国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

模擬干旱和鹽堿脅迫對(duì)堿蓬、鹽地堿蓬種子萌發(fā)的影響*

2018-07-05 02:06:00李勁松李曉光封曉輝劉小京
關(guān)鍵詞:胚根種子溶液

李勁松, 郭 凱, 李曉光, 封曉輝, 劉小京**

?

模擬干旱和鹽堿脅迫對(duì)堿蓬、鹽地堿蓬種子萌發(fā)的影響*

李勁松1,2, 郭 凱1, 李曉光1,2, 封曉輝1,2, 劉小京1**

(1. 中國(guó)科學(xué)院遺傳與發(fā)育生物學(xué)研究所農(nóng)業(yè)資源研究中心/中國(guó)科學(xué)院農(nóng)業(yè)水資源重點(diǎn)實(shí)驗(yàn)室 石家莊 050022; 2. 中國(guó)科學(xué)院大學(xué) 北京 100049)

為研究干旱和鹽堿脅迫對(duì)堿蓬()、鹽地堿蓬()種子萌發(fā)的影響, 比較堿蓬和鹽地堿蓬逆境生理特性的異同, 本研究利用PEG6000、NaCl和Na2CO3分別模擬干旱、鹽和堿脅迫, 配制相同滲透勢(shì)的PEG6000、NaCl、Na2CO3處理液, 以蒸餾水處理為對(duì)照, 對(duì)堿蓬、鹽地堿蓬種子的萌發(fā)與胚的生長(zhǎng)進(jìn)行比較研究。結(jié)果表明: 1)低滲處理(-0.46 MPa)對(duì)堿蓬、鹽地堿蓬種子的萌發(fā)無(wú)顯著影響; 高滲處理(-1.38 MPa、-1.84 MPa)抑制堿蓬、鹽地堿蓬種子的萌發(fā)。2)當(dāng)溶液滲透勢(shì)相等時(shí), NaCl處理下堿蓬種子的萌發(fā)率顯著大于PEG、Na2CO3處理; 而等滲PEG、NaCl、Na2CO3處理對(duì)鹽地堿蓬種子萌發(fā)率的影響無(wú)顯著差異。3)PEG、NaCl、Na2CO3處理組堿蓬、鹽地堿蓬種子的最終萌發(fā)率與對(duì)照無(wú)顯著差異。4)在幼苗形成階段, PEG、Na2CO3處理對(duì)堿蓬、鹽地堿蓬胚的抑制作用顯著大于等滲NaCl處理。5)堿蓬、鹽地堿蓬胚的生長(zhǎng)對(duì)NaCl、Na2CO3脅迫的響應(yīng)存在差異。-0.92 MPa NaCl處理抑制堿蓬胚的生長(zhǎng), 卻對(duì)鹽地堿蓬產(chǎn)生促進(jìn)作用;-0.46 MPa Na2CO3處理對(duì)堿蓬胚的抑制作用小于鹽地堿蓬。綜合分析表明: 堿蓬、鹽地堿蓬均具有很強(qiáng)的抗鹽性。在種子萌發(fā)階段, 堿蓬種子的抗旱、抗堿能力低于鹽地堿蓬; 在幼苗形成階段, 堿蓬胚的抗鹽性小于鹽地堿蓬, 但對(duì)輕度堿脅迫的抗性高于鹽地堿蓬。

種子萌發(fā); 堿蓬; 鹽地堿蓬; NaCl脅迫; Na2CO3脅迫; PEG脅迫

環(huán)渤海地區(qū)是我國(guó)重要的經(jīng)濟(jì)發(fā)展區(qū), 但由于該地區(qū)分布有大量的鹽堿荒地, 土壤貧瘠、植被稀疏、生態(tài)環(huán)境惡劣[1], 迫切需要加快當(dāng)?shù)氐闹脖唤ㄔO(shè), 以滿足社會(huì)經(jīng)濟(jì)快速發(fā)展需求[2]。在鹽堿地植被建設(shè)中, 客土綠化由于成本高、可持續(xù)性差等局限性[3], 難于大面積應(yīng)用到鹽堿地的生態(tài)治理。相比之下, 利用耐鹽植物重建植被, 完成原土綠化日益受到重視。

堿蓬()和鹽地堿蓬()屬于藜科(Chenopodiaceae)堿蓬屬的一年生草本, 是我國(guó)本土鹽生植物。研究表明種植堿蓬、鹽地堿蓬具有改善土壤性狀、降低土壤含鹽量、修復(fù)土壤重金屬污染、凈化富營(yíng)養(yǎng)水體等多種生態(tài)效益[3-8]。堿蓬、鹽地堿蓬作為重要的物種資源, 在鹽堿地的生態(tài)治理與修復(fù)領(lǐng)域具有重要的開(kāi)發(fā)潛力。堿蓬、鹽地堿蓬在自然界的分布具有明顯的地帶性: 堿蓬多分布于東北、西北等內(nèi)陸鹽堿地區(qū)[9], 鹽地堿蓬在遼河三角洲、黃河三角洲等濱海地區(qū)的分布明顯多于堿蓬; 在小地形區(qū)域, 堿蓬多分布于土坡、沙丘的高處, 鹽地堿蓬多分布于低洼地帶[10]。

