更為安全。
軟體手的控制系統(tǒng)具有一定的開放性,可在不同的機(jī)器人本體上得到應(yīng)用和擴(kuò)展[104]。然而,軟體手具有無限的自由度與有限的執(zhí)行器,使得控制計算量比較大,無法實現(xiàn)精確和實時控制,因而還沒有適用于軟體機(jī)器人的通用控制理論[82],因此還需對果蔬采摘中的控制算法進(jìn)行深入研究。
近年來國內(nèi)外學(xué)者圍繞果蔬采摘技術(shù)做了很多研究,研制出了多種果蔬采摘機(jī)械手,但大多數(shù)由于采摘專一性高、效率低、損壞率高、裝置復(fù)雜和造價昂貴等因素未能實現(xiàn)真正的商業(yè)化,缺少實用價值。因此,針對果蔬生長的特點,果蔬采摘裝置需要具備采摘效率高、損壞率低、結(jié)構(gòu)簡單和成本低等特性。采用軟體手作為果蔬采摘機(jī)器人的末端執(zhí)行器可較理想地滿足果蔬采摘的需求。但軟體手也需要剛性材料作為支撐完成采摘作動。因此,隨著研究的快速發(fā)展,基于單一材料的采摘裝置將會逐步受限,取而代之的將是結(jié)合智能材料、生物材料等多種材料的復(fù)合體[105]。同時要考慮到如果采摘手的柔順性過高,在遇到枝葉等稠密障礙物時,執(zhí)行器易發(fā)生彎曲從而造成抓取失敗,這意味著果蔬采摘裝置須具備良好的柔順性、較高的通用性和感知能力。因此,通過剛性和柔性材料融合的“共融技術(shù)”,利用信息融合理論建立果蔬采摘控制策略,實現(xiàn)柔順性采摘,是未來果蔬采摘裝置的主要發(fā)展趨勢。隨著微型傳感器和電子皮膚[106-107]等技術(shù)的發(fā)展,多技術(shù)融合的智能化果蔬采摘軟體手將是未來果蔬采摘機(jī)械手的發(fā)展方向。
此外,由于果實的隨機(jī)性和所處的非結(jié)構(gòu)環(huán)境,自然生長的果實并不利于末端執(zhí)行器進(jìn)行采摘作業(yè)。因此,為了提高生產(chǎn)效率,可通過改進(jìn)果實的栽植方式、對采摘的果樹進(jìn)行適當(dāng)?shù)男藜鬧6]以及搭建支架等方式以便于末端執(zhí)行器高效、準(zhǔn)確的對果實進(jìn)行采摘。
目前,大部分果蔬采摘機(jī)械手依然采用傳統(tǒng)的剛性機(jī)械手或欠驅(qū)動機(jī)械手,控制精度要求高、操作難度大、通用性差,不能有效地實現(xiàn)對多種果蔬的無損采摘。新一代軟體操作手具有較高的靈活性和環(huán)境適應(yīng)性,在農(nóng)產(chǎn)品的抓取和采摘作業(yè)中具有廣泛的應(yīng)用前景。利用軟體手作為果蔬采摘機(jī)器人的末端執(zhí)行器,為果蔬的無損采摘提供了新的解決方案,同時也有利于軟體機(jī)器人的發(fā)展。盡管在軟體手的建模、控制和應(yīng)用方面還有很多問題需要解決,但它已經(jīng)帶來了現(xiàn)代果蔬采摘機(jī)械手發(fā)展的新契機(jī)。
本文通過對幾種常見軟體手的結(jié)構(gòu)特點和作動方式的對比分析,發(fā)現(xiàn)氣動軟體手和介電彈性軟體手能夠更好地克服果蔬采摘的難點。氣動軟體手的作動特點較好地符合了理想果蔬采摘機(jī)械手的要求,能夠?qū)崿F(xiàn)對果蔬的包絡(luò)和無損采摘,并且具有控制簡單、操作容易、安全性高等特點。不僅如此,氣動軟體手簡單的結(jié)構(gòu)更容易讓果農(nóng)接受和使用,因此氣動軟體手有望更好地應(yīng)用于果蔬采摘作業(yè)中。
軟體手涉及材料、化學(xué)、機(jī)械等多學(xué)科交叉,對它的研究剛剛起步,尚需要對設(shè)計、控制和制造方法進(jìn)行進(jìn)一步研究。首先,軟體手的驅(qū)動方式還不夠完善,如氣動驅(qū)動和拉線驅(qū)動均要外接笨重的驅(qū)動源、SMA和EAP受自身材料特性的限制存在驅(qū)動力不足等問題??衫眯滦偷闹悄懿牧?、生物材料研制出可適應(yīng)被抓取果蔬的變剛度軟體手。其次,對軟體手的設(shè)計方法并未實現(xiàn)統(tǒng)一,缺乏相關(guān)理論的指導(dǎo)。而且軟體結(jié)構(gòu)不同于傳統(tǒng)剛性機(jī)械結(jié)構(gòu),雖然可通過三維計算機(jī)軟件輔助建模,然而對于復(fù)雜的軟體結(jié)構(gòu)需要進(jìn)行分段或分層設(shè)計,或是提出新的設(shè)計方法。最后,研究適合軟體手的建模和控制方法是十分重要的一個環(huán)節(jié)。對于軟體結(jié)構(gòu)有限驅(qū)動器對應(yīng)無限自由度的特點,要實現(xiàn)精確的建模和控制是十分復(fù)雜的。現(xiàn)有的建模技術(shù)在實際中難以應(yīng)用,特別是軟體手的柔順性使得動力學(xué)建模很難滿足控制的要求。
