国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

大規(guī)模MIMO系統(tǒng)中基于導(dǎo)頻分配策略消除導(dǎo)頻污染算法研究

2018-07-10 07:20牛戈賈元啟穆曉敏張健康
現(xiàn)代電子技術(shù) 2018年13期
關(guān)鍵詞:吞吐量

牛戈 賈元啟 穆曉敏 張健康

摘 要: 針對(duì)大規(guī)模多小區(qū)MIMO系統(tǒng)中導(dǎo)頻污染是限制系統(tǒng)性能的主要瓶頸,提出一種基于導(dǎo)頻分配策略降低導(dǎo)頻污染的方法。小區(qū)內(nèi)用戶分配相同的導(dǎo)頻序列,相鄰小區(qū)用戶分配正交的導(dǎo)頻序列,而小區(qū)內(nèi)存在的導(dǎo)頻污染,利用下行、上行訓(xùn)練的方法消除。在下行訓(xùn)練階段,基站給目標(biāo)用戶發(fā)送導(dǎo)頻序列,使目標(biāo)用戶獲得特殊的預(yù)失真導(dǎo)頻序列。在上行訓(xùn)練階段,基站同時(shí)接收小區(qū)內(nèi)所有用戶的導(dǎo)頻序列,并消除導(dǎo)頻污染。通過(guò)仿真分析,該方法可以完全消除導(dǎo)頻污染的影響,獲得較好的系統(tǒng)性能,提高系統(tǒng)吞吐量。更為重要的是,該方法與許多其他消除導(dǎo)頻污染的算法相比,能避免每個(gè)基站在估計(jì)信道狀態(tài)信息時(shí)已知其二階統(tǒng)計(jì)信息的假設(shè)。

關(guān)鍵詞: 大規(guī)模MIMO; 導(dǎo)頻污染; 信道估計(jì); 時(shí)分雙工系統(tǒng); 導(dǎo)頻序列; 吞吐量

中圖分類號(hào): TN876.2?34; TP391.4 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)13?0019?06

Abstract: The pilot contamination in multi?housing?estate massive multiple?input multiple?output (MIMO) systems is a major bottleneck to limit the system performance. A method based on pilot allocation strategy to reduce the pilot contamination is proposed, whose purpose is to allocate the same pilot sequence to users within a housing?estate, and assign the orthogonal pilot sequence to the users in adjacent housing?estates. The downlink and uplink training method is used to eliminate the pilot contamination in the housing?estates. In the downlink training stage, the base station sends the pilot sequence to the target user so that the target user can obtain a special predistortion pilot sequence. In the uplink training stage, the base station simultaneously receives the pilot sequence of all the users in the housing?estate to eliminate the pilot contamination. The simulation analysis results show that the proposed algorithm can eliminate the influence of pilot contamination, obtain the perfect system performance and improve the throughout of the system, and in comparison with other pilot contamination elimination algorithms, the proposed algorithm can avoid the assumption of the known second?order statistical information when the channel state information of each base station is estimated.

Keywords: massive MIMO; pilot contamination; channel estimation; time division duplex system; pilot frequency sequence; throughput

0 引 言

大規(guī)模MIMO(Massive MIMO)系統(tǒng)通過(guò)在基站端設(shè)置大規(guī)模天線陣列,可獲得更高的信道容量和頻譜效率增益[1?4]。為了確保估計(jì)的信道狀態(tài)信息是精準(zhǔn)的,不同用戶之間分配相互正交的導(dǎo)頻序列,但是大規(guī)模多小區(qū)MIMO系統(tǒng)因小區(qū)內(nèi)用戶多或小區(qū)密集部署,小區(qū)內(nèi)或小區(qū)外復(fù)用導(dǎo)頻時(shí)會(huì)形成干擾,導(dǎo)致基站無(wú)法辨識(shí),即產(chǎn)生導(dǎo)頻污染(Pilot Contamination)。導(dǎo)頻污染的存在將限制大規(guī)模MIMO系統(tǒng)的可達(dá)容量和系統(tǒng)性能[5]。