在鹽堿地中, 種子萌發(fā)是植物生長(zhǎng)與種群建成的重要階段, 同時(shí)也是對(duì)逆境的敏感時(shí)期[11-13]。植物萌發(fā)階段受到的脅迫主要包括干旱脅迫、鹽脅迫和堿脅迫。鹽地堿蓬作為典型的鹽生植物, 前人關(guān)于鹽地堿蓬的報(bào)道多局限于鹽脅迫[14-17], 已有研究表明鹽地堿蓬對(duì)NaCl具有高度的適應(yīng)性, 離子區(qū)隔化與葉片肉質(zhì)化是鹽地堿蓬重要的耐鹽機(jī)制[18-19]。堿蓬作為鹽地堿蓬的近緣物種, 其形態(tài)與鹽地堿蓬多有相似之處, 但目前鮮有對(duì)堿蓬逆境生理研究的報(bào)道。因此, 本文利用PEG 6000、NaCl、Na2CO3分別模擬旱、鹽、堿脅迫, 對(duì)堿蓬、鹽地堿蓬種子萌發(fā)及胚的生長(zhǎng)特性進(jìn)行比較研究, 旨在探討二者地帶性分布的可能機(jī)制, 為堿蓬、鹽地堿蓬在鹽堿地上的種群建植提供理論依據(jù)。

1 材料與方法

1.1 試驗(yàn)材料

堿蓬和鹽地堿蓬種子于2016年11月采自河北省海興縣鹽堿地(117°32′~117°58′E, 38°19′~38°29′N), 經(jīng)干燥和清理后, 保存于紙袋, 放置于4 ℃冰箱保存。

1.2 試驗(yàn)設(shè)計(jì)

挑選飽滿、大小均勻的堿蓬、鹽地堿蓬黑色種子, 在5%次氯酸鈉溶液中浸泡5 min, 隨后用蒸餾水沖洗除去殘留, 置于鋪2層濾紙的直徑90 mm的培養(yǎng)皿中, 每個(gè)培養(yǎng)皿放50粒種子, 加入處理液10 mL, 各處理3個(gè)重復(fù)。試驗(yàn)設(shè)計(jì)以蒸餾水處理為對(duì)照, 以PEG 6000、NaCl、Na2CO3溶液為處理組, 分別配制-0.46 MPa、-0.92 MPa、-1.38 MPa、-1.84 MPa 4個(gè)溶液滲透勢(shì)梯度。由WP4C露點(diǎn)水勢(shì)儀(美國(guó)Decagon公司)測(cè)定溶液的滲透勢(shì)、pH儀(Sartorius, PB-10)測(cè)定溶液的pH(表1)。本文所有試驗(yàn)均在人工智能氣候箱中完成, 光照14 h×d-1, 光強(qiáng)≥56.6 μmol×s-1, 溫度25 ℃/20 ℃(晝/夜), 相對(duì)濕度75%~80%。每24 h統(tǒng)計(jì)種子萌發(fā)數(shù), 以可見(jiàn)胚根為萌發(fā)標(biāo)準(zhǔn)。第7 d測(cè)量已萌發(fā)種子的胚軸與胚根長(zhǎng)度, 拍照, 并將未萌發(fā)種子清洗后移至蒸餾水處理復(fù)水, 7 d后計(jì)算種子最終萌發(fā)數(shù)。

表1 不同脅迫處理液的濃度、滲透勢(shì)和pH

1.3 萌發(fā)指標(biāo)計(jì)算公式

萌發(fā)率=(試驗(yàn)種子萌發(fā)個(gè)數(shù)/待測(cè)種子總數(shù))×100%(1)

最終萌發(fā)率=[(試驗(yàn)種子萌發(fā)個(gè)數(shù)+復(fù)水后新萌發(fā)的種子個(gè)數(shù))/待測(cè)種子總數(shù)]×100% (2)

萌發(fā)指數(shù)=∑(第天種子萌發(fā)個(gè)數(shù)/相應(yīng)的萌發(fā)天數(shù))(3)

平均萌發(fā)時(shí)間=∑(第天種子萌發(fā)個(gè)數(shù)×相應(yīng)的萌發(fā)天數(shù))/試驗(yàn)種子萌發(fā)個(gè)數(shù) (4)

1.4 數(shù)據(jù)處理和分析

采用SPSS 16.0軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行鄧肯多重比較,<0.05為差異顯著, 用Origin 9.1作圖。

2 結(jié)果與分析

2.1 PEG、NaCl、Na2CO3脅迫對(duì)堿蓬、鹽地堿蓬種子萌發(fā)率、最終萌發(fā)率的影響

由圖1可知, 堿蓬和鹽地堿蓬種子在蒸餾水處理中的萌發(fā)率分別為96.7%和84.7%。低滲處理(-0.46 MPa)下, PEG、NaCl和Na2CO3對(duì)堿蓬和鹽地堿蓬的種子萌發(fā)無(wú)顯著影響。-0.92 MPa NaCl處理的堿蓬和鹽地堿蓬種子的萌發(fā)率與對(duì)照無(wú)顯著差異; 等滲的PEG、Na2CO3處理未顯著影響鹽地堿蓬種子的萌發(fā), 但顯著抑制了堿蓬種子的萌發(fā), 且Na2CO3的抑制作用大于PEG。高滲處理(-1.38 MPa、-1.84 MPa)明顯抑制堿蓬、鹽地堿蓬種子的萌發(fā)率, 且溶液滲透勢(shì)越低, 種子萌發(fā)受抑制程度越大。-1.38 MPa NaCl處理下, 堿蓬和鹽地堿蓬種子萌發(fā)率分別比對(duì)照降低16.7%和14.7%。高滲PEG、Na2CO3處理對(duì)堿蓬種子萌發(fā)率的抑制作用明顯大于鹽地堿蓬,-1.38 MPa PEG、Na2CO3處理中堿蓬種子的萌發(fā)率比對(duì)照降低84.7%和86.7%, 同處理?xiàng)l件下, 鹽地堿蓬種子萌發(fā)率比對(duì)照分別降低28.0%和30.7%。

