国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生物質(zhì)熱解影響因素及技術(shù)研究進展

2018-08-10 07:56:34胡二峰趙立欣孟海波姚宗路叢宏斌吳雨濃
農(nóng)業(yè)工程學(xué)報 2018年14期
關(guān)鍵詞:熱載體焦油生物質(zhì)

胡二峰,趙立欣,吳 娟,孟海波,姚宗路,叢宏斌,吳雨濃

?

生物質(zhì)熱解影響因素及技術(shù)研究進展

胡二峰1,趙立欣1※,吳 娟2,孟海波1,姚宗路1,叢宏斌1,吳雨濃1

(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點實驗室,北京 100125;2. 環(huán)境保護部南京環(huán)境科學(xué)研究所,南京 210042)

熱解技術(shù)是實現(xiàn)農(nóng)業(yè)生物質(zhì)廢棄物清潔利用的有效途徑之一。該文概述了熱解技術(shù)在農(nóng)作物秸稈資源化利用中的應(yīng)用,梳理介紹了生物質(zhì)熱解基本反應(yīng)與過程和技術(shù)發(fā)展現(xiàn)狀,探討了制約生物質(zhì)熱解技術(shù)發(fā)展的主要問題,提出了開發(fā)低成本、高效率多技術(shù)集成的外熱式回轉(zhuǎn)窯熱解炭化技術(shù)的方法。結(jié)合該團隊在的技術(shù)積累,針對玉米秸稈熱解炭化技術(shù)需求,通過集成密封進料、連續(xù)熱解、熱解氣/油回燃等技術(shù),開發(fā)了連續(xù)熱解炭化聯(lián)產(chǎn)技術(shù)裝備,并建成了500 kg/h熱解炭氣聯(lián)產(chǎn)示范工程,驗證了新工藝的可行性和先進性,展現(xiàn)了良好的技術(shù)應(yīng)用前景,解決了連續(xù)熱解設(shè)備作業(yè)穩(wěn)定性差、換熱效率低等問題,實現(xiàn)了北方地區(qū)秸稈資源化綜合利用,對提高農(nóng)業(yè)綜合效益、改善農(nóng)村生活品質(zhì)具有重要意義。在前期研究結(jié)果的基礎(chǔ)上,提出進一步深入研究定向調(diào)控?zé)峤猱a(chǎn)物的方法,為實現(xiàn)農(nóng)村生物質(zhì)多聯(lián)產(chǎn)輕簡化系統(tǒng)提供理論指導(dǎo)。

熱解;生物質(zhì);廢棄物;反應(yīng)過程;技術(shù)現(xiàn)狀

0 引 言

中國生物質(zhì)資源豐富、種類繁多,其中僅玉米、水稻、小麥等農(nóng)作物秸稈資源2016年產(chǎn)量就已9.96億t,約合5億t標(biāo)準(zhǔn)煤[1-2]。然而,每年約有2億t秸稈被就地廢棄,造成了嚴(yán)重的環(huán)境污染和資源浪費。另一方面,化肥的過度使用造成土壤肥力下降,農(nóng)藥的大量使用造成土壤和地下水污染,危害生態(tài)環(huán)境[3]。秸稈等生物質(zhì)熱解技術(shù)是一種熱化學(xué)轉(zhuǎn)化技術(shù),該技術(shù)不僅可以實現(xiàn)生物質(zhì)的高值化利用,而且產(chǎn)生的熱解炭在土壤改良、重金屬吸附和水源凈化等方面也具有重要作用[4-5],因而受到更多國內(nèi)外專家、學(xué)者的關(guān)注和研究。

近年來,國內(nèi)外學(xué)者對生物質(zhì)熱解進行了大量的研究,開展了大量的、以開發(fā)生物質(zhì)熱解技術(shù)和反應(yīng)器為目標(biāo)的研究工作,分為針對生物質(zhì)熱解特性的基礎(chǔ)研究和生物質(zhì)熱解工藝的技術(shù)開發(fā)。本文通過對生物質(zhì)熱解技術(shù)進行梳理,在總結(jié)前人的基礎(chǔ)上,結(jié)合本團隊的研究進展,對生物質(zhì)熱解炭化技術(shù)的發(fā)展提出建議,為實現(xiàn)中國農(nóng)村生物質(zhì)廢棄物資源化利用提供借鑒。

1 生物質(zhì)熱解影響因素

生物質(zhì)熱解過程反應(yīng)復(fù)雜,主要以裂解反應(yīng)和縮聚反應(yīng)為主,中間反應(yīng)途徑甚多。熱解反應(yīng)為脫羧反應(yīng)、脫羰反應(yīng)、脫水反應(yīng)、反羥醛縮合反應(yīng)等為主,包括纖維素、半纖維素和木質(zhì)素的裂解,裂解產(chǎn)物中輕組分的揮發(fā),揮發(fā)產(chǎn)物在析出過程中的分解和再結(jié)合,裂解殘留物的縮聚、進一步分解和再縮聚等過程。熱解過程大致分為干燥預(yù)熱階段、揮發(fā)分析出階段和生物炭縮聚階段[6-7],經(jīng)歷自由水和化學(xué)水脫出、主要結(jié)構(gòu)分解和焦炭生成階段,產(chǎn)物包括水、熱解氣、直鏈烴類、醛、醇、酮、酸等[8-11]。

生物質(zhì)熱解的條件如原料種類[12]、升溫速率[13]、熱解溫度[14]、停留時間[15]、原料水分[16]、粒徑[17]、催化熱解[18]以及微波熱解[19]等都不同程度影響熱解產(chǎn)物的產(chǎn)率和組成,因此,掌握生物質(zhì)熱解的影響因素與工藝研究現(xiàn)狀對新技術(shù)的設(shè)計與開發(fā)具有重要的指導(dǎo)意義。其中,浙江大學(xué)在分子團裂化重組對生物油影響、金屬鹽催化熱解機理、生物質(zhì)轉(zhuǎn)化中官能團轉(zhuǎn)變機理方面開展了研究;廣州能源研究所在定向氣化、水相重整方向、間接合成液體燃料方面開展了研究;華中科技大學(xué)在生物質(zhì)液化產(chǎn)物控制以及多聯(lián)產(chǎn)調(diào)控方面進行了研究;華東理工大學(xué)在生物質(zhì)聚態(tài)酸催化方面進行了研究,天津大學(xué)在生物質(zhì)熱化學(xué)轉(zhuǎn)化生物油方面開展了基礎(chǔ)研究。國外Bridgwater教授領(lǐng)銜的Pyne(歐洲熱解網(wǎng))各成員也開展了大量的生物質(zhì)熱解相關(guān)研究,主要集中生物質(zhì)熱解轉(zhuǎn)化和生物質(zhì)焦油提質(zhì)方面[20]。

1.1 不同種類

生物質(zhì)種類直接影響熱解開始溫度、熱解產(chǎn)物分布和品質(zhì)等[12,21-22]。棉稈、稻草稈、麥草稈和玉米稈在相同熱解條件下,棉稈的生物炭產(chǎn)率最低,稻草稈的生物炭產(chǎn)率最高;棉稈的木醋液和熱解氣產(chǎn)率最高;玉米稈的熱解氣產(chǎn)率最低。相比于稻殼、木屑和牛糞等,玉米秸稈的揮發(fā)分析出的開始溫度和終止溫度較低,熱解活化能最小,熱解最容易進行?;罨苤苯臃磻?yīng)熱解中分子鍵能斷裂的一系列復(fù)雜、連續(xù)反應(yīng)過程。根據(jù)不同秸稈活化能差異,推測玉米秸稈和稻桿的熱解過程差異很大。