針對(duì)大規(guī)模MIMO系統(tǒng)導(dǎo)頻污染問(wèn)題,已經(jīng)有一些文獻(xiàn)給出了理論研究和可以減輕導(dǎo)頻污染的方法。文獻(xiàn)[6]采用導(dǎo)頻偏移的分配策略,通過(guò)重新分配導(dǎo)頻在幀結(jié)構(gòu)中的位置,使相鄰小區(qū)之間的導(dǎo)頻發(fā)送時(shí)隙錯(cuò)開(kāi),從而消除導(dǎo)頻污染,但下行鏈路發(fā)射功率較大時(shí)仍存在干擾。文獻(xiàn)[7]將發(fā)射時(shí)隙分為兩段,對(duì)每段功率進(jìn)行控制,使交叉增益相對(duì)較大的用戶組在不同的時(shí)隙發(fā)射導(dǎo)頻,從而減輕導(dǎo)頻污染的影響。文獻(xiàn)[8]通過(guò)控制目標(biāo)小區(qū)以外所有復(fù)用相同導(dǎo)頻用戶的發(fā)射功率,降低導(dǎo)頻污染,但控制策略嚴(yán)格要求相鄰小區(qū)導(dǎo)頻動(dòng)態(tài)同步,以避免導(dǎo)頻之間的重疊,其缺點(diǎn)是對(duì)復(fù)用導(dǎo)頻的用戶數(shù)有限制,且當(dāng)天線數(shù)非常大時(shí),則不能快速有效地減小導(dǎo)頻污染。文獻(xiàn)[9?10]采用部分導(dǎo)頻復(fù)用策略,通過(guò)部分導(dǎo)頻復(fù)用,協(xié)調(diào)處理小區(qū)間干擾,降低導(dǎo)頻污染。文獻(xiàn)[11]采用導(dǎo)頻協(xié)調(diào)分配策略,通過(guò)識(shí)別某組導(dǎo)頻序列的使用情況,當(dāng)再次使用該組導(dǎo)頻序列時(shí),選擇使信干噪比最大的用戶組,從而降低導(dǎo)頻污染,但小區(qū)間協(xié)作會(huì)增加系統(tǒng)開(kāi)銷(xiāo)。文獻(xiàn)[12]提出小區(qū)間協(xié)作分配導(dǎo)頻序列,使波達(dá)方向角不混疊,基于貝葉斯估計(jì)消除導(dǎo)頻污染,分析波達(dá)方向角(AOA)不同分布方式對(duì)系統(tǒng)性能的影響。該方法隨著天線數(shù)的增加,導(dǎo)頻污染的影響迅速減小,且在天線數(shù)不算很大時(shí)就擁有較好的系統(tǒng)性能,然而需要精確的二階統(tǒng)計(jì)信息,但實(shí)際中很難獲得。

本文針對(duì)使用二階統(tǒng)計(jì)信息的問(wèn)題,提出一種新的導(dǎo)頻分配策略,每一個(gè)小區(qū)內(nèi)用戶都使用相同的導(dǎo)頻序列,不同的小區(qū)之間使用相互正交的導(dǎo)頻序列,導(dǎo)頻污染來(lái)自于小區(qū)內(nèi)干擾,利用下行、上行訓(xùn)練的方法消除小區(qū)內(nèi)干擾[13],在不使用二階統(tǒng)計(jì)量的情況下完全消除導(dǎo)頻污染的影響,并分析AOA不同分布方式對(duì)系統(tǒng)性能的影響。

圖4,圖5都在AOA的標(biāo)準(zhǔn)差為10°,SNR=25 dB下進(jìn)行仿真。從圖中基于上下行訓(xùn)練方案可以看出,隨著天線數(shù)的增加,基站端分級(jí)增益增大,均方誤差明顯減小。而LS法隨著天線數(shù)的增加并無(wú)明顯變化,可以看出LS法基本不受天線數(shù)的影響。AOA服從高斯分布時(shí)系統(tǒng)性能要優(yōu)于AOA服從均勻分布。

圖6,圖7都是在天線數(shù)Q=100,AOA的標(biāo)準(zhǔn)差為10°下進(jìn)行仿真。從圖中可以看出,隨著信噪比的增加,基于上下行訓(xùn)練方案和無(wú)其他用戶干擾下的LS信道環(huán)境變好,均方誤差迅速下降。有干擾情況下的LS法由于其他用戶的干擾,性能基本不變。

圖8是在天線數(shù)Q=100,AOA服從高斯分布,標(biāo)準(zhǔn)差為10°,SNR=25 dB下進(jìn)行仿真。從圖中可以看出,LS法隨著用戶數(shù)的增加,性能越來(lái)越差,而基于上下行訓(xùn)練方案隨著用戶的增加均方誤差基本沒(méi)有變化。

圖9是在AOA服從高斯分布,標(biāo)準(zhǔn)差為10°,SNR=25 dB下進(jìn)行仿真。從圖中可以看出,隨著天線數(shù)的增加,信道容量迅速增加,且信噪比越大,信道容量越大。當(dāng)天線數(shù)增加時(shí),系統(tǒng)分級(jí)增益增大,信道容量增加,大規(guī)模系統(tǒng)的優(yōu)勢(shì)顯現(xiàn)出來(lái)。

圖10是在AOA服從標(biāo)準(zhǔn)差為10°,SNR=25 dB下進(jìn)行仿真。從圖中可以看出,隨著AOA的方差增加,信道容量緩緩增大,且信噪比越大,信道容量越大。

4 結(jié) 語(yǔ)