圖1 不同滲透勢(shì)PEG、NaCl和Na2CO3處理對(duì)堿蓬(A)和鹽地堿蓬(B)萌發(fā)率的影響

不同小寫(xiě)字母表示不用處理間0.05水平差異顯著。Different lowercase letters mean significant differences among treatments at< 0.05.

復(fù)水7 d后, 所有處理組堿蓬和鹽地堿蓬種子的最終萌發(fā)率與對(duì)照均無(wú)顯著差異(圖2), 但隨著Na2CO3脅迫的加重, 鹽地堿蓬種子的最終萌發(fā)率呈現(xiàn)下降的趨勢(shì),-1.38 MPa和-1.84 MPa Na2CO3處理下, 鹽地堿蓬種子最終萌發(fā)率比對(duì)照分別降低7.1%和15.8%。

圖2 不同滲透勢(shì)PEG、NaCl和Na2CO3處理對(duì)堿蓬(A)和鹽地堿蓬(B)最終萌發(fā)率的影響

不同小寫(xiě)字母表示不用處理間0.05水平差異顯著。Different lowercase letters mean significant differences among treatments at< 0.05.

2.2 PEG、NaCl、Na2CO3脅迫對(duì)堿蓬、鹽地堿蓬種子萌發(fā)指數(shù)、種子平均萌發(fā)時(shí)間的影響

萌發(fā)指數(shù)是種子重要的活力指標(biāo), 種子活力由遺傳因素決定, 但環(huán)境因素決定種子活力的現(xiàn)實(shí)性, 因此萌發(fā)指數(shù)可以很好地反映逆境對(duì)種子萌發(fā)的影響程度[20-21]。堿蓬、鹽地堿蓬種子萌發(fā)指數(shù)隨溶液滲透勢(shì)的降低而降低, 不同處理組種子的萌發(fā)指數(shù)與溶液滲透勢(shì)均呈線性相關(guān)關(guān)系(圖3)。參考回歸方程的斜率發(fā)現(xiàn): 溶液滲透勢(shì)每下降1 MPa, PEG、NaCl、Na2CO3處理組堿蓬種子的萌發(fā)指數(shù)分別下降11.20、7.24、10.76, 堿蓬種子的萌發(fā)指數(shù)在NaCl處理中隨溶液滲透勢(shì)下降的程度明顯小于PEG和Na2CO3處理; 對(duì)于鹽地堿蓬, 溶液滲透勢(shì)每下降1 MPa, PEG、NaCl、Na2CO3處理組種子的萌發(fā)指數(shù)分別下降16.38、17.12、15.82, 各處理間種子萌發(fā)指數(shù)變化趨勢(shì)相似。堿蓬、鹽地堿蓬萌發(fā)指數(shù)對(duì)PEG、NaCl、Na2CO3脅迫的響應(yīng)與萌發(fā)率部分的結(jié)論高度一致。

圖3 不同滲透勢(shì)PEG、NaCl和Na2CO3處理對(duì)堿蓬(A)和鹽地堿蓬(B)萌發(fā)指數(shù)的影響

由圖4可知, 對(duì)照組堿蓬和鹽地堿蓬種子的平均萌發(fā)時(shí)間分別為3.5 d和1.7 d。隨著PEG脅迫的加重,堿蓬、鹽地堿蓬種子平均萌發(fā)時(shí)間逐漸升高。當(dāng)溶液滲透勢(shì)為-0.92 MPa、-1.38 MPa時(shí), NaCl、Na2CO3處理組堿蓬、鹽地堿蓬種子的平均萌發(fā)時(shí)間明顯小于等滲PEG處理, 并且與對(duì)照無(wú)顯著差異。

2.3 PEG、NaCl、Na2CO3脅迫對(duì)堿蓬、鹽地堿蓬胚生長(zhǎng)特性的影響

在PEG和Na2CO3處理中, 堿蓬、鹽地堿蓬胚軸、胚根長(zhǎng)度隨溶液滲透勢(shì)降低而下降, 低滲NaCl處理(-0.46 MPa)處理對(duì)堿蓬、鹽地堿蓬胚的生長(zhǎng)具有促進(jìn)作用, 高滲NaCl處理(-1.38 MPa、-1.84 MPa)對(duì)堿蓬和鹽地堿蓬胚軸、胚根的生長(zhǎng)具有抑制作用, 但NaCl處理對(duì)堿蓬和鹽地堿蓬胚生長(zhǎng)的抑制作用明顯小于等滲PEG和Na2CO3處理(圖5, 圖6)。堿蓬、鹽地堿蓬胚的生長(zhǎng)對(duì)NaCl和Na2CO3脅迫的響應(yīng)存在差異:-0.92 MPa NaCl處理對(duì)鹽地堿蓬胚根生長(zhǎng)具有明顯的促進(jìn)作用, 而堿蓬胚根的生長(zhǎng)受到抑制;-0.46 MPa Na2CO3處理下, 堿蓬的胚軸和胚根長(zhǎng)度分別比對(duì)照降低13.0%和12.9%, 而鹽地堿蓬胚軸和胚根長(zhǎng)分別降低33.9%和64.0%,-0.46 MPa Na2CO3處理對(duì)鹽地堿蓬胚的生長(zhǎng)抑制作用大于堿蓬(圖5, 圖6)。