1.2 升溫速率

升溫速率越大,熱解程度越快,達到相同熱解程度所需時間越短。隨著加熱速率的升高,玉米秸稈和麥稈達到最高熱解速率所對應(yīng)的溫度升高,不同升溫速率下達到最大熱解速率時的溫度發(fā)生在327~357 ℃之間[13,23]。升溫速率的增加,有利于物料揮發(fā)分的析出,熱解反應(yīng)更容易進行。較高的升溫速率有助于生物炭孔隙的增加,但是升溫速率的提高,對生物炭最終產(chǎn)率幾乎無影響[23]。

1.3 熱解溫度

隨著熱解溫度的升高,熱解炭產(chǎn)率逐漸降低,木醋液和熱解氣產(chǎn)率逐漸升高。當(dāng)熱解溫度從350 ℃增加到700 ℃時,生物炭芳香化結(jié)構(gòu)加深、比表面積和孔隙度也有所增加[14,24]。隨著熱解溫度的增加,生物炭比表面積先增加后減小,且孔隙以微孔和介孔為主。當(dāng)熱解溫度高于750 ℃時,生物炭部分孔坍塌表明炭沉積,生物炭比表面積有所降低[24]。

1.4 反應(yīng)停留時間

反應(yīng)停留時間是影響生物質(zhì)熱解過程的重要參數(shù)。在恒定熱解溫度和升溫速率等條件下,反應(yīng)停留時間的延長會增加生物炭的產(chǎn)量,對生物炭的灰分含量及元素組成也有一定影響[15,25-26]。縮短熱解氣在反應(yīng)器內(nèi)的停留時間,有助于熱解氣相產(chǎn)物脫離顆粒表面,減少了二次反應(yīng),提高生物油產(chǎn)率和品質(zhì)[25-26]。

1.5 水 分

生物質(zhì)所含水分顯著影響生物質(zhì)熱解特性[16,27-28]。在樹皮熱解過程中,原料水分含量對半焦表面化學(xué)性質(zhì)影響顯著,水分含量降低,半焦結(jié)構(gòu)更趨于芳香化、石墨化[29]。稻稈熱解過程中水分含量的增加,使得熱解干燥階段所需熱量增多,水分含量直接影響熱解焦油中苯、甲苯和苯酚含量[28]。顆??紫吨兴值奈龀?,有利于形成通往顆粒內(nèi)部孔道,使得揮發(fā)分更容易逸出,熱解更容易進行,減小了化學(xué)能[30]。

1.6 原料預(yù)烘焙

預(yù)烘培可以有效降低原料中水分,減少進入生物油中的水分,降低生物油中氧及乙酸含量,提高生物油的產(chǎn)率和品質(zhì)[31]。預(yù)烘焙提高了物料的熱傳遞速率,加快熱解反應(yīng)的進行,有助于熱解過程中甲烷和氫氣的產(chǎn)生,預(yù)烘焙后生物質(zhì)產(chǎn)生的焦油含水率更低、熱值更高,產(chǎn)生的生物炭含量及熱值增加15%~25%[32]。

2 生物質(zhì)熱解工藝技術(shù)概況

針對生物質(zhì)熱解技術(shù),國內(nèi)外開展了大量的研究工作[33-35]。其中美國、加拿大和澳大利亞等國家的生物炭研究工藝較為先進,近年來中國在生物質(zhì)技術(shù)方面也迅速發(fā)展。

生物質(zhì)熱解技術(shù)的核心是熱解反應(yīng)器,其熱解反應(yīng)器類型以及加熱方式對生物油產(chǎn)率和品質(zhì)影響顯著。熱解反應(yīng)屬于吸熱反應(yīng),即該反應(yīng)需要從外界吸收能量維持反應(yīng)進行。截止到目前,常見的生物質(zhì)熱解反應(yīng)器主要有鼓泡流化床反應(yīng)器、循環(huán)流化床反應(yīng)器、傳輸床反應(yīng)器、旋轉(zhuǎn)錐反應(yīng)器、螺旋反應(yīng)器、燒蝕渦流反應(yīng)器、真空熱解反應(yīng)器、內(nèi)循環(huán)串行流化床反應(yīng)器和下行床反應(yīng)器等。生物質(zhì)熱解工藝技術(shù)按照加熱方式的不同,主要分為內(nèi)熱式、外熱式和內(nèi)-外復(fù)合加熱式[36-38]。

2.1 內(nèi)熱式工藝

內(nèi)熱式工藝是指熱載體與生物質(zhì)直接接觸換熱,熱載體按照形態(tài)差異可分為氣體和固體兩類。氣體熱載體主要為熱煙氣;固體熱載體主要包括瓷球、半焦和灰。根據(jù)加熱方式的不同,可分為氣體熱載體加熱技術(shù)和固體熱載體加熱技術(shù)2大類。

2.1.1 氣體熱載體技術(shù)

氣體熱載體是指生物質(zhì)的加熱介質(zhì)為氣體,主要為熱煙氣。熱解過程中,高溫?zé)釤煔庵苯舆M入反應(yīng)器內(nèi)與生物質(zhì)接觸,并加熱生物質(zhì)。主要傳熱方式為對流傳熱,強化了生物質(zhì)的加熱速率。采用氣體熱載體加熱的典型工藝有加拿大Ensyn公司的循環(huán)流化床工藝[39]、加拿大Dynamotive公司的鼓泡流化床工藝[40]和東南大學(xué)的內(nèi)循環(huán)串行流化床反應(yīng)器[41]等。選擇其中代表循環(huán)流化床和鼓泡流化床進行詳細(xì)介紹。

1)循環(huán)流化床技術(shù)

循環(huán)流化床結(jié)構(gòu)示意圖如圖1所示。該技術(shù)可以對原料適應(yīng)性強,爐內(nèi)溫度、氣流分布均勻,適合用在大型裝置系統(tǒng)中,容易實現(xiàn)商業(yè)化,具有代表性的是1989年Ensyn公司建成的世界上第一臺循環(huán)流化床生物質(zhì)快速熱解裝置[39]。生物炭和半焦在燃燒器中燃燒后,作為熱載體進入熱解室為反應(yīng)提供熱量。由于該反應(yīng)過程分別在兩個反應(yīng)室進行,有效減少了氮氣等引起的稀釋效應(yīng)。熱解過程中使用載氣的氣速較大,容易夾帶粉塵,收集到的生物焦油中所含細(xì)小焦炭顆粒較多,使得生物油品質(zhì)降低且難以利用。床層內(nèi)較多生物質(zhì)處于稀相流動狀態(tài),生物質(zhì)和床料接觸欠佳,降低傳熱效率。焦炭燃燒后灰分隨著床料循環(huán)進入熱解室,會加劇熱解氣相產(chǎn)物的二次反應(yīng),降低生物焦油產(chǎn)率和品質(zhì)。

2)鼓泡流化床技術(shù)

鼓泡流化床示意圖如圖2所示。該工藝結(jié)構(gòu)簡單、溫度容易控制,流化床內(nèi)氣速超過臨界流化氣速后,床層出現(xiàn)氣泡且固體流化,呈現(xiàn)出顆粒聚集的濃相區(qū)和氣泡為主的稀相區(qū),實現(xiàn)顆粒和床料之間高效換熱。加拿大Dynamotive公司自2006年開始已建成4套工業(yè)裝置,并已與湖北信達生物油技術(shù)公司合作, 14~24 t/d的熱解裝置在建。該技術(shù)要求生物質(zhì)粒徑約為2~3 mm,因而在原料破碎方面能耗較高。由于生物炭在熱解反應(yīng)過程中滯留時間過長,對熱解氣相產(chǎn)物催化裂解作用明顯,會降低焦油產(chǎn)率。由于該技術(shù)要求生物質(zhì)入料粒徑較小,因而容易攜帶粉塵進入下游處理設(shè)備,影響焦油品質(zhì)。