面向果蔬采摘的軟體手是農(nóng)業(yè)裝備技術(shù)與軟體機(jī)器人的交叉融合,說明農(nóng)業(yè)裝備技術(shù)正朝著人-機(jī)器-環(huán)境共融的方向發(fā)展,因此軟體手在果蔬采摘中的應(yīng)用將使果蔬的無損采摘成為可能。
[參 考 文 獻(xiàn)]
[1] 徐麗明,張鐵中. 果蔬果實收獲機(jī)器人的研究現(xiàn)狀及關(guān)鍵問題和對策[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(5):38-42.Xu Liming, Zhang Tiezhong. Present situation of fruit and vegetable harvesting robot and its key problems and measures in application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 38-42. (in Chinese with English abstract)
[2] 彭磊. 欠驅(qū)動蘋果采摘末端執(zhí)行器研究和設(shè)計[D]. 南京:南京農(nóng)業(yè)大學(xué),2010.Peng Lei. Development of Under-actuated Manipulator for Apple Picking[D]. Nanjing: Nanjing Agricultural University,2010. (in Chinese with English abstract)
[3] 孔萬德. 中國水果和蔬菜產(chǎn)業(yè)遵循食品安全要求的研究[M]. 北京:中國農(nóng)業(yè)出版社,2006.
[4] 由海霞. 近十一年我國蔬菜播種面積的變化規(guī)律分析[J].北方園藝,2016,6(43):168-170.
[5] 王麗麗,郭艷玲,王迪,等. 果蔬采摘機(jī)器人研究綜述[J]. 林業(yè)機(jī)械與木工設(shè)備,2009,37(1):10-14.Wang Lili, Guo Yanling, Wang Di, et al. Overview of study on fruit and vegetable picking robots[J]. Forestry Machinery and Woodworking Equipment, 2009, 37(1): 10-14. (in Chinese with English abstract)
[6] 湯修映,張鐵中. 果蔬收獲機(jī)器人研究綜述[J]. 機(jī)器人,2005,27(1):90-96.Tang Xiuying, Zhang Tiezhong. Fruit and vegetable harvesting robot research review[J]. Robot, 2005, 27(1):90-96. (in Chinese with English abstract)
[7] Kataoka T, Murakami A, Duke M, et al. Estimating apple fruit locations for manipulation by apple harvesting robot[C]//IFAC Bio-Robotics,Information Technology and Intelligent Control for Bio-Production Systems, 2000,33(29): 67-72.