圖4 不同滲透勢(shì)PEG、NaCl和Na2CO3處理對(duì)堿蓬(A)和鹽地堿蓬(B)平均萌發(fā)時(shí)間的影響

不同小寫(xiě)字母表示不用處理間0.05水平差異顯著。Different lowercase letters mean significant differences among treatments at< 0.05.

圖5 不同滲透勢(shì)PEG、NaCl和Na2CO3處理對(duì)堿蓬(A)和鹽地堿蓬(B)胚軸、胚根長(zhǎng)度的影響

不同小寫(xiě)字母表示不用處理間0.05水平差異顯著。Different lowercase letters mean significant differences among treatments at< 0.05.

3 討論與結(jié)論

植物的抗逆性不僅取決于植物種類, 在不同的生長(zhǎng)階段, 植物的抗逆性也存在較大差異。植物在種子萌發(fā)期與幼苗形成期對(duì)逆境敏感, 成株抗性普遍較高[22], 因此種子萌發(fā)與幼苗形成期是研究植物抗逆性的最佳時(shí)期。與棉花( spp.)、茄子()、芝麻()的研究一致[23-25], 堿蓬、鹽地堿蓬在種子萌發(fā)時(shí)期抗性較高, 在幼苗形成期的抗逆性明顯低于種子萌發(fā)期。本研究表明, 低滲PEG、Na2CO3處理(-0.46 MPa)對(duì)種子萌發(fā)率影響不顯著, 但對(duì)堿蓬、鹽地堿蓬胚的生長(zhǎng)產(chǎn)生顯著的抑制作用; 高滲PEG、NaCl、Na2CO3脅迫(-1.38 MPa、-1.84 MPa)對(duì)堿蓬、鹽地堿蓬的萌發(fā)與生長(zhǎng)均產(chǎn)生不同程度的抑制作用。

種子萌發(fā)率與萌發(fā)指數(shù)結(jié)果表明: 在等滲條件下, PEG與Na2CO3脅迫對(duì)堿蓬種子萌發(fā)的抑制作用無(wú)顯著差異, NaCl脅迫對(duì)堿蓬種子萌發(fā)的抑制程度明顯小于等滲PEG、Na2CO3脅迫; 鹽地堿蓬種子的萌發(fā)主要受滲透脅迫的影響, 對(duì)PEG、NaCl、Na2CO3脅迫的響應(yīng)無(wú)顯著差異。有研究表明, 在等滲條件下細(xì)莖針茅()長(zhǎng)角豆()種子在NaCl溶液中的萌發(fā)率高于PEG[26-27]。本研究中堿蓬、鹽地堿蓬也出現(xiàn)類似現(xiàn)象, 這可能是由于NaCl起到了滲透調(diào)節(jié)作用。NaCl作為無(wú)機(jī)離子, 在機(jī)體的富集有助于減緩滲透脅迫的負(fù)面影響[28]。Cavallaro等[29]研究表明長(zhǎng)角豆種子在NaCl溶液中的吸脹速率明顯高于在等滲PEG溶液中。NaCl脅迫下堿蓬、鹽地堿蓬種子的吸脹與萌動(dòng)過(guò)程還有待深入研究。對(duì)牛至()羊草()的研究表明, 高pH是抑制種子萌發(fā)的重要因素[30-31]。本研究中盡管Na2CO3脅迫對(duì)堿蓬、鹽地堿蓬種子萌發(fā)產(chǎn)生了明顯的抑制作用, 但在等滲條件下, Na2CO3脅迫與PEG脅迫的抑制作用無(wú)顯著差異。由此可知, 對(duì)于堿蓬、鹽地堿蓬, Na2CO3脅迫對(duì)種子萌發(fā)的抑制作用主要是由于滲透脅迫, 高pH脅迫沒(méi)有產(chǎn)生顯著影響。

圖6 不同滲透勢(shì)PEG、NaCl和Na2CO3處理對(duì)堿蓬和鹽地堿蓬幼苗形成的影響

植物種子在高鹽逆境下存活, 雨季后集中萌發(fā)并建立種群是鹽生植物適應(yīng)鹽生境的重要策略[32-33]。大部分鹽生植物種子具有較強(qiáng)的恢復(fù)萌發(fā)能力, 也有物種如駝蹄瓣()、異子蓬()、地膚()種子的萌發(fā)活性被鹽脅迫永久抑制[34-36]。復(fù)水試驗(yàn)表明PEG、NaCl脅迫下堿蓬、鹽地堿蓬種子均具有良好的恢復(fù)萌發(fā)能力, 雖然Na2CO3處理組種子的復(fù)水萌發(fā)率與對(duì)照差異不顯著, 但Na2CO3脅迫有降低鹽地堿蓬種子最終萌發(fā)率的趨勢(shì), Na2CO3脅迫對(duì)鹽地堿蓬種子產(chǎn)生了毒害作用。