1. 生物質(zhì) 2. 熱解室 3. 旋風(fēng)分離器 4. 砂和半焦 5. 熱砂 6. 燃燒器 7. 空氣 8. 灰 9. 急冷器 10. 靜電除塵器 11. 點火 12. 氣體循環(huán) 13. 循環(huán)氣體熱載體

1. 生物質(zhì) 2. 鼓泡流化床 3. 燃燒室 4. 旋風(fēng)分離器 5. 焦炭收集 6. 急冷系統(tǒng) 7. 油罐

氣體熱載體技術(shù)可以實現(xiàn)物料的快速加熱,焦油產(chǎn)率高。但由于熱解氣中混入了熱煙氣,熱解氣熱值低,難以符合工業(yè)和民用要求;熱解過程中使用的載氣,容易造成粉塵夾帶,堵塞甚至惡化下游處理設(shè)備,且焦油往往存在塵含量高、品質(zhì)差等問題。

2.1.2 固體熱載體技術(shù)

固體熱載體技術(shù)是指生物質(zhì)的加熱介質(zhì)為固體,主要包括陶瓷球和砂子等,如Karlsruhe理工學(xué)院和Mississippi State大學(xué)開發(fā)的螺旋反應(yīng)器,詳見圖3;該反應(yīng)器通過將高溫固體熱載體和生物質(zhì)混合入料,在螺旋內(nèi)旋轉(zhuǎn)擠壓完成熱量交換,進而完成生物質(zhì)熱解。該技術(shù)不需要載氣,運行溫度較低(約為400 ℃),可以處理低品質(zhì)、難入料的物料。但是由于熱解氣相產(chǎn)物和生物炭在反應(yīng)器內(nèi)停留時間長,生物油產(chǎn)率較低;且容易堵塞,裝置放大后傳熱效率低。此外,山東理工大學(xué)研制的陶瓷球熱載體加熱下降管式生物質(zhì)熱解裝置使用熱陶瓷球作為熱載體[43],沈陽農(nóng)業(yè)大學(xué)的旋轉(zhuǎn)錐使用熱砂子作為熱載體[44],但后兩者均采用內(nèi)熱-外熱復(fù)合式工藝。

1. 生物質(zhì) 2. 粉碎機 3. 熱載體 4. 不可凝氣體 5. 冷凝器 6. 生物油7. 熱解氣 8. 生物炭

2.2 外熱式工藝

外熱式熱解爐中,生物質(zhì)熱解過程所需要的熱量,是熱解氣在燃燒室燃燒后將熱量由爐壁傳入爐中。爐壁對生物質(zhì)的傳熱方式主要為熱傳導(dǎo)和熱輻射。國內(nèi)外常見的外熱式技術(shù)以管式爐加熱爐體較多,具有代表性的還有前蘇聯(lián)開發(fā)的斯列普爐[45]、加拿大Laval開發(fā)的真空熱解反應(yīng)器[46]、愛丁堡大學(xué)研制的熱解設(shè)備和中國科技大學(xué)研制的生物質(zhì)螺旋熱解裝置[47-49]等。

1)真空熱解反應(yīng)器技術(shù)

真空熱解反應(yīng)器是由加拿大Laval大學(xué)開發(fā)的反應(yīng)器,詳見圖4。生物質(zhì)自上部進入反應(yīng)器,受到重力和旋轉(zhuǎn)的多層熱解床作用,逐漸下落,并被加熱產(chǎn)生熱解氣相產(chǎn)物,被真空泵引導(dǎo)、逸出反應(yīng)器。由于熱解過程中產(chǎn)生的氣相產(chǎn)物在反應(yīng)器中滯留時間短,因而熱解產(chǎn)物的二次反應(yīng)減弱,但是由于生物質(zhì)升溫速率緩慢,致使焦油產(chǎn)率不高[47];真空泵功率較大,能耗高,也制約著該技術(shù)的商業(yè)化推廣。

1. 生物質(zhì) 2.冷凝器 3. 真空泵

2)回轉(zhuǎn)爐熱解炭氣聯(lián)產(chǎn)技術(shù)

農(nóng)業(yè)部規(guī)劃設(shè)計院通過消化吸收從英國引進的生物質(zhì)熱解技術(shù),結(jié)合中國生物質(zhì)的原料特性,開發(fā)了連續(xù)式生物質(zhì)熱解技術(shù)工藝,其流程圖詳見圖5。該工藝包括密封進料、均勻布料、連續(xù)熱解、保溫炭化等工段,通過分段處理工藝有效提升了產(chǎn)品品質(zhì)和生產(chǎn)效率。生物質(zhì)原料通過上料系統(tǒng)進入回轉(zhuǎn)爐反應(yīng)器中,其中反應(yīng)器尺寸0.4 m×4 m。隨著回轉(zhuǎn)爐的轉(zhuǎn)動實現(xiàn)物料有序移動,在此過程中完成脫水、熱裂解過程,并進入到保溫炭化階段進一步熟化。熱解氣相產(chǎn)物通過凈化分離系統(tǒng)實現(xiàn)多級冷凝、除塵后進入儲氣裝置中[50]。

1. 上料機 2. 螺旋喂料機 3. 炭化設(shè)備 4. 熱風(fēng)爐 5. 冷卻出炭裝置 6. 防爆裝置 7. 阻火器 8. 除塵器 9. 一級冷凝器 10. 二級冷凝器 11. 電捕焦油器 12. 洗氣裝置 13. 羅茨風(fēng)機 14. 水封阻火器

總體而言,外熱式生物質(zhì)熱解技術(shù)的優(yōu)勢是對原料適應(yīng)性強,生物質(zhì)熱解產(chǎn)生的氣體熱值較高,焦油中含塵量低;但是由于反應(yīng)器內(nèi)溫差大,造成的生物炭品質(zhì)不均勻、焦油二次熱解嚴(yán)重、焦油產(chǎn)率低等問題,制約著該技術(shù)的發(fā)展。

2.3 內(nèi)-外復(fù)合加熱式工藝

內(nèi)-外復(fù)合式加熱是指加熱生物質(zhì)的熱量來源于2個方面,一方面是外部熱源對反應(yīng)爐加熱,熱量經(jīng)由爐壁傳遞給炭化室的生物質(zhì);另一方面是熱煙氣或其他熱載體進入反應(yīng)爐內(nèi),與生物質(zhì)直接接觸傳熱。采用復(fù)合式加熱的典型工藝有美國加利福尼亞州的熱解設(shè)備[51],山東理工大學(xué)開發(fā)的下降管式生物質(zhì)熱解裝置[43],沈陽農(nóng)業(yè)大學(xué)的旋轉(zhuǎn)錐生物質(zhì)熱解裝置[44]。

1)內(nèi)外加熱熱解爐

內(nèi)外加熱熱解爐是由美國加利福尼亞州All Power Labs開發(fā)的熱解設(shè)備,其流程圖如圖6所示。該裝置由進料系統(tǒng)、加熱系統(tǒng)、分離系統(tǒng)和控制系統(tǒng)組成。將丙烷燃燒后產(chǎn)生的高溫氣體一部分通入加熱套,對生物質(zhì)間接加熱;另一部分直接從底部穿過對生物質(zhì)原料進行直接加熱,有利于原料呈現(xiàn)流化狀態(tài),使原料受熱更加均勻充分。

內(nèi)-外復(fù)合加熱式技術(shù)可以充分利用生物質(zhì)熱解過程中產(chǎn)生的熱量,工藝相對簡單。然而,由于熱解過程中熱煙氣的使用,降低了生物質(zhì)熱解氣的熱值,影響熱解氣的民用或商用。熱解過程中使用的固體熱載體和氣體熱載體容易造成粉塵夾帶,堵塞甚至惡化下游處理設(shè)備,致使焦油往往存在塵含量高、品質(zhì)差等問題。