[8] 李秦川,胡挺,武傳宇,等. 果蔬采摘機(jī)器人末端執(zhí)行器研究綜述[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2008,39(3):175-179.Li Qinchuan, Hu Ting, Wu Chuanyu, et al. Review of end-effector in fruit and vegetable haresting robot[J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39 (3): 175-179. (in Chinese with English abstract)
[9] 宋健,張鐵中,徐麗明,等. 果蔬采摘機(jī)器人研究進(jìn)展與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2006,37(5):158-162.Song Jian, Zhang Tiezhong, Xu Liming, et al. Research actuality and prospect of picking robot for fruits and vegetables[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(5): 158-162. (in Chinese with English abstract)
[10] 方建軍. 移動式采摘機(jī)器人研究現(xiàn)狀與進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(2):273-278.Fang Jianjun. Present situation and development of mobile harvesting robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004,20(2): 273-278. (in Chinese with English abstract)
[11] Baeten J, Donné K, Boedrij S, et al. Autonomous fruit picking machine: A robotic apple harvester[J]. Springer Tracts in Advanced Robotics, 2008, 42: 531-539.
[12] 湯修映. 果蔬收獲機(jī)器人系統(tǒng)的研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2006.Tang Xiuying. The Study of Harvesting Robot System for Fruit and Vegetable[D]. Beijing: China Agricultural University,2006. (in Chinese with English abstract)
[13] 謝春. 欠驅(qū)動三指手采摘裝置的設(shè)計與抓取研究[D]. 鎮(zhèn)江:江蘇大學(xué),2013.Xie Chun. Design and Grab Research on Picking-device Based on Underactuated Three-fingered Hand[D]. Zhenjiang:Jiangsu University, 2013. (in Chinese with English abstract)
[14] 胡挺. 果蔬采摘機(jī)器人機(jī)械系統(tǒng)設(shè)計與關(guān)鍵技術(shù)研究[D]. 杭州:浙江理工大學(xué),2009.Hu Ting. Research on Mechanical System Design and Key Technology of a Fruit-vegetable Harvesting Robot[D].Hangzhou:Zhejiang Sci-Tech University, 2009. (in Chinese with English abstract)
[15] 王燕,,楊慶華,鮑官軍. 關(guān)節(jié)型果蔬采摘機(jī)械臂優(yōu)化設(shè)計與試驗水[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2011,42(7):191-195.Wang Yan, Yang Qinghua, Bao Guanjun. Optimization design and experiment of fruit and vegetable picking manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 191-195. (in Chinese with English abstract)
[16] Polygerinos P, Wang Z, Overvelde J T B, et al.Modeling of soft fiber-reinforced bending actuators[J].IEEE Transactions on Robotics, 2015, 31(3): 778-789.
[17] Festo. Freshly picked-harvesting with robots[EB/OL].[2014-09-26].https://www.festo.com/group/en/cms/10382.html.
[18] Arima M, Kondo T, Shibano Y, et al. Studies on cucumber harvesting robot:(Part 2) Manufacture of hand based on physical properties of cucumber plant and basic experiment to harvest[J]. Journal of the Japanese Society of Agricultural Machinery, 1994, 56: 69-76.
[19] Ling P P, Ehsani R, Ting K C, et al. Sensing and end-effector for a robotic tomato harvester[J]. ASAE Annual International Meeting, 2004: 1-12.
[20] 金波,林龍賢. 果蔬采摘欠驅(qū)動機(jī)械手爪設(shè)計及其力控制[J]. 機(jī)械工程學(xué)報,2014,50(19):1-7.Jin Bo, Lin Longxian. Design and force control of underactuated manipulator of fruit and vegetable picking[J]. Journal of Mechanical Engineering, 2014, 50 (19): 1-7. (in Chinese with English abstract)
[21] 張立彬,楊慶華,胥芳,等. 機(jī)器人多指靈巧手及其驅(qū)動系統(tǒng)研究的現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(3):271-275.Zhang Libin, Yang Qinghua, Xu Fang, et al. Review of research on multi-fingered robot hand and its driving system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004,20(3): 271-275. (in Chinese with English abstract)
[22] Hughes J, Culha U, Giardina F, et al. Soft manipulators and grippers: A review[J]. In Robotics and AI, 2016, 3(69):1-12.
[23] Rus D, Tolley M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
[24] Bogue R. Flexible and soft robotic grippers: The key to new markets?[J]. Industrial Robot, 2016, 43(3): 258-263.
[25] Wang L, Iida F. Deformation in soft-matter robotics: A categorization and quantitative characterization[J]. Robotics& Automation Magazine IEEE, 2015, 22(3): 125-139.
[26] Elango N, Faudzi A A M. A review article: Investigations on soft materials for soft robot manipulations[J].International Journal of Advanced Manufacturing Technology,2015, 80(5-8): 1027-1037.