對(duì)堿蓬、鹽地堿蓬早期生長(zhǎng)特性的研究表明, 堿蓬、鹽地堿蓬均表現(xiàn)喜鹽的特征, 但鹽地堿蓬對(duì)NaCl的抗性高于堿蓬。輕度NaCl處理對(duì)鹽地堿蓬胚根伸長(zhǎng)的促進(jìn)作用明顯大于堿蓬, 高NaCl處理對(duì)鹽地堿蓬根長(zhǎng)的抑制作用小于堿蓬, 這與前人研究結(jié)果一致[37]。與鹽脅迫相比, 堿脅迫還會(huì)對(duì)植物產(chǎn)生高pH傷害, 金屬離子與磷的沉淀會(huì)阻礙植物對(duì)礦質(zhì)營(yíng)養(yǎng)的吸收, 從而擾亂機(jī)體的離子平衡與pH穩(wěn)態(tài)[38-39], 對(duì)植物產(chǎn)生更嚴(yán)重的損傷。與蒼耳()、堿地膚()、灰綠藜()[40-42]等鹽生植物一樣, Na2CO3脅迫對(duì)堿蓬、鹽地堿蓬生長(zhǎng)的抑制作用明顯大于NaCl脅迫, 重度堿脅迫(-0.92 MPa、-1.38 MPa、-1.84 MPa)下, 堿蓬、鹽地堿蓬根尖出現(xiàn)變黑死亡的現(xiàn)象。比較堿蓬與鹽地堿蓬發(fā)現(xiàn), 二者在幼苗形成期對(duì)輕度Na2CO3脅迫(-0.46 MPa)的抗性存在差異, 輕度Na2CO3脅迫(-0.46 MPa)對(duì)堿蓬胚生長(zhǎng)的抑制作用明顯小于鹽地堿蓬。堿蓬與鹽地堿蓬在幼苗形成期抗鹽、抗堿性的差異可能是導(dǎo)致二者地帶性分布的重要原因。我國(guó)東北鹽漬區(qū)屬于蘇打堿土, 西北黃河中上游鹽漬土主要鹽分為碳酸鹽, 土壤都明顯偏堿性[43-44], 堿蓬對(duì)輕度Na2CO3脅迫的抗性優(yōu)于鹽地堿蓬, 因此堿蓬更偏向分布于內(nèi)陸輕度堿土地區(qū); 而遼河、黃河等濱海鹽堿地是土壤鹽分以NaCl為主的鹽土, 鹽地堿蓬對(duì)NaCl的高度適應(yīng)性可能是鹽地堿蓬種群從內(nèi)陸向沿海發(fā)展以及低洼地帶分布的重要原因。

本研究通過(guò)對(duì)堿蓬、鹽地堿蓬在種子萌發(fā)及幼苗形成期逆境響應(yīng)的綜合分析, 發(fā)現(xiàn)堿蓬和鹽地堿蓬對(duì)旱、鹽、堿脅迫的響應(yīng)趨勢(shì)基本一致, 堿蓬和鹽地堿蓬均具有很強(qiáng)的抗鹽性, 并且抗鹽能力明顯高于抗旱、抗堿能力。比較堿蓬和鹽地堿蓬, 在種子萌發(fā)期, 堿蓬種子的抗旱、抗堿能力低于鹽地堿蓬; 在幼苗形成期, 堿蓬的抗鹽性小于鹽地堿蓬, 但對(duì)輕度堿脅迫的抗性高于鹽地堿蓬。

[1] 毛建華, 劉太祥, 劉洪慶, 等. 濱海鹽土綠化的排鹽改土技術(shù)規(guī)程編制說(shuō)明[J]. 天津農(nóng)業(yè)科學(xué), 2011, 17(3): 29–31 MAO J H, LIU T X, LIU H Q, et al. Direction for drawing up technology standard for the drainage, salt-leaching and soil-reclamation in greening coastal saline land[J]. Tianjin Agricultural Sciences, 2011, 17(3): 29–31

[2] 胡培興. 京津風(fēng)沙源成因分析與防治對(duì)策研究[D]. 南京: 南京林業(yè)大學(xué), 2007: 35–46 HU P X. The causes, evaluation and strategies of desertification in Beijing and Tianjin regions in P.R. China[D]. Nanjing: Nanjing Forestry University, 2007: 35–46

[3] 林學(xué)政, 沈繼紅, 劉克齋, 等. 種植鹽地堿蓬修復(fù)濱海鹽漬土效果的研究[J]. 海洋科學(xué)進(jìn)展, 2005, 23(1): 65–69 LIN X Z, SHEN J H, LIU K Z, et al. Study on remediation effects ofL. planting on coastal saline soil[J]. Advances in Marine Science, 2005, 23(1): 65–69

[4] 李超峰, 葛寶明, 姜森顥, 等. 堿蓬對(duì)鹽堿及污染土壤生物修復(fù)的研究進(jìn)展[J]. 土壤通報(bào), 2014, 45(4): 1014–1019 LI C F, GE B M, JIANG S H, et al. Review on remedial effect ofon saline and polluted soils[J]. Chinese Journal of Soil Science, 2014, 45(4): 1014–1019