1. 丙烷 2. 混合氣出口 3. 壓力 4. 反應(yīng)器 5. 生物質(zhì)原料 6. 反應(yīng)器頂部 7. 加熱套外壁 8. 反應(yīng)器中部 9. 加熱套內(nèi)壁 10. 掃氣 11. 焦炭箱 12. 反應(yīng)器底部

2)旋轉(zhuǎn)錐反應(yīng)器

旋轉(zhuǎn)錐反應(yīng)器荷蘭Twente大學(xué)開發(fā),1995年,中國沈陽農(nóng)業(yè)大學(xué)與荷蘭Twene大學(xué)合作,引進一套50 kg/h的旋轉(zhuǎn)錐反生物質(zhì)閃速熱裂解裝置[44],其工藝流程圖如圖7所示。首先將小于200m的木屑經(jīng)由喂料器輸入反應(yīng)器中,在喂料器和反應(yīng)器之間通入一些N2以加速木屑流動,防止堵塞;并預(yù)熱600~1000m的砂子至600 ℃,輸送至反應(yīng)器中。木屑隨即發(fā)生熱裂解產(chǎn)生熱解氣相產(chǎn)物,并迅速逸出反應(yīng)器。該裝置過程復(fù)雜,難以放大,尤其是要求生物質(zhì)入料粒徑較小且系統(tǒng)能耗高。

1. 氮氣 2. 木屑 3. 砂子 4. 旋轉(zhuǎn)錐反應(yīng)器 5. 木炭與砂子 6. 熱解氣 7. 旋風(fēng)分離器 8. 冷凝器 9. 不可凝氣體 10. 生物油 11. 泵 12. 熱交換器 13. 冷卻水

3 不同熱解技術(shù)對比與發(fā)展趨勢

根據(jù)生物質(zhì)熱解技術(shù)的不同,表1詳細(xì)對比了國內(nèi)外典型生物質(zhì)熱解技術(shù)。外熱式熱解技術(shù),屬于間接加熱技術(shù),熱解過程中生物質(zhì)升溫速率較慢,因而焦油的產(chǎn)率低,且焦油中含塵較少。內(nèi)熱式熱解技術(shù),屬于直接加熱技術(shù),有相對較快的升溫速率,較高的焦油產(chǎn)率,但粉塵夾帶現(xiàn)象嚴(yán)重,容易使焦油含塵量和重質(zhì)組分含量過高,嚴(yán)重甚至堵塞管路并惡化下游處理設(shè)備[52-54]。使用氣體熱載體的內(nèi)熱式熱解技術(shù),顯著降低氣體熱值,使得熱解氣不符合工業(yè)或民用標(biāo)準(zhǔn),難以商用。內(nèi)熱-外熱復(fù)合式熱解技術(shù),煤料升溫速率和焦油產(chǎn)率較高,但是熱效率低,設(shè)備復(fù)雜,同樣也伴隨發(fā)生焦油塵含量高,氣體熱值低等現(xiàn)象。

表1 國內(nèi)外典型生物質(zhì)熱解技術(shù)比較

外熱式移動床熱解技術(shù)制得的焦油,含塵量極低,是該技術(shù)的一大優(yōu)勢。但是,熱解產(chǎn)生的焦油產(chǎn)率低且焦油中的輕質(zhì)組分含量少,重質(zhì)組分過高,反應(yīng)器內(nèi)溫差大造成生物炭品質(zhì)不均勻。造成上述結(jié)果的原因是,一方面間接加熱導(dǎo)致生物炭升溫速率慢,另一方面是熱解產(chǎn)物的二次裂解嚴(yán)重,致使焦油產(chǎn)率低,且焦油中輕組分減少。因此,如果可以解決外熱式熱解技術(shù)中出現(xiàn)的問題,調(diào)控?zé)峤膺^程,加快物料層升溫和減少熱解產(chǎn)物的二次反應(yīng),則該技術(shù)不失為一種較好的可以實現(xiàn)農(nóng)業(yè)廢棄物高值化利用的新技術(shù)。

外熱式回轉(zhuǎn)爐,由于物料隨著回轉(zhuǎn)爐的運動加大了物料的受熱面積,增強了熱傳導(dǎo)和熱輻射的作用,加快了物料熱化學(xué)轉(zhuǎn)化過程中的傳質(zhì)傳熱。相比于傳統(tǒng)外加熱式技術(shù),加熱效率更高。此外,外加熱式回轉(zhuǎn)窯生物質(zhì)原料適應(yīng)期強、操作簡單,成熟度高,原料受熱相對較為均勻,技術(shù)更為成熟[55]。該技術(shù)在工業(yè)上得到充分驗證,不僅廣泛用于生物質(zhì)熱解,也用于其他廢棄物處理[56-58]。然而,該技術(shù)在基礎(chǔ)研究和應(yīng)用開發(fā)方面依然存在一些突出的問題和挑戰(zhàn)。如回轉(zhuǎn)窯反應(yīng)器熱解氣在反應(yīng)器內(nèi)停留時間較長,加劇了熱解產(chǎn)物的二次反應(yīng)[48]?;剞D(zhuǎn)窯反應(yīng)器內(nèi)溫差較大,不同料層間的溫度控制精度低,難以準(zhǔn)確控制物料停留時間,降低了熱解產(chǎn)物的產(chǎn)率和品質(zhì),加劇了熱量損失。此外,研究發(fā)現(xiàn)回轉(zhuǎn)爐內(nèi)靠近爐體中心的活躍區(qū)顆粒群速度較大,顆粒群外表面靠近回轉(zhuǎn)爐加熱壁的穩(wěn)定區(qū)顆粒群運動速度相對比較均勻,但被活躍區(qū)和穩(wěn)定區(qū)包裹的混合死區(qū)顆粒,不發(fā)生位置,速度近似0,難以接觸高溫回轉(zhuǎn)窯內(nèi)壁,不利于傳熱[49]。因此,縮短熱解產(chǎn)物在回轉(zhuǎn)窯反應(yīng)器內(nèi)的停留時間、減少熱解產(chǎn)物的二次反應(yīng)、增強顆粒層的擾動,有助于提高熱解產(chǎn)物的產(chǎn)率和品質(zhì),是開發(fā)低成本、高效率、多技術(shù)集成的外加熱式新型回轉(zhuǎn)窯熱解技術(shù)的關(guān)鍵。