[27] Marvi H, Gong C, Gravish N, et al. Sidewinding with minimal slip: Snake and robot ascent of sandy slopes[J].Science (New York, N.Y.), 2014, 346(6206): 224.
[28] Baisch A T, Sreetharan P S, Wood R J. Biologicallyinspired locomotion of a 2g hexapod robot[C]// IEEE/rsj International Conference on Intelligent Robots and Systems.IEEE,2010: 5360-5365.
[29] Elphick M R, Melarange R. Neural control of muscle relaxation in echinoderms[J]. Journal of Experimental Biology, 2001, 204(5): 875-885.
[30] 曹玉君,尚建忠,梁科山,等. 軟體機(jī)器人研究現(xiàn)狀綜述[J]. 機(jī)械工程學(xué)報,2012,48(3):25-33.Cao Yujun, Shang Jianzhong, Liang Keshan, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering,2012, 48 (3): 25-33. (in Chinese with English abstract)
[31] Rolf M, Steil J J. Constant curvature continuum kinematics as fast approximate model for the bionic handling assistant[C]// Ieee/rsj International Conference on Intelligent Robots and Systems. IEEE, 2012: 3440-3446.
[32] Andrikopoulos G, Nikolakopoulos G, Manesis S. A survey on applications of pneumatic artificial muscles[C]// Control& Automation. IEEE,2011: 1439-1446.
[33] Lei J, Huangying Y U, Wang T. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot[J].Chinese Journal of Mechanical Engineering, 2016, 29(1):11-20.
[34] Polygerinos P, Lyne S, Wang Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]// IEEE/rsj International Conference on Intelligent Robots and Systems.IEEE, 2014: 1512-1517.
[35] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft,autonomous robots[J]. Nature, 2016, 536(7617): 451-455.
[36] Bartlett N W, Tolley M T, Overvelde J T, et al. Soft robotics: A 3D-printed, functionally graded soft robot powered by combustion[J]. Science (New York, N.Y.),2015, 349 (6244): 161-l65.
[37] 王田苗,郝雨飛,楊興幫. 軟體機(jī)器人:結(jié)構(gòu)、驅(qū)動、傳感與控制[J]. 機(jī)械工程學(xué)報,2017,53(13): 1-12.Wang Tianmiao, Hao Yufei, Yang Xingbang. Soft robotics:structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13): 1-12. (in Chinese with English abstract)
[38] Ge Q, Sakhaei A H, Lee H, et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, 6: 1-11.
[39] Suzumori K, Iikura S, Tanaka H. Applying a flexible microactuator to robotic mechanisms[J]. IEEE Control Systems, 1992, 21(1): 21-27.
[40] 王志恒. 基于 FPA的新型氣動機(jī)器人多指靈巧手研究[D]. 杭州:浙江工業(yè)大學(xué),2011.Wang Zhiheng. New Robot Multi-fingered Dexterous Hand Based on the Flexible Pneumtatic Actuator[D]. Hangzhou:Zhejiang University of Technology, 2011. (in Chinese with English abstract)
[41] Hao Y, Gong Z, Xie Z, et al. Universal soft pneumatic robotic gripper with variable effective length[C]// Control Conference. IEEE,2016: 6109-6114.
[42] Galloway K C, Becker K P, Phillips B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
[43] Wang H, Zhu Y, Zhao D, et al. Performance investigation of cone dielectric elastomer actuator using taguchi method[J]. Chinese Journal of Mechanical Engineering, 2011,24(4): 685-692.
[44] Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced Materials,2016, 28(2): 1-28.
[45] Shen Q, Trabia S, Stalbaum T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Scientific Reports,2016, 6: 1-11.
[46] 郭闖強(qiáng),吳春亞,劉宏. 離子聚合物金屬復(fù)合材料驅(qū)動器在機(jī)器人中的應(yīng)用進(jìn)展[J]. 機(jī)械工程學(xué)報,2017,53(9):1-13.Guo Chuangqiang, Wu Chunya, Liu Hong. Application progress of ionic polymer-metal composite actuators in robots[J]. Journal of Mechanical Engineering, 2017, 53(9):1-13. (in Chinese with English abstract)
[47] Cecilia L, Matteo C, Barbara M, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727.