本文對(duì)使用二階統(tǒng)計(jì)信息的問(wèn)題提出一種新的導(dǎo)頻分配策略,每一個(gè)小區(qū)內(nèi)用戶都使用相同的導(dǎo)頻序列,不同的小區(qū)之間使用相互正交的導(dǎo)頻序列,將多小區(qū)模型化簡(jiǎn)為單小區(qū)模型,采用上下行訓(xùn)練的方案消除小區(qū)內(nèi)干擾用戶造成的導(dǎo)頻污染。即首先由基站發(fā)送正交下行導(dǎo)頻,小區(qū)用戶分別估計(jì)出信道,接著由目標(biāo)用戶發(fā)送包裹了估計(jì)信道信息的上行導(dǎo)頻,其他用戶發(fā)送的導(dǎo)頻信號(hào)進(jìn)行信號(hào)處理即可完全消除導(dǎo)頻污染的影響。本文在不使用二階統(tǒng)計(jì)信息的情況下,消除了導(dǎo)頻污染的理論推導(dǎo)。通過(guò)仿真分析可知,該方案可以完全消除導(dǎo)頻污染的影響,并分析AOA不同分布方式對(duì)系統(tǒng)性能的影響,在低信噪比下也有較好的性能。隨著天線的增加,估計(jì)信道信息的均方誤差迅速下降,在100根時(shí)就能獲得非常好的性能。目前存在的問(wèn)題是該算法復(fù)雜度較高,導(dǎo)頻序列過(guò)長(zhǎng),過(guò)度占用頻譜資源,降低頻譜利用率,下一步針對(duì)減少導(dǎo)頻數(shù),提高頻譜利用率等問(wèn)題進(jìn)行研究。

參考文獻(xiàn)

[1] MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas [J]. IEEE transactions on wireless communication, 2010, 9(11): 3590?3600.

[2] LARSSON E G, EDFORS O, TUFVESSON F. Massive MIMO for next generation wireless systems [J]. IEEE communication magazine, 2014, 52(2): 186?195.

[3] LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges [J]. IEEE journal of selected topics in signal processing, 2014, 8(5): 742?758.

[4] RUSEK F, PERSSPM D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays [J]. IEEE signal processing magazine, 2012, 30(1): 40?60.

[5] WANG P, WANG H, PING L, et al. On the capacity of MIMO cellular systems with base station cooperation [J]. IEEE transactions on wireless communications, 2011, 10(11): 3720?3731.

[6] MAHYIDDIN W, MARTIN P A, SMITH P J. Pilot contamina?tion reduction using time?shifted pilots in finite massive MIMO systems [C]// 2014 IEEE the 80th Vehicular Technology Conference. [S.l.]: IEEE, 2014: 1?5.

[7] 王海榮,王玉輝,黃永明,等.大規(guī)模MIMO多小區(qū)TDD系統(tǒng)中的導(dǎo)頻污染減輕方法[J].信號(hào)處理,2013,29(2):171?180.

WANG Hairong, WANG Yuhui, HUANG Yongming, et al. Pilot contamination reduction in very large MIMO multi?cell TDD systems [J]. Signal processing, 2013, 29(2): 171?180.

[8] SAXENA V, FODOR G, KARIPIDIS E. Mitigating pilot conta?mination by pilot reuse and power control schemes for massive MIMO systems [C]// 2015 IEEE the 81st Vehicular Technology Conference. [S.l.]: IEEE, 2015: 1?6

[9] 王海榮,王玉輝,黃永明,等.大規(guī)模MIMO蜂窩網(wǎng)絡(luò)系統(tǒng)中的導(dǎo)頻污染減輕方法[J].通信學(xué)報(bào),2014(1):24?33.

WANG Hairong, WANG Yuhui, HUANG Yongming, et al. Pilot contamination reduction in very large MIMO cellular network [J]. Journal of communications, 2014(1): 24?33.

[10] ATZENI I, ARNAU J, DEBBAH M. Fractional pilot reuse in massive MIMO systems [C]// 2015 IEEE International Conference on Communication Workshop. [S.l.]: IEEE, 2015: 1030?1035.

[11] ZHU X, WANG Z, DAI L, et al. Smart pilot assignment for massive MIMO [J]. IEEE communications letters, 2015,19(9): 1644?1647.

[12] YIN Haifan, GESBERT D, FILIPPOU M, et al. A coordinated approach to channel estimation in large?scale multiple?antenna systems [J]. IEEE journal on selected areas in communica?tions, 2012, 31(2): 264?273.

[13] ZHANG Jiankang, ZHANG Bo, CHEN M, et al. Pilot contami?

nation elimination for large scale multiple antenna aided OFDM systems [J]. IEEE journal of selected topics in signal processing, 2014, 8(5): 759?772.

猜你喜歡
吞吐量
2019年6月長(zhǎng)三角地區(qū)主要港口吞吐量
2018年6月長(zhǎng)三角地區(qū)主要港口吞吐量
2017年12月長(zhǎng)三角地區(qū)主要港口吞吐量
2018年10月長(zhǎng)三角地區(qū)主要港口吞吐量
2017年11月長(zhǎng)三角地區(qū)主要進(jìn)港口吞吐量
2017年10月長(zhǎng)三角地區(qū)主要港口吞吐量
2017年6月長(zhǎng)三角地區(qū)主要港口吞吐量
2017年4月長(zhǎng)三角地區(qū)主要港口吞吐量
2017年3月長(zhǎng)三角地區(qū)主要港口吞吐量
2016年10月長(zhǎng)三角地區(qū)主要港口吞吐量