從化學(xué)反應(yīng)角度分析生物質(zhì)熱解基本反應(yīng)過程以及影響生物質(zhì)熱解特性的多種因素,針對現(xiàn)有設(shè)備運行穩(wěn)定性差、熱解氣品質(zhì)不高、焦油處理難等技術(shù)難題,農(nóng)業(yè)部規(guī)劃設(shè)計研究院通過集成分段控溫、高效梯級換熱、均勻布料擾動壓實、多線螺旋板抄送和多腔旋流梯級換熱,創(chuàng)新性地提出新型擾動式內(nèi)構(gòu)件回轉(zhuǎn)爐以及連續(xù)式熱解炭氣聯(lián)產(chǎn)技術(shù)。為驗證技術(shù)的可行性和先進性,在河北邢臺縣建立500 kg/h前南峪示范工程,成功應(yīng)用于北方地區(qū)生物質(zhì)熱解。該技術(shù)熱解生物質(zhì)產(chǎn)生的熱解氣以氫氣、甲烷和一氧化碳為主,熱值可達20 MJ,生物油約27%,可燃物占?xì)鈶B(tài)產(chǎn)物的87%。通過以花生殼為原料,在500 ℃熱解溫度、30 min反應(yīng)時間產(chǎn)生的熱解氣可達3 m3/h。當(dāng)過量空氣系統(tǒng)為1.16時,熱解氣燃燒效率最高,熱解氣熱值為16.3 MJ/m3 [59]。經(jīng)農(nóng)業(yè)部農(nóng)機鑒定總站檢測,棉稈處理量20.3 kg/h,生物炭得率31.8%,熱解氣產(chǎn)率0.32 m3/kg,焦油產(chǎn)率1.3%,醋液產(chǎn)率6.6%,設(shè)備小時耗電量3.84 kWh/h,熱解氣回用燃燒消耗量3.97 m3/h,設(shè)備噪聲75.2 dB。北京燃?xì)庥镁弋a(chǎn)品質(zhì)量監(jiān)督檢驗站檢測焦油與灰塵質(zhì)量濃度為7.9 mg/m3,系統(tǒng)排放煙氣中NOX為25.1 mg/m3,顆粒物2.4 mg/m3,煙氣黑度<1級,達到《鍋爐大氣污染物排放標(biāo)準(zhǔn)》(DB11/139-2015)要求[60-65]。該技術(shù)為中國秸稈綜合利用提供了有效途徑。

4 展 望

通過對生物質(zhì)熱解技術(shù)進行梳理,結(jié)合本團隊的發(fā)展,對生物質(zhì)熱解技術(shù)發(fā)展提出建議,未來應(yīng)該在以下幾個方面加強研究:

1)對生物質(zhì)基礎(chǔ)特性深入研究,基于現(xiàn)階段開展的“內(nèi)置四線螺旋抄板的回轉(zhuǎn)爐反應(yīng)器”和“生物質(zhì)連續(xù)炭氣聯(lián)產(chǎn)中試系統(tǒng)”研究,開展“分子、反應(yīng)器、系統(tǒng)”多尺度調(diào)控,探明熱解過程中傳質(zhì)傳熱規(guī)律,建立定向調(diào)控?zé)峤猱a(chǎn)物的方法,獲得高保水性、吸附氨氮性、促進生物群落多樣性的生物炭產(chǎn)品,以及高品位回燃焦油和炊事燃?xì)猓瑸闊峤饧夹g(shù)提供理論基礎(chǔ)。

2)搭建新型小試擾動式內(nèi)構(gòu)件回轉(zhuǎn)窯熱解炭化裝置和連續(xù)式回轉(zhuǎn)爐熱解中試平臺,優(yōu)化回轉(zhuǎn)窯反應(yīng)器結(jié)構(gòu),解決傳統(tǒng)回轉(zhuǎn)爐混合死區(qū)不發(fā)生位移、難以傳質(zhì)傳熱、產(chǎn)物二次反應(yīng)嚴(yán)重等問題,優(yōu)化“反應(yīng)-溫度場-流場”的匹配,為工程放大提供基礎(chǔ)數(shù)據(jù)。

3)結(jié)合前期技術(shù)積累,完善河北邢臺縣500 kg/h前南峪示范工程,解決連續(xù)熱解設(shè)備作業(yè)穩(wěn)定性差、換熱效率低等問題,并將生物炭和焦油的原位提質(zhì)與其他廢棄物利用結(jié)合在一起,解決焦油含塵量高、難利用的難題,開發(fā)新型生物質(zhì)熱解技術(shù)。最終實現(xiàn)“基礎(chǔ)研究-技術(shù)開發(fā)-集成應(yīng)用”的逐步推進,并在河北威縣與安徽等地進行推廣應(yīng)用,為建立適宜中國農(nóng)村應(yīng)用的生物質(zhì)熱解多聯(lián)產(chǎn)輕簡化系統(tǒng)提供了技術(shù)支撐。

5 結(jié) 論

結(jié)合中國農(nóng)業(yè)廢棄物資源利用現(xiàn)狀,本文通過對生物質(zhì)熱解基礎(chǔ)研究和技術(shù)現(xiàn)狀進行梳理,對比了不同生物質(zhì)熱解技術(shù)的優(yōu)勢和劣勢,得出以下結(jié)論:

1)外熱式熱解技術(shù)工藝簡單、含塵量低,解決該技術(shù)物料升溫速率慢、產(chǎn)物二次反應(yīng)嚴(yán)重等問題可突破制約該技術(shù)發(fā)展的瓶頸。

2)傳統(tǒng)外熱式回轉(zhuǎn)爐中部分顆粒不發(fā)生位移,不利于傳質(zhì)傳熱。增強顆粒層擾動、強化反應(yīng)器內(nèi)質(zhì)熱傳遞是開發(fā)高效外熱式回轉(zhuǎn)窯熱解技術(shù)的關(guān)鍵。

3)農(nóng)業(yè)部規(guī)劃設(shè)計研究院開發(fā)的外熱式連續(xù)熱解炭氣聯(lián)產(chǎn)技術(shù)具有一定的經(jīng)濟、環(huán)境、能源效益。該技術(shù)在500 ℃、以花生殼為原料產(chǎn)生的熱解氣以氫氣、甲烷和一氧化碳為主,排放煙氣符合國家標(biāo)準(zhǔn),因此該技術(shù)適宜技術(shù)推廣。

[1] 國家統(tǒng)計局. 2016年中國統(tǒng)計年鑒[M]. 北京:中國統(tǒng)計出版社,2016.

[2] 王曉玉,薛帥,謝光輝. 大田作物秸稈量評估中秸稈系數(shù)取值研究[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2012,17(1):1-8. Wang Xiaoyu, Xue Shuai, Xie Guanghui. Value-taking for residue factor as a parameter to assess the field residue of field crops[J]. Journal of China Agricultural University, 2012, 17 (1): 1-8. (in Chinese with English abstract)

[3] 尹昌斌,程磊磊,楊曉梅,等. 生態(tài)文明型的農(nóng)業(yè)可持續(xù)發(fā)展路徑選擇[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2015,36(1):15-21. Yin Changbin, Cheng Leilei, Yang Xiaomei, et al. Path decision of agriculture sustainable development based on eco-civilization[J].China Journal of Agricultural Resources and Regional Planning, 2015, 36 (1): 15-21. (in Chinese with English abstract)

[4] Haefele S M, Konboon Y, Wongboon W, et al. Effects and fate of biochar from rice residues in rice-based systems[J]. Field Crops Research, 2011, 121(3): 430-440.

[5] 張齊生,馬中青,周建斌. 生物質(zhì)氣化技術(shù)的再認(rèn)識[J]. 南京林業(yè)大學(xué)學(xué)報: 自然科學(xué)版,2013,37(1):1-10. Zhang Qisheng, Ma Zhongqing, Zhou Jianbin. History, challenge and solution of biomass gasification: A review[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2013, 37(1): 1-10. (in Chinese with English abstract)

[6] Antonakou E, Lappas A, Nilsen M H, et al. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals[J]. Fuel, 2006, 85(14): 2202-2212.

[7] 浮愛青,諶倫建,楊潔,等. 小麥與玉米秸稈的熱解過程及其動力學(xué)分析[J]. 化學(xué)工業(yè)與工程,2009,26(4):350-353. Fu Aiqing, Chen Lunjian, Yang Jie, et al. Pyrolysis process and kinetics analysis of corn stalk and wheat straw[J]. Chemical Industry and Engineering, 2009, 26(4): 350-353. (in Chinese with English abstract)

[8] Kawamoto H, Morisaki H, Saka S. Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1): 247-251.

[9] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.

[10] Yang H, Yan R, Chen H, et al. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[J]. Energy & Fuels, 2006, 20(1): 388-393.

[11] Sharma R K, Wooten J B, Baliga V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11): 1469-1482.