[48] Firouzeh A, Salerno M, Paik J. Soft pneumatic actuator with adjustable stiffness layers for multi-DoF actuation[C]//IEEE/rsj International Conference on Intelligent Robots and Systems. IEEE, 2015: 1117-1124.
[49] Trivedi D, Rahn C D, Kier W M, et al. Soft robotics:Biological inspiration, state of the art, and future research[J]. Applied Bionics & Biomechanics, 2008, 5(3):99-117.
[50] Muscato G, Prestifilippo M, Abbate N, et al. A prototype of an orange picking robot: Past history, the new robot and experimental results[J]. Industrial Robot an International Journal, 2005, 32(2):128-138.
[51] Excell J. Fruit-picking robot solves automation challenge[EB/OL]. [2015-10-16].https://www.theengineer.co.uk/fruitpicking-robot-solves-automation-challenge/.
[52] Pothering J. TortgaAgTech raises $2.4 million for strawberry-picking robots[EB/OL]. [2017-12-13]. https://news.impactalpha.com/tortgaagtech-raises-2-4-million-forstrawberry-picking-robots-d211028ac06f.
[53] 張進(jìn)華,王韜,洪軍,等. 軟體機(jī)械手研究綜述[J]. 機(jī)械工程學(xué)報,2017,53(13): 19-28.Zhang Jinhua, Wang Tao, Hong Jun, et al. Review of soft-bodied manipulator[J]. Journal of Mechanical Engineering,2017, 53(13): 19-28. (in Chinese with English abstract)
[54] Chou C P, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation,1996,12(1): 90-102.
[55] Daerden F, Lefeber D. Pneumatic artificial muscles:Actuators for robotics and automation[J]. European Journal of Mechanical & Environmental Engineering, 2000, 47(1):10-21.
[56] Polygerinos P, Wang Z, Galloway K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J].Robotics & Autonomous Systems, 2014, 73: 135-143.
[57] Yap H, Kamaldin N, Lim J, et al. A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging[J]. IEEE Transactions on Neural Systems& Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2016, 25(6):782-793.
[58] 徐淼鑫. 氣壓驅(qū)動軟體夾持裝置研究[D]. 南京:南京理工大學(xué),2015.Xu Miaoxin. Research on Pneumatic Drive Soft Gripper Device[D]. Nanjing:Nanjing University of Science and Technology, 2015. (in Chinese with English abstract)
[59] Marchese A D, Katzschmann R K, Rus D. A recipe for soft fluidic elastomer robots[J]. Soft Robotics, 2015, 2(1): 7-25.
[60] Faudzi A A M, Razif M R M, Nordin I N A M, et al.Development of bending soft actuator with different braided angles[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2012, 43(12):1093-1098.
[61] Davis S, Caldwell D G. Braid effects on contractile range and friction modeling in pneumatic muscle actuators[M].California: SagePublications, 2006.
[62] Scaff W, Hirakawa A R, Horikawa O. Non-conducting manipulator for live-line maintenance: Use of pneumatic artificial muscles[C]// International Conference on Applied Robotics for the Power Industry. IEEE, 2015: 1-6.
[63] Hiller J, Lipson H. Automatic design and manufacture of soft robots[J]. IEEE Transactions on Robotics, 2012, 28(2):457-466.
[64] Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20400-20403.
[65] Galloway K C, Polygerinos P, Walsh C J, et al.Mechanically programmable bend radius for fiberreinforced soft actuators[C]// International Conference on Advanced Robotics. IEEE, 2013: 1-6.
[66] 費燕瓊,龐武,于文博. 氣壓驅(qū)動軟體機(jī)器人運動研究[J]. 機(jī)械工程學(xué)報,2017,53(13):14-18.Fei Yanqiong, Pang Wu, Yu Wenbo. Movement of air-driven soft robot[J]. Journal of Mechanical Engineering,2017, 53 (13): 14-18. (in Chinese with English abstract)
[67] Li Y, Chen Y, Yang Y, et al. Passive particle jamming and its stiffening of soft robotic grippers[J]. IEEE Transactions on Robotics, 2017, 33(2): 446-455.
[68] Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1): 75-87.
[69] Wang Z, Polygerinos P, Overvelde J, et al. Interaction forces of soft fiber reinforced bending actuators[J]. IEEE/ASME Transactions on Mechatronics, 2016, 22(2): 717-727.