[5] 鄒桂梅, 蘇德榮, 黃明勇, 等. 人工種植鹽地堿蓬改良吹填土的試驗(yàn)研究[J]. 草業(yè)科學(xué), 2010, 27(4): 51–56ZOU G M, SU D R, HUANG M Y, et al. Effect of plantingon improvement of dredger filled soil[J]. Pratacultural Science, 2010, 27(4): 51–56

[6] 張亞, 常雅軍, 劉曉靜, 等. 堿蓬對(duì)不同鹽度富營(yíng)養(yǎng)化模擬海水的凈化效應(yīng)及其生長(zhǎng)特性[J]. 植物資源與環(huán)境學(xué)報(bào), 2016, 25(4): 34–41ZHANG Y, CHANG Y J, LIU X J, et al. Purification effect ofon eutrophic simulated seawater with different salt concentrations and its growth character[J]. Journal of Plant Resources and Environment, 2016, 25(4): 34–41

[7] 李從娟, 孫永強(qiáng), 范敬龍, 等. 鹽地堿蓬在高鹽堿土環(huán)境中的生態(tài)學(xué)意義[J]. 干旱區(qū)研究, 2015, 32(6): 1160–1166LI C J, SUN Y Q, FAN J L, et al. Ecological significance of plantingin saline/alkali soils in the Lop Nur Potash Mine[J]. Arid Zone Research, 2015, 32(6): 1160–1166

[8] ZHAO K F. Desalinization of saline soils by[J]. Plant and Soil, 1991, 135(2): 303–305

[9] 杜曉光, 鄭慧瑩, 劉存德. 松嫩平原主要鹽堿植物群落生物生態(tài)學(xué)機(jī)制的初步探討[J]. 植物生態(tài)學(xué)報(bào), 1994, 18(1): 41–49 DU X G, ZHENG H Y, LIU C D. A preliminary study on the main plant communities in the saline soils of Song-Nen Plain[J]. Acta Phytoecologica Sinica, 1994, 18(1): 41–49

[10] CUI B S, HE Q, ZHAO X S. Ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity[J]. Acta Ecologica Sinica, 2008, 28(4): 1408–1418

[11] SHAYGAN M, BAUMGARTL T, ARNOLD S. Germination ofseeds under salinity and water stress[J]. Ecological Engineering, 2017, 102: 636–640

[12] LIU H L, ZHANG D Y, YANG X J, et al. Seed dispersal and germination traits of 70 plant species inhabiting the Gurbantunggut desert in Northwest China[J]. The Scientific World Journal, 2014, 2014: 346405

[13] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651–681

[14] LI W Q, LIU X J, KHAN M A, et al. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds ofunder saline conditions[J]. Journal of Plant Research, 2005, 118(3): 207–214

[15] WANG F X, XU Y G, WANG S, et al. Salinity affects production and salt tolerance of dimorphic seeds of[J]. Plant Physiology and Biochemistry, 2015, 95: 41–48

[16] SONG J, WANG B S. Using euhalophytes to understand salt tolerance and to develop saline agriculture:as a promising model[J]. Annals of Botany, 2015, 115(3): 541–553

[17] 段德玉, 劉小京, 馮鳳蓮, 等. 不同鹽分脅迫對(duì)鹽地堿蓬種子萌發(fā)的效應(yīng)[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2003, 19(6): 168–172 DUAN D Y, LIU X J, FENG F L, et al. Effect of salinities on seed germination of halophyte[J]. Chinese Agricultural Science Bulletin, 2003, 19(6): 168–172

[18] WANG B S, LüTTGE U, RATAJCZAK R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte[J]. Journal of Experimental Botany, 2001, 52(365): 2355–2365

[19] YANG M F, SONG J, WANG B S. Organ-specific responses of vacuolar H+-ATPase in the shoots and roots of C3halophyteto NaCl[J]. Journal of Integrative Plant Biology, 2010, 52(3): 308–314

[20] 閆興富, 周立彪, 思彬彬, 等. 不同溫度下PEG-6000模擬干旱對(duì)檸條錦雞兒種子萌發(fā)的脅迫效應(yīng)[J]. 生態(tài)學(xué)報(bào), 2016, 36(7): 1989–1996YAN X F, ZHOU L B, SI B B, et al. Stress effects of simulated drought by polyethylene glycol on the germination ofKom. seeds under different temperature conditions[J]. Acta Ecologica Sinica, 2016, 36(7): 1989–1996

[21] ZHANG H X, IRVING L J, MCGILL C, et al. The effects of salinity and osmotic stress on barley germination rate: Sodium as an osmotic regulator[J]. Annals of Botany, 2010, 106(6): 1027–1035

[22] DODD G L, DONOVAN L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. American Journal of Botany, 1999, 86(8): 1146–1153

[23] 謝德意, 王惠萍, 王付欣, 等. 鹽脅迫對(duì)棉花種子萌發(fā)及幼苗生長(zhǎng)的影響[J]. 中國(guó)棉花, 2000, 27(9): 12–13XIE D Y, WANG H P, WANG F X, et al. Effects of cotton seeds germination and seedling growth under salt stress[J]. China Cotton, 2000, 27(9): 12–13