[12] 周芳磊,胡雨燕,陳德珍. 不同種類生物質(zhì)熱解殘焦的 CO2氣化研究[J]. 太陽能學(xué)報,2017,38(5):1440-1446. Zhou Fanglei, Hu Yuyan, Chen Dezhen. Production of co by CO2gasification of biomass-derived char[J]. Acta Energiae Solaris Sinica, 2017, 38(5): 1440-1446. (in Chinese with English abstract)

[13] 田宜水,王茹. 基于多升溫速率法的典型生物質(zhì)熱動力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):234-240. Tian Yishui, Wang Ru. Thermokinetics analysis of biomass based on model-free different heating rate method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 234-240. (in Chinese with English abstract)

[14] 楊選民,王雅君,邱凌,等. 溫度對生物質(zhì)三組分熱解制備生物炭理化特性的影響[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(4):284-290. Yang Xuanmin, Wang Yajun, Qiu Ling et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290. (in Chinese with English abstract)

[15] 王紹慶,李志合,吳厚凱,等. 生物質(zhì)熱解固體熱載體高溫?zé)煔饧訜嵫b置設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):89-95. Wang Shaoqing, Li Zhihe, Wu Houkai, et al. Design and experiment on solid heat carrier heating device heated by high temperature flue gas for pyrolysis of biomass [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 89-95. (in Chinese with English abstract)

[16] 陳登宇,張鴻儒,劉棟,等. 烘焙預(yù)處理對秸稈熱解產(chǎn)物品質(zhì)及能量分布的影響[J]. 太陽能學(xué)報,2017,38(2):565-570. Chen Dengyu, Zhang Hongru, Liu Dong, et al. Effect of torrefaction pretreatment on properties of pyrolysis product and energy distribution of corn stalk [J]. Acta Energiae Solaris Sinica, 2017, 38(2): 565-570. (in Chinese with English abstract)

[17] 馬培勇,孫亞棟,邢獻軍,等. 粒徑對棉稈成型顆粒熱解動力學(xué)特性的影響[J]. 太陽能學(xué)報,2016,37(5):1308-1314. Ma Peiyong, Sun Yadong, Xing Xianjun, et al. Effects of particle size on pyrolysis kinetics characteristics of cotton stalk briquette[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1308-1314. (in Chinese with English abstract)

[18] 王霏,鄭云武,黃元波,等. ZSM-5催化生物質(zhì)三組分和松木熱解生物油組分分析[J]. 農(nóng)業(yè)工程學(xué)報,2016, 32(增刊2):331-337. Wang Fei, Zheng Yunwu, Huang Yuanbo, et al. Component analysis of pyrolysis bio-oil from three major components of biomass and Pinus yunnanensis by ZSM-5 catalytic [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 331-337. (in Chinese with English abstract)

[19] 李柄緣,雍開祥,董優(yōu)雅,等. 微波輻射對生物質(zhì)熱解過程的影響[J]. 環(huán)境工程學(xué)報,2015(1):413-418. Li Bingyuan, Yong Kaixiang, Dong Youya, et al. Effects of microwave irradiation on pyrolysis processes of biomass [J]. Journal of Environmental Engineering, 2015(1): 413-418. ( in Chinese with English abstract)

[20] Cai J, He Y, Yu X, et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 309-322.

[21] 于雪斐,伊松林,馮小江,等. 熱解條件對農(nóng)作物秸稈熱解產(chǎn)物得率的影響[J]. 北京林業(yè)大學(xué)學(xué)報,2009(S1):174-177. Yu Xuefei, Lin Yisong, Feng Xiaojiang, et al.Effects of pyrolysis conditions on pyrolysis yield of crop stalks[J]. Journal of Beijing Forestry University, 2009(S1): 174-177. (in Chinese with English abstract)

[22] 史長東,張銳,車德勇,等. 不同種類生物質(zhì)熱解特性研究[J]. 東北電力大學(xué)學(xué)報, 2012,32(1):57-60. Shi Changdong, Zhang Rui, Che Deyong, et al. Study on characteristics of pyrolysis process of different kinds of biomass [J]. Journal of Northeast Dianli University, 2012, 32(1): 57-60. (in Chinese with English abstract)

[23] 李永玲,吳占松. 秸稈熱解特性及熱解動力學(xué)研究[J]. 熱力發(fā)電,2008,37(7):1-5. Li Yongling, Wu Zhaosong. Studies on Characteristics and dynamics concerning pyrolysis of corn stalks[J]. Thermal Power Generation, 2008, 37 (7): 1-5. (in Chinese with English abstract)

[24] Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428.

[25] Peng X, Ye L L, Wang C H, et al. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil and Tillage Research, 2011, 112(2): 159-166.

[26] 李志合,易維明,高巧春,等. 固體熱載體加熱生物質(zhì)的閃速熱解特性[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(8):116-120. Li Zhihe, Yi Weiming, Gao Qiaochun, et al. Flash devolatilization of biomass particles heated by solid heat carrier[J]. Transactions of The Chinese Society for Agricultural Machinery, 2012, 43(8): 116-120. (in Chinese with English abstract)

[27] 蘇毅,王蕓,吳文廣,等. 水分對稻桿熱解特性的影響[J]. 中國電機工程學(xué)報,2010(26):107-112. Su Yi, Wang Yun, Wu Wenguang, et al. Effects of moisture on the rice straw pyrolysis characteristics[J]. Proceedings of the CSEE, 2010 (26): 107-112. (in Chinese with English abstract)

[28] Demirbas A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 803-815.

[29] Darmstadt H, Pantea D, Sümmchen L, et al. Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark: influence of feedstock moisture content[J]. Journal of Analytical and Applied Pyrolysis, 2000, 53(1): 1-17.

[30] Wang H H. Kinetic analysis of dehydration of a bituminous coal using the TGA technique[J]. Energy & Fuels, 2007, 21(6): 3070-3075.

[31] 楊晴,梅艷陽,郝宏蒙,等. 烘焙對生物質(zhì)熱解產(chǎn)物特性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(20):214-219. Yang Qing, Mei Yangyang, Hao Hongmeng, et al. Effect of torrefaction on characteristics of pyrolytic products of biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29 (20): 214-219. (in Chinese with English abstract)

[32] 胡海濤,李允超,王賢華,等. 生物質(zhì)預(yù)處理技術(shù)及其對熱解產(chǎn)物的影響綜述[J]. 生物質(zhì)化學(xué)工程,2014. Hu Haitao, Li Yunchao, Wang Xianhua, et al. A review of biomass pretreatment technology and their influence on pyrolysis products [J]. Biomass Chemical Engineering, 2014. (in Chinese with English abstract)

[33] 楊瑛. 棉稈直接熱解炭化工藝參數(shù)試驗研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué),2014. Yang Ying. Study on Direct Pyrolysis Technology Parameters Experiment of Cotton Stalk[D].Wuhan: HuazhongAgricultural University, 2014. (in Chinese with English abstract)

[34] 石海波. 固定床生物質(zhì)熱解炭化系統(tǒng)設(shè)計與實驗研究 [D].天津:河北工業(yè)大學(xué),2013. Shi Haibo. The Design and Test Research on Biomass Pyrolysis Carbonization in Fixed-bed[D]. Tianjin: Hebei University of Technology, 2013. (in Chinese with English abstract)

[35] 袁艷文,田宜水,趙立欣,等. 臥式連續(xù)生物炭炭化設(shè)備研制[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(13):203-210. Yuan Yanwen, Tian Yishui, Zhao Lixin, et al. Design and manufacture of horizontal continuous biomass carbonization equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30 (13): 203-210. (in Chinese with English abstract)

[36] 張純. 外熱式內(nèi)構(gòu)件移動床低階碎煤熱解技術(shù)研究[D]. 北京: 中國科學(xué)院過程工程研究所,2015. Zhang Chun. Pyrolysis of Small-size Low-rank Coal in Indirectly Heated Moving Bed with Internals[D]. Beijing: Institute of Process Engineering, Chinese Academic of Science, 2015. (in Chinese with English abstract)

[37] Hu E, Zeng X, Ma D, et al. Characterization of coal pyrolysis in indirectly heated fixed bed based on field effects[J]. Fuel, 2017, 200: 186-192.