[70] Harvard Biodesign Lab. Soft robotics toolkit[EB/OL].[2017-09-07]. https://softroboticstoolkit.com/book/pneunetsdesign.
[71] Charluet C. Soft robotics will pick fruit with finesse and save your life too[EB/OL]. [2017-10-19]. https://thenextweb.com/artificial-intelligence/2017/10/19/soft-robo tics-a-new-breed-of-robots-with-a-softer-touch/.
[72] Soft Robotics Inc. Receives 2015 game changer award[EB/OL]. [2015-09-28]. https://www.prlog.org/1249 6904-soft-robotics-inc-receives-2015-game-changer-award.html.
[73] 王超. 線驅(qū)動硅膠軟體機(jī)械臂建模與控制[J]. 上海:上海交通大學(xué),2015.Wang Chao. Dynamics and Control of Cable-Driven Silicone Soft Manipulator[D]. Shanghai: Shanghai Jiaotong University, 2015. (in Chinese with English abstract)
[74] In H, Lee H, Jeong U, et al. Feasibility study of a slack enabling actuator for actuating tendon-driven soft wearable robot without pretension[C]//IEEE International Conference on Robotics and Automation, 2015: 1229-l234.
[75] Manti M, Hassan T, Passetti G, et al. A bioinspired soft robotic gripper for adaptable and effective grasping[J].Soft Robotics, 2015, 2(3): 107-116.
[76] Mishra A K, Dottore E D, Sadeghi A, et al. Simba:Tendon-driven modular continuum arm with soft reconfigurable gripper[J]. Frontiers in Robotics and AI,2017, 4(4): 1-10.
[77] Shu S G, Lagoudas D C, Hughes D, et al. Modeling of a flexible beam actuated by shape memory alloy wires[J].Smart Materials & Structures, 1997, 6(3):265-277.
[78] Xiang C, Yang H, Sun Z, et al. The design, hysteresis modeling and control of a novel SMA-fishing-line actuator[J]. Smart Material Structures, 2017, 26(3): 1-14.
[79] Kim H I, Han M W, Song S H, et al. Soft morphing hand driven by SMA tendon wire[J]. Composites Part B Engineering, 2016, 105:138-148.
[80] Yamano M, Goto D, Ujiie K, et al. Experiments of a variable stiffness robot using shape memory gel[C]// IEEE/sice International Symposium on System Integration. IEEE,2013: 647-652.
[81] 史震云,朱前成. 基于智能驅(qū)動器的軟體機(jī)器人系統(tǒng)[J].北京航空航天大學(xué)學(xué)報,2016,42(12): 2596-2602.Shi Zhenyun, Zhu Qiancheng. Soft robot system based on Intelligent driver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2596-2602.(in Chinese with English abstract)
[82] O’Halloran A, O’Malley F, Mchugh P. A review on dielectric elastomer actuators, technology, applications, and challenges[J]. Journal of Applied Physics, 2008, 104(7):1-10.
[83] 何斌,王志鵬,唐海峰. 軟體機(jī)器人研究綜述[J]. 同濟(jì)大學(xué)學(xué)報,2014,42(10): 1596-1603.He Bin, Wang Zhipeng, Tang Haifeng. Review of soft robot[J]. Journal of Tongji University 2014, 42(10): 1596-1603. (in Chinese with English abstract)
[84] Pelrine R, Kornbluh R, Pei Q, et al. High-speed electrically actuated elastomers with strain greater than 100%[J].Science, 2000, 287(5454): 836-839.
[85] Ahmed S, Ounaies Z, Lanagan M T. On the impact of self-clearing on electroactive polymer (EAP) actuators[J].Smart Materials & Structures, 2017, 26(10): 1-13.
[86] Gonzalez M A. An investigation of electrochemomechanical actuation of conductive Polyacrylonitrile (PAN) nanofiber composites[C]// Electroactive Polymer Actuators and Devices. International Society for Optics and Photonics,2014, 9056(4): 1-11.
[87] Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles[J]. Materials Today, 2007, 10(4):30-38.
[88] Suo Zhigang. Theory of dielectric elastomers[J]. Chinese Journal of Solid Mechanics, 2010, 23(6): 549-578.