[24] DEMIR I, MAVI K, OZCOBAN M, et al. Effect of salt stress on germination and seedling growth in serially harvested aubergine (L) seeds during development[J]. Israel Journal of Plant Sciences, 2003, 51(2): 125–131

[25] HARFI M E, HANINE H, RIZKI H, et al. Effect of drought and salt stresses on germination and early seedling growth of different color-seeds of sesame ()[J]. International Journal of Agriculture and Biology, 2016, 18(6): 1088–1094

[26] KRICHEN K, VILAGROSA A, CHAIEB M. Environmental factors that limitL. germination and establishment in Mediterranean arid ecosystems in a climate variability context[J]. Acta Physiologiae Plantarum, 2017, 39: 175

[27] CAVALLARO V, BARBERA A C, MAUCIERI C, et al. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (L) using a hydrotime model[J]. Ecological Engineering, 2016, 95: 557–566

[28] LI R, SHI F, FUKUDA K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte(Poaceae)[J]. South African Journal of Botany, 2010, 76(2): 380–387

[29] CAVALLARO V, BARBERA A C, MAUCIERI C, et al. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (L) using a hydrotime model[J]. Ecological Engineering, 2016, 95: 557–566

[30] LAGHMOUCHI Y, BELMEHDI O, BOUYAHYA A, et al. Effect of temperature, salt stress and pH on seed germination of medicinal plant[J]. Biocatalysis and Agricultural Biotechnology, 2017, 10: 156–160

[31] MA H Y, YANG H Y, Lü X T, et al. Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with(Poaceae)[J]. Plant and Soil, 2015, 394(1/2): 35–43

[32] SONG J, FENG G, ZHANG F S. Salinity and temperature effects on germination for three salt-resistant euhalophytes,,and[J]. Plant and Soil, 2006, 279(1/2): 201–207

[33] SONG J, FENG G, TIAN C Y, et al. Strategies for adaptation of,andto a saline environment during seed-germination stage[J]. Annals of Botany, 2005, 96(3): 399–405

[34] KHAN M A, GUL B, WEBER D J. Germination responses ofto temperature and salinity[J]. Journal of Arid Environments, 2000, 45(3): 207–214

[35] KHAN M A, UNGAR I A. Effects of thermoperiod on recovery of seed germination of halophytes from saline conditions[J]. American Journal of Botany, 1997, 84(2): 279–283

[36] ZHANG H X, ZHANG G M, Lü X T, et al. Salt tolerance during seed germination and early seedling stages of 12 halophytes[J]. Plant and Soil, 2015, 388(1/2): 229–241

[37] 弋良朋, 王祖?zhèn)? 鹽脅迫下3種濱海鹽生植物的根系生長(zhǎng)和分布[J]. 生態(tài)學(xué)報(bào), 2011, 31(5): 1195–1202YI L P, WANG Z W. Root system characters in growth and distribution among three littoral halophytes[J]. Acta Ecologica Sinica, 2011, 31(5): 1195–1202

[38] SHI D C, ZHAO K F. Effects of NaCl and Na2CO3on growth ofand on present state of mineral elements in nutrient solution[J]. Acta Prataculturae Sinica, 1997, 6(2): 51–61

[39] YANG C W, CHONG J N, LI C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyteduring adaptation to salt and alkali conditions[J]. Plant and Soil, 2007, 294(1/2): 263–276

[40] 劉強(qiáng), 王占武, 周曉梅. 蒼耳對(duì)鹽堿脅迫的生理響應(yīng)[J]. 東北林業(yè)大學(xué)學(xué)報(bào), 2017, 45(4): 23–27LIU Q, WANG Z W, ZHOU X M, et al. Physiological responses ofto salt and alkali stresses[J]. Journal of Northeast Forestry University, 2017, 45(4): 23–27

[41] 賈娜爾·阿汗, 楊春武, 石德成, 等. 鹽生植物堿地膚對(duì)鹽堿脅迫的生理響應(yīng)特點(diǎn)[J]. 西北植物學(xué)報(bào), 2007, 27(1): 79–84JIANAER·Ahan, YANG C W, SHI D C, et al. Physiological response of an alkali resistant halophyteto salt and alkali stresses[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(1): 79–84

[42] 古麗內(nèi)爾·亞森, 楊瑞瑞, 曾幼玲. 混合鹽堿脅迫對(duì)灰綠藜(L.)種子萌發(fā)的影響[J]. 生態(tài)學(xué)雜志, 2014, 33(1): 76–82GULNAR Y, YANG R R, ZENG Y L. Effects of salt-alkali mixed stresses on seed germination of the halophyteL.[J]. Chinese Journal of Ecology, 2014, 33(1): 76–82

[43] KAWANABE S, ZHU T C. Degeneration and conservation ofgrassland in Northern China[J]. Journal of Japanese Society of Grassland Science, 1991, 37: 91–99

[44] 魏博嫻. 中國(guó)鹽堿土的分布與成因分析[J]. 水土保持應(yīng)用技術(shù), 2012, (6): 27–28 WEI B X. The analysis of the saline-alkali soil distribution in China[J]. Technology of Soil and Water Conservation, 2012, (6): 27–28