[38] Hu E, Zeng X, Wang F, et al. Effects of metallic heating plates on coal pyrolysis behavior in a fixed-bed reactor enhanced with internals[J]. Energy & Fuels, 2017, 31(3): 2716-2721.

[39] Bridgwater T. Biomass for energy[J]. Journal of the Science of Food and Agriculture, 2006, 86(12): 1755-1768.

[40] Wu C Z, Yin X L, Yuan Z H, et al. The development of bioenergy technology in China[J]. Energy, 2010, 35(11): 4445-4450.

[41] 張會巖. 生物質(zhì)催化熱解制備液體燃料和化學(xué)品的基礎(chǔ)與工藝研究[D]. 南京:東南大學(xué),2012.

Zhang Huiyan. Fundamental and Engineering Studies on Biomass Catalytic Pyrolysis to Produce Liquid Fuels and Chemicals[D]. Nanjing: Southeast University, 2012. (in Chinese with English abstract)

[42] 肖睿,張會巖,沈德魁. 生物質(zhì)選擇性熱解制備液體燃料與化學(xué)品[M]. 北京:科學(xué)出版社,2015.

[43] 崔喜彬,李志合,李永軍,等. 下降管式生物質(zhì)快速熱解實驗裝置設(shè)計與實驗[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(1):113-116. Cui Xibin, Li Zhihe, Li Yongjun, et al. Design and experiments of a down-pipe tube reactor for the biomass pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42 (1): 113-116. (in Chinese with English abstract)

[44] 劉榮厚,魯楠. 旋轉(zhuǎn)錐反應(yīng)器生物質(zhì)熱裂解工藝過程及實驗[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報,1997,28(4):307-311. Liu Ronghou, Lu Nan. Technological process and experimental research of the rotating cone reactor for biomass pyrolysis[J]. Journal of Shenyang Agricultural University, 1997, 28 (4): 307-311. (in Chinese with English abstract)

[45] Hall B, Zhuo C, Levendis Y A, et al. Influence of the fuel structure on the flame synthesis of carbon nanomaterials[J]. Carbon, 2011, 49(11): 3412-3423.

[46] Bridgwater A V. Fast pyrolysis reactors worldwide[J]. PyNe, 2010, 27: 18-20.

[47] 李在峰,雷廷宙,丁鳴,等. 生物質(zhì)熱解制炭制氣系統(tǒng)研究[C]//2004年中國生物質(zhì)能技術(shù)與可持續(xù)發(fā)展研討會論文集,2004. Li Zaifeng, Lei Tingzhou, Ding Ming, et al. Research on biomass gas from pyrolysis of biomass gas [C]//2004 China Biomass Technology and Sustainable Development Symposium, 2004. (in Chinese with English abstract)

[48] Acevedo B, Barriocanal C, Alvarez R. Pyrolysis of blends of coal and tyre wastes in a fixed bed reactor and a rotary oven[J]. Fuel, 2013, 113: 817-825.

[49] 張立棟. 回轉(zhuǎn)干餾爐內(nèi)油頁巖顆?;旌线\動特性實驗與數(shù)值模擬[D]. 北京:華北電力大學(xué)(北京),2011. Zhang Lidong, Experiment and numerical simulating on characteristics of mixing movement for particles of oil shale in rotating retorting[D]. Beijing: North China Electric Power University (Beijing), 2011. (in Chinese with English abstract)

[50] 叢宏斌,姚宗路,趙立欣,等. 生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)中試系統(tǒng)開發(fā)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(18):173-179. Cong Hongbin, Zhao Lixin, Yao Zonglu, et al. Development of carbon, gas and oil poly-generation pilot system based on biomass continuous pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 173-179. (in Chinese with English abstract)

[51] 趙立欣,賈吉秀,姚宗路,等. 生物質(zhì)連續(xù)式分段熱解炭化設(shè)備研究[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(8):221-226. Zhao Lixin, Jia Jixiu, Yao Zonglu, et al. Equipment for biomass continuous grading pyrolysis[J]. Transactions of The Chinese Society for Agricultural Machinery, 2016, 47 (8): 221-226. (in Chinese with English abstract)

[52] Zhao Hongyu, Li Yuhuan, Song Qiang. Effects of Iron Ores on the Pyrolysis Characteristics of a Low-Rank Bituminous Coal[J]. Energy & Fuels, 2016, 30(5): 3831-3839.

[53] Kan T, Wang H, He H, et al. Experimental Study on Two- Stage Catalytic Hydroprocessing Of Middle-Temperature Coal Tar to Clean Liquid Fuels[J]. Fuel, 2011, 90(11): 3404-3409.

[54] Qu Xuan, Liang Peng, Wang Zhifeng. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chemical Engineering & Technology, 2011, 34(1): 61-68.

[55] Pr?ll T, Al Afif R, Schaffer S, et al. Reduced local emissions and long-term carbon storage through pyrolysis of agricultural waste and application of pyrolysis char for soil improvement[J]. Energy Procedia, 2017, 114: 6057-6066.

[56] Pr?ll T, Al Afif R, Schaffer S, et al. Reduced local emissions and long-term carbon storage through pyrolysis of agricultural waste and application of pyrolysis char for soil improvement[J]. Energy Procedia, 2017, 114: 6057-6066.

[57] Rodríguez L, Cerrillo M I, García-Albiach V, et al. Domestic sewage sludge composting in a rotary drum reactor: Optimizing the thermophilic stage[J]. Journal of Environmental Management, 2012, 112: 284-291.24.

[58] Kern S, Halwachs M, Kampichler G, et al. Rotary kiln pyrolysis of straw and fermentation residues in a 3MW pilot plant–Influence of pyrolysis temperature on pyrolysis product performance[J]. Journal of analytical and applied pyrolysis, 2012, 97: 1-10.

[59] 叢宏斌,姚宗路,趙立欣,等. 自燃連續(xù)式生物質(zhì)熱解炭氣油聯(lián)產(chǎn)系統(tǒng)燃?xì)鈨艋蛛x技術(shù)工藝研究[J]. 可再生能源,2015,33(9):1393-1397. Cong Hongbin, Zhao Lixin, Yao Zonglu, et al. Research on gas separation and purification technology for continuous pyrolysis system with biomass[J]. Renewable Energy Resources, 2015, 33(9): 1393-1397. (in Chinese with English abstract)

[60] 叢宏斌,趙立欣,姚宗路,等. 玉米秸稈連續(xù)干餾條件下能量平衡分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(7):206-212. Cong Hongbin, Yao Zonglu, Zhao Lixin, et al, Energy balance analysis of corn straw continuous distillation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 206-212. (in Chinese with English abstract)

[61] 叢宏斌,姚宗路,趙立欣,等. 內(nèi)加熱連續(xù)式生物質(zhì)炭化中試設(shè)備炭化溫度優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015, 31(16):235-240. Cong Hongbin, Zhao Lixin, Yao Zonglu, et al. Carbonization temperature optimization experiment of pilot-scale continuous biomass carbonization equipment with internal heating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 235-240. (in Chinese with English abstract)