[89] Shea P, Floreano P. Intrinsic electro-adhesion for soft DEA-based grippers[EB/OL]. [2017-08-03]. https://lmts.e pfl.ch/electroadhesion.
[90] Kornbluh R. Soft robots are reshaping the future of robotics[EB/OL]. [2015-03-24]. https://www.sri.com/blog/soft-robots-are-reshaping-future-robotics.
[91] 鄧韜. 面向心臟微創(chuàng)手術(shù)的軟體機(jī)器人系統(tǒng)研究[D]. 上海:上海交通大學(xué),2014.Deng Tao. Development of a Soft Robotic System for Minimally Invasive Cardiac Surgery[D]. Shanghai:Shanghai Jiaotong University, 2014. (in Chinese with English abstract)
[92] 王新忠. 溫室番茄收獲機(jī)器人選擇性收獲作業(yè)信息獲取與路徑規(guī)劃研究[D]. 鎮(zhèn)江:江蘇大學(xué),2012.Wang Xinzhong. Studies on Information Acquisition and Path Planning of Greenhouse Tomato Harvesting Robot with Selective Harvesting Operation[D]. Zhenjiang:Jiangsu University, 2012. (in Chinese with English abstract)
[93] 李鐵風(fēng),李國瑞,梁藝鳴,等. 軟體機(jī)器人結(jié)構(gòu)機(jī)理與驅(qū)動材料研究綜述[J]. 力學(xué)學(xué)報,2016,48(4):756-766.Li Tiefeng, Li Guorui, Liang Yiming, et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (4): 756-766. (in Chinese with English abstract)
[94] Jones B A, Walker I D. Kinematics for multisection continuum robots[J]. IEEE Transactions on Robotics, 2006,22(1): 43-55.
[95] Webster Iii R J, Jones B A. Design and kinematic kodeling of constant curvature continuum robots: A review[J].International Journal of Robotics Research, 2010, 29(13):1661-1683.
[96] Duriez C, Bieze T. Soft Robot Modeling, Simulation and Control in Real-Time[M]. Paris: Springer International Publishing, 2017.
[97] Camarillo D B, Milne C F, Carlson C R, et al. Mechanics modeling of tendon-driven continuum manipulators[J].IEEE Transactions on Robotics, 2008, 24(6): 1262-1273.
[98] Giorelli M, Renda F, Ferri G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space[C]//IEEE/rsj International Conference on Intelligent Robots and Systems. IEEE,2013: 5033-5039.
[99] Marry P M. Control primitive for robot systems[J]. IEEE Transactions on System, Man and Cybernetics, 2002, 22(1):183-193.
[100] 陳利兵. 草莓收獲機(jī)器人采摘系統(tǒng)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2005.Chen Libing. The Study of Picking System of Strawberry-Harvesting Robots[D]. Beijing: China Agricultural University,2005. (in Chinese with English abstract)
[101] Fei Y, Xu H. Modeling and motion control of a soft robot[J]. IEEE Transactions on Industrial Electronics, 2017,64(2): 1737-1742.
[102] Kang B S, Park E J. Modeling and control of an intrinsic continuum robot actuated by pneumatic artificial muscles[C]// IEEE International Conference on Advanced Intelligent Mechatronics. IEEE, 2016: 1157-1162.
[103] Laschi C, Cianchetti M. Soft robotics: New perspectives for robot bodyware and control[J]. Frontiers in Bioengineering& Biotechnology, 2014, 2(7): 1-5.
[104] 陳磊,陳帝伊,馬孝義. 果蔬采摘機(jī)器人的研究[J]. 農(nóng)機(jī)化研究,2011,33(1):224-227.Chen Lei, Chen Diyi, Ma Xiaoyi. Researching on the fruit and vegetable haresting robot[J]. Journal of Agricultural Mechanization Research, 2011, 33(1): 224-227. (in Chinese with English abstract)
[105] 文力. 軟體機(jī)器人的研究[EB/OL]. (2017-09-28)[2017-11-02]. https://zhuanlan.zhihu.com/p/30700859.
[106] Silvera-Tawil D, Rye D, Velonaki M. Artificial skin and tactile sensing for socially interactive robots: A review[J].Robotics & Autonomous Systems, 2015, 63(3): 230-243.
[107] Park Y L, Chen B R, Wood R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors[J]. IEEE Sensors Journal, 2012, 12 (8):2711-2718.