Effects of PEG, NaCl and Na2CO3stresses onandseed germination*

LI Jinsong1,2, GUO Kai1, LI Xiaoguang1,2, FENG Xiaohui1,2, LIU Xiaojing1**

(1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

andare native halophytes in China with a key role in the improvement and restoration of salt marsh ecologies. There is a lot of works on the response ofplants to salinity, but works are limited about the effects of drought and alkali stress onand, especially at germination stage. The aim of this study was to evaluate the impacts of PEG, NaCl and Na2CO3stress on the germination ofandseeds. Theseed germination test was carried out with various solutions of PEG-6000 (29 mmol·L-1, 38 mmol·L-1, 45 mmol·L-1and 50 mmol·L-1), NaCl (100 mmol·L-1, 200 mmol·L-1, 300 mmol·L-1and 400 mmol·L-1) and Na2CO3(70 mmol·L-1, 140 mmol·L-1, 210 mmol·L-1and 280 mmol·L-1) in iso-osmotic concentrations (-0.46 MPa,-0.92 MPa,-1.38 MPa and-1.84 MPa). We measured the germination rate, germination index, mean germination time, early seedling growth after 7-day treatment and final germination rate after another 7-day recovery. The results showed that with increasing osmotic stress intensity, the germination rates of two species were depressed under PEG, NaCl and Na2CO3treatments, while-0.46 MPa treatment did not differ significantly from that of the control (fresh water). The negative effect of NaCl onseed germination was less than iso-osmotic PEG and Na2CO3treatments. By contrast, the effects of iso-osmotic PEG, NaCl or Na2CO3treatments onseed germination were not significantly different. The germination rate ofwas positively related to osmotic potential. Recovery study indicated that PEG, NaCl and Na2CO3stress had no negative effects on the final germinate rate ofand, meaning that the inhibition of PEG, NaCl and Na2CO3stress on seed germination was due to osmotic pressure rather than ion toxicity. In addition, mild NaCl treatments (-0.46 MPa for, and-0.46 and-0.92 MPa for) promotedandseedling elongation, while PEG and Na2CO3treatments inhibited it. In iso-osmotic conditions, radicle and hypocotyl lengths ofandseedlings under NaCl treatment were greater than those under PEG and Na2CO3treatments. Compared with,seedlings grew better under-0.46 MPa and-0.92 MPa NaCl treatments, but worse under-0.46 MPa Na2CO3treatment. The findings suggested that, 1)seeds exhibited strong resistance to PEG, NaCl and Na2CO3stress, and its resistance to PEG and Na2CO3stress was greater than that of. 2)had stronger capacity to establish seedlings under NaCl stress than, but its tolerance to mild Na2CO3stress was weaker than that of.

Seedgermination;;; NaCl stress; Na2CO3stress; PEG stress

, E-mail: xjliu@sjziam.ac.cn

Nov. 3, 2017;

Jan. 16, 2018

Q945.79

A

1671-3990(2018)07-1011-08

10.13930/j.cnki.cjea.171033

* 國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2016YFC0501308)和中國(guó)科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(KFJ-SW-STS-141-04-1, KFJ-STS-ZDTP-001-03)資助

劉小京, 主要從事缺水鹽漬區(qū)水土資源高效利用研究。E-mail: xjliu@sjziam.ac.cn 李勁松, 主要從事耐鹽植物生理生態(tài)研究。E-mail: lijingsongsjz@163.com

2017-11-03

2018-01-16

* This study was supported by the National Key Research and Development Program of China (2016YFC0501308) and the Science and Technology Service Network Program of the Chinese Academy of Sciences (KFJ-SW-STS-141-04-1, KFJ-STS-ZDTP-001-03).

李勁松, 郭凱, 李曉光, 封曉輝, 劉小京. 模擬干旱和鹽堿脅迫對(duì)堿蓬、鹽地堿蓬種子萌發(fā)的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2018, 26(7):1011-1018

LI J S, GUO K, LI X G, FENG X H, LIU X J. Effects of PEG, NaCl and Na2CO3stresses onandseed germination[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7): 1011-1018

猜你喜歡
胚根種子溶液
象外之象——牛健哲《溶液》短評(píng)
都市(2022年1期)2022-03-08 02:23:34
胚根處理對(duì)格氏栲種子出苗率及苗木生長(zhǎng)的影響
不同引發(fā)劑對(duì)番茄、茄子種子萌發(fā)的影響
『溶液』知識(shí)全解讀
玉米自交系與雜交種苗期根和葉的相關(guān)關(guān)系分析
桃種子
解讀“溶液”
幸運(yùn)的小種子
幼兒園(2018年15期)2018-10-15 19:40:36
可憐的種子
斷胚根處理對(duì)文冠果育苗的影響及配套技術(shù)研究1)
沅陵县| 顺平县| 资源县| 钦州市| 梅河口市| 维西| 钟祥市| 呼伦贝尔市| 鄂托克前旗| 革吉县| 文成县| 海安县| 汤阴县| 苗栗县| 禄劝| 彭阳县| 玉树县| 琼结县| 丹巴县| 尼玛县| 大悟县| 牡丹江市| 博罗县| 新巴尔虎右旗| 新巴尔虎左旗| 玛沁县| 永丰县| 玛纳斯县| 古蔺县| 张北县| 孟州市| 永昌县| 鹰潭市| 永登县| 漳州市| 汶川县| 盈江县| 呈贡县| 武威市| 昂仁县| 贵阳市|