[62] 賈吉秀,姚宗路,趙立欣,等. 連續(xù)式生物質(zhì)炭化設(shè)備的研究[J]. 現(xiàn)代化工,2015 (10):134-138. Jia Jixiu, Yao Zonglu, Zhao Lixin, et al. Process in continuous biomass carbonization equipment[J]. Modern Chemical Industry, 2015 (10): 134-138. (in Chinese with English abstract)

[63] 仉利,趙立欣,姚宗路,等. 生物質(zhì)燃?xì)馊紵骷夹g(shù)研究進展[J]. 中國農(nóng)機化學(xué)報,2017,38(1): 111-115. Zhang Li, Zhao Lixin, Yao Zonglu, et al. Research progress of biomass gas burner technology[J]. Transactions of The Chinese Society of Agricultural Machinery, 2017, 38(1): 111-115. (in Chinese with English abstract)

[64] 李賢斌,姚宗路,趙立欣,等. 生物質(zhì)炭化生成焦油催化裂解的研究進展[J]. 現(xiàn)代化工,2017, 37(2): 46-50. Li Xianbin, Yao Zonglu, Zhao Lixin, et al. Research progress of catalytic pyrolysis of biomass tar[J]. Modern Chemical Industry, 2017, 37(2): 46-50. (in Chinese with English abstract)

[65] 叢宏斌,姚宗路,趙立欣,等. 生物質(zhì)熱解多聯(lián)產(chǎn)在北方農(nóng)村清潔供暖中的適用性評價[J]. 農(nóng)業(yè)工程學(xué)報,2018, 34(1):8-14.Cong Hongbin, Zhao Lixin, Yao Zonglu, et al, Applicability evaluation of biomass pyrolytic poly-generation technology on clean heating in northern rural of China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 8-14. (in Chinese with English abstract)

Research advance on influence factors and technologies of biomass pyrolysis

Hu Erfeng1, Zhao Lixin1※, Wu Juan2, Meng Haibo1, Yao Zonglu1, Cong Hongbin1, Wu Yunong1

(1.100125,; 2210042,)

Large quantities of stalk resources are produced in China, and some of the stalks are incinerated, which wastes resources and pollutes the environment. Biomass pyrolysis is attracting a great deal of attention as a way of utilizing biomass waste. In this paper, the recent advances in fundamentals and technologies of biomass pyrolysis were reviewed, focusing on the reaction process, influencing factors and its technology development status in biomass pyrolysis. The major technology advances in biomass technology were summarized and discussed, and it was particularly noted that if the drawbacks on indirectly heated pyrolysis technology are solved well, this indirectly heated pyrolysis technology is a good way to achieve high-value utilization of biomass waste. In addition, combined with the accumulated technologies of our team, an indirectly heated high-efficient rotary kiln was proposed and a 500 kg/h demonstration project was built by integrating the technology of sealed feeding, continuous pyrolysis, and gas/fuel combustion. This process demonstrated good prospects for biomass application, which solved the problems of poor operation stability and low heat exchange efficiency of continuous pyrolysis equipment, thus realizing the high-value utilization of northern corn straw. Furthermore, based on the preceding research, a further study for direct regulation of pyrolysis products was suggested to provide theoretical guidance for the utilization of rural biomass. This paper pointed out the future direction of bio-energy development, which provided a reference for the biomass pyrolysis fundamentals, technology development, and industry application. Pyrolysis for biochar is the critical core technology to achieve high-value utilization of stalks. In this process, the pyrolysis char can be used to produce carbon-based fertilizers and soil additives; the pyrolysis gas is available for cooking and heating in rural area. Aiming at many disadvantages in the existing equipment, including poor equipment stability, low quality of pyrolysis gas and tar, the study of technology equipment of stalk pyrolysis for high-quality biochar and gas was conducted. We proposed a continuous segmented temperature-controlled pyrolysis technique on the basis of gasification reforming through in-situ pyrolysis of pyrolysis gas and coke, high-efficient heat transfer based on cascade energy utilization, uniform feeding by disturbance compaction, multi-wire spiral-plate transport, multi-cavity swirl heat exchange, jacketed sedimentation cyclone for dust removal, gas gasification reforming for decoking, gas purification and upgrading. According to the stalk resources amount, energy demand and economic development level in different regions, we put forward some application modes of stalk pyrolysis at different scales and designed the continuous pyrolysis equipment of internal heating, external heating, and tube-plate mixing heating.At pyrolysis temperature of 500 ℃ and residence time of 30 min, the yield of pyrolysis gas of peanut shell achieved 3 m3/h, and the calorific value of pyrolysis gas was 16.3 MJ/m3; the yields of pyrolysis gas, tar and biochar were 0.32 m3/kg, 1.3% and 31.8% respectively. The dust concentration in tar was 7.9 mg/m3, and the NOXin flue gas emissions was 25.1 mg/m3; the particulate matter concentration was 2.4 mg/m3, and the smoke blackness was lower than Grade 1. This study offers an effective technology path for comprehensive utilization of stalks in China.

pyrolysis; biomass; waste; reaction process; technology development status

胡二峰,趙立欣,吳 娟, 孟海波,姚宗路,叢宏斌,吳雨濃. 生物質(zhì)熱解影響因素及技術(shù)研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):212-220. doi:10.11975/j.issn.1002-6819.2018.14.027 http://www.tcsae.org

Hu Erfeng, Zhao Lixin, Wu Juan, Meng Haibo, Yao Zonglu, Cong Hongbin, Wu Yunong. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.14.027 http://www.tcsae.org

2018-02-26

2018-06-07

國家玉米產(chǎn)業(yè)技術(shù)體系任務(wù)委托協(xié)議(CARS-02-31);博士后基金(2018M631422);農(nóng)業(yè)農(nóng)村部重點實驗室課題“烘焙預(yù)處理對秸稈熱解產(chǎn)物特性影響的規(guī)律研究”

胡二峰,博士,主要從事農(nóng)業(yè)生物環(huán)境與能源工程方面技術(shù)研究。 Email:huerfeng@qq.com

趙立欣,研究員,主要從事生物質(zhì)能資源開發(fā)利用技術(shù)與政策研究。Email:zhaolixin5092@163.com

10.11975/j.issn.1002-6819.2018.14.027

TK6, TQ013

A

1002-6819(2018)-14-0212-09

猜你喜歡
熱載體焦油生物質(zhì)
某企業(yè)合成型有機熱載體混用研究
焦油渣干化處理的應(yīng)用與實踐
冶金動力(2022年5期)2022-11-08 01:58:54
生物質(zhì)揮發(fā)分燃燒NO生成規(guī)律研究
能源工程(2021年5期)2021-11-20 05:50:44
有機熱載體熱穩(wěn)定性測定內(nèi)標(biāo)法的研究
《生物質(zhì)化學(xué)工程》第九屆編委會名單
《造紙與生物質(zhì)材料》(英文)2020年第3期摘要
中國造紙(2020年9期)2020-10-20 05:33:36
一起有機熱載體鍋爐膨脹罐著火事故分析
鞍鋼鲅魚圈焦油渣回配裝置的應(yīng)用與改進
生物質(zhì)碳基固體酸的制備及其催化性能研究
氣體熱載體干餾爐內(nèi)壓力降的研究
包头市| 公安县| 开平市| 云霄县| 桓仁| 商城县| 迭部县| 巢湖市| 泾源县| 栾川县| 秭归县| 天峻县| 博湖县| 靖边县| 托克逊县| 滁州市| 调兵山市| 兴化市| 姜堰市| 昆山市| 张家川| 随州市| 鄂托克旗| 育儿| 江永县| 泰州市| 集贤县| 迁安市| 桐柏县| 正宁县| 利川市| 治多县| 赣榆县| 雅江县| 东宁县| 武穴市| 鲁甸县| 故城县| 乌什县| 资中县| 汝州市|