宋士鳳
培養(yǎng)學(xué)生的思維能力是現(xiàn)代學(xué)校教學(xué)的一項(xiàng)基本任務(wù)。我們要培養(yǎng)社會(huì)主義現(xiàn)代化建設(shè)所需要的人才,其基本條件之一就是要具有獨(dú)立思考的能力,勇于創(chuàng)新的精神。小學(xué)數(shù)學(xué)教學(xué)從一年級(jí)起就擔(dān)負(fù)著培養(yǎng)學(xué)生思維能力的重要任務(wù)。下面就如何培養(yǎng)學(xué)生思維能力談幾點(diǎn)看法。
一、激發(fā)學(xué)生思維動(dòng)機(jī)
動(dòng)機(jī)是人們“因需要而產(chǎn)生的一種心理反映”,它是人們行為活動(dòng)的內(nèi)動(dòng)力。因此,激發(fā)學(xué)生思維的動(dòng)機(jī)是培養(yǎng)其思維能力的關(guān)鍵因素。教師如何才能激發(fā)學(xué)生思維動(dòng)機(jī)呢?這就要求教師必須在教學(xué)中充分發(fā)揮主導(dǎo)作用,根據(jù)學(xué)生心理特點(diǎn),教師有意識(shí)地挖掘教材中的知識(shí)因素,從學(xué)生自身生活需要出發(fā),使其明確知識(shí)的價(jià)值,從而產(chǎn)生思維的動(dòng)機(jī)。例如:在教學(xué)根據(jù)實(shí)際情況用“進(jìn)一法”和“去尾法”取商的近似數(shù)的應(yīng)用題時(shí),先出示題目:小明的媽媽要將2.6千克香油分裝在一些玻璃瓶里,每個(gè)瓶最多可盛0.5千克,需要幾個(gè)瓶?再讓學(xué)生讀題,分析解題思路。當(dāng)學(xué)生回答出求需要準(zhǔn)備幾個(gè)瓶,就是看2.6千克里有幾個(gè)0.5千克時(shí),我先讓學(xué)生猜一猜需要幾個(gè)瓶,然后讓學(xué)生獨(dú)立計(jì)算出結(jié)果。算出結(jié)果為5.2,我問(wèn)學(xué)生:“按‘四舍無(wú)入法我們準(zhǔn)備5個(gè)瓶子可以嗎?”學(xué)生回答說(shuō)“不可以?!蔽矣謫?wèn):“為什么?”學(xué)生都知道需要再準(zhǔn)備一個(gè)瓶子裝剩下的0.1千克油,所以需要準(zhǔn)備6個(gè)瓶子才行。最后讓學(xué)生驗(yàn)證自己的猜想,老師并告訴:這種根據(jù)實(shí)際情況取近似數(shù)的方法叫“進(jìn)一法”。隨后用同樣的方法教學(xué)了“去尾法”。由于這些例題都是生活中遇到的問(wèn)題,學(xué)生容易理解掌握。這樣也引發(fā)了學(xué)生探求新知的思維動(dòng)機(jī)。這樣設(shè)計(jì)教學(xué)既滲透了“知識(shí)來(lái)源于生活”的數(shù)學(xué)思想,又使學(xué)生意識(shí)到學(xué)習(xí)知識(shí)的目的是為了解決生活和生產(chǎn)中的實(shí)際問(wèn)題。學(xué)生的學(xué)習(xí)動(dòng)機(jī)被激發(fā)起來(lái)了,自然會(huì)全身心地投入到后面的教學(xué)活動(dòng)之中。可見(jiàn),創(chuàng)設(shè)思維情境,激發(fā)學(xué)生的思維動(dòng)機(jī),是對(duì)其進(jìn)行思維訓(xùn)練的重要環(huán)節(jié)。
二、在教學(xué)全過(guò)程培養(yǎng)學(xué)生思維能力
1.培養(yǎng)學(xué)生思維能力要貫穿在小學(xué)階段各個(gè)年級(jí)的數(shù)學(xué)教學(xué)中
要明確各年級(jí)都擔(dān)負(fù)著培養(yǎng)學(xué)生思維能力的任務(wù)。從一年級(jí)一開(kāi)始就要注意有意識(shí)地加以培養(yǎng)。例如,開(kāi)始認(rèn)識(shí)大小、長(zhǎng)短、多少,就有初步培養(yǎng)學(xué)生比較能力的問(wèn)題。開(kāi)始教學(xué)10以?xún)?nèi)的數(shù)和加、減計(jì)算,就有初步培養(yǎng)學(xué)生抽象、概括能力的問(wèn)題。開(kāi)始教學(xué)數(shù)的組成就有初步培養(yǎng)學(xué)生分析、綜合能力的問(wèn)題。這就需要教師引導(dǎo)學(xué)生通過(guò)實(shí)際操作、觀察,逐步進(jìn)行比較、分析、綜合、抽象、概括,形成10以?xún)?nèi)數(shù)的概念,理解加、減法的含義,學(xué)會(huì)10以?xún)?nèi)加、減法的計(jì)算方法。如果不注意引導(dǎo)學(xué)生去思考,從一開(kāi)始就有可能不自覺(jué)地把學(xué)生引向死記數(shù)的組成,機(jī)械地背誦加、減法得數(shù)的道路上去。而在一年級(jí)養(yǎng)成了死記硬背的習(xí)慣,以后就很難糾正。
2.培養(yǎng)學(xué)生思維能力要貫穿在每一節(jié)課的各個(gè)環(huán)節(jié)中
不論是開(kāi)始的復(fù)習(xí),教學(xué)新知識(shí),組織學(xué)生練習(xí),都要注意結(jié)合具體的內(nèi)容有意識(shí)地進(jìn)行培養(yǎng)。例如復(fù)習(xí)20以?xún)?nèi)的進(jìn)位加法時(shí),有經(jīng)驗(yàn)的教師給出式題以后,不僅讓學(xué)生說(shuō)出得數(shù),還要說(shuō)一說(shuō)是怎樣想的,特別是當(dāng)學(xué)生出現(xiàn)計(jì)算錯(cuò)誤時(shí),說(shuō)一說(shuō)計(jì)算過(guò)程有助于加深理解“湊十”的計(jì)算方法,學(xué)會(huì)類(lèi)推,而且有效地消滅錯(cuò)誤。經(jīng)過(guò)一段訓(xùn)練后,引導(dǎo)學(xué)生簡(jiǎn)縮思維過(guò)程,想一想怎樣能很快地算出得數(shù),培養(yǎng)學(xué)生思維的敏捷性和靈活性。在教學(xué)新知識(shí)時(shí),不是簡(jiǎn)單地告知結(jié)論或計(jì)算法則,而是引導(dǎo)學(xué)生去分析、推理,最后歸納出正確的結(jié)論或計(jì)算法則。例如,教學(xué)兩位數(shù)乘法,關(guān)鍵是通過(guò)直觀引導(dǎo)學(xué)生把它分解為用一位數(shù)乘和用整十?dāng)?shù)乘,重點(diǎn)要引導(dǎo)學(xué)生弄清整十?dāng)?shù)乘所得的部分積寫(xiě)在什么位置,最后概括出用兩位數(shù)乘的步驟。學(xué)生懂得算理,自己從直觀的例子中抽象、概括出計(jì)算方法,不僅印象深刻,同時(shí)發(fā)展了思維能力。在教學(xué)中看到,有的老師也注意發(fā)展學(xué)生思維能力,但不是貫穿在一節(jié)課的始終,而是在一節(jié)課最后出一兩道稍難的題目來(lái)作為訓(xùn)練思維的活動(dòng),或者專(zhuān)上一節(jié)思維訓(xùn)練課。這種把培養(yǎng)思維能力只局限在某一節(jié)課內(nèi)或者一節(jié)課的某個(gè)環(huán)節(jié)內(nèi),是值得研究的。當(dāng)然,在教學(xué)全過(guò)程始終注意培養(yǎng)思維能力的前提下,為了掌握某一特殊內(nèi)容或特殊方法進(jìn)行這種特殊的思維訓(xùn)練是可以的,但是不能以此來(lái)代替教學(xué)全過(guò)程發(fā)展思維的任務(wù)。
3.培養(yǎng)思維能力要貫穿在各部分內(nèi)容的教學(xué)中
這就是說(shuō),在教學(xué)數(shù)學(xué)概念、計(jì)算法則、解答應(yīng)用題或操作技能(如測(cè)量、畫(huà)圖等)時(shí),都要注意培養(yǎng)思維能力。任何一個(gè)數(shù)學(xué)概念,都是對(duì)客觀事物的數(shù)量關(guān)系或空間形式進(jìn)行抽象、概括的結(jié)果。因此教學(xué)每一個(gè)概念時(shí),要注意通過(guò)多種實(shí)物或事例引導(dǎo)學(xué)生分析、比較、找出它們的共同點(diǎn),揭示其本質(zhì)特征,做出正確的判斷,從而形成正確的概念。例如,教學(xué)長(zhǎng)方形概念時(shí),不宜直接畫(huà)一個(gè)長(zhǎng)方形,告訴學(xué)生這就叫做長(zhǎng)方形。而應(yīng)先讓學(xué)生觀察具有長(zhǎng)方形的各種實(shí)物,引導(dǎo)學(xué)生找出它們的邊和角各有什么共同特點(diǎn),然后抽象出圖形,并對(duì)長(zhǎng)方形的特征作出概括。教學(xué)計(jì)算法則和規(guī)律性知識(shí)更要注意培養(yǎng)學(xué)生判斷、推理能力。例如,教學(xué)加法結(jié)合律,不宜簡(jiǎn)單地舉一個(gè)例子,就作出結(jié)論。最好舉兩三個(gè)例子,每舉一個(gè)例子,引導(dǎo)學(xué)生作出個(gè)別判斷[如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結(jié)果相同]。然后引導(dǎo)學(xué)生對(duì)幾個(gè)例子進(jìn)行分析、比較,找出它們的共同點(diǎn),即等號(hào)左端都是先把前兩個(gè)數(shù)相加,再同第三個(gè)數(shù)相加,而等號(hào)右端都是先把后兩個(gè)數(shù)相加,再同第一個(gè)數(shù)相加,結(jié)果不變。最后作出一般的結(jié)論。這樣不僅使學(xué)生對(duì)加法結(jié)合律理解得更清楚,而且學(xué)到不完全歸納推理的方法。然后再把得到的一般結(jié)論應(yīng)用到具體的計(jì)算(如57+28+12)中去并能說(shuō)出根據(jù)什么可以使計(jì)算簡(jiǎn)便。這樣又學(xué)到演繹的推理方法至于解應(yīng)用題引導(dǎo)學(xué)生分析數(shù)量關(guān)系,這里不再贅述。
總之,義務(wù)教育階段的數(shù)學(xué)課程,其基本出發(fā)點(diǎn)是促進(jìn)學(xué)生全面、持續(xù)、和諧的發(fā)展。它不僅要考慮數(shù)學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強(qiáng)調(diào)從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程,進(jìn)而使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力方面得到進(jìn)步和發(fā)展。因此,我們要充分重視數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)。