国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

進(jìn)口管壁面軸向開槽消除軸流泵特性曲線駝峰

2018-08-10 06:56馮建軍楊寇帆朱國(guó)俊羅興锜李文鋒
關(guān)鍵詞:軸流泵駝峰揚(yáng)程

馮建軍,楊寇帆,朱國(guó)俊,羅興锜,李文鋒

?

進(jìn)口管壁面軸向開槽消除軸流泵特性曲線駝峰

馮建軍,楊寇帆,朱國(guó)俊,羅興锜,李文鋒

(西安理工大學(xué)水利水電學(xué)院,西安 710048)

當(dāng)軸流泵在小流量工況下運(yùn)行時(shí),由于葉輪進(jìn)口的沖角增大,導(dǎo)致在葉輪內(nèi)產(chǎn)生脫流等不穩(wěn)定流動(dòng)結(jié)構(gòu),降低泵的水力性能。該文采用計(jì)算流體動(dòng)力學(xué)分析方法對(duì)軸流泵內(nèi)部流場(chǎng)進(jìn)行了研究,結(jié)果表明:該軸流泵的特性曲線存在明顯的駝峰區(qū)域,在0.3到0.61倍最優(yōu)流量工況區(qū)間,軸流泵的揚(yáng)程和效率明顯下降。在臨界失速工況下(0.61倍最優(yōu)流量工況),葉片吸力面前緣靠近輪緣處及葉片尾緣靠近輪轂處均出現(xiàn)了脫流;在深度失速工況下(0.45倍最優(yōu)流量工況),脫流進(jìn)一步發(fā)展,并與來流共同作用形成穩(wěn)定的渦旋結(jié)構(gòu),阻塞整個(gè)流道。為了提高軸流泵在小流量工況下的水力性能,引入一種軸流泵進(jìn)口管開槽技術(shù),分析其對(duì)軸流泵內(nèi)部流場(chǎng)的影響及駝峰的改善作用。結(jié)果表明:在小流量工況下,軸向開槽可以減小葉輪進(jìn)口環(huán)量和沖角,可以減小葉片背部的脫流,軸流泵的駝峰得到明顯的改善。開槽深度是改善軸流泵小流量工況下駝峰的重要因素之一,當(dāng)槽深與葉輪直徑比為0.02時(shí),葉輪內(nèi)的通道渦幾乎完全消除,軸流泵深度失速工況點(diǎn)的揚(yáng)程、效率分別提高了66%和32%,極大地改善了軸流泵的水力性能。溝槽數(shù)目越多,槽長(zhǎng)越長(zhǎng),消除駝峰的能力越好,60個(gè)溝槽與2/3倍葉輪直徑的槽長(zhǎng)在其他參數(shù)相同的條件下消除駝峰的能力更強(qiáng)。該文可為避免軸流泵內(nèi)部的失速流動(dòng)以及消除水力性能曲線上的駝峰相關(guān)研究提供參考。

泵;計(jì)算機(jī)仿真;葉輪;計(jì)算流體動(dòng)力學(xué);軸流泵;駝峰;性能;軸向槽

0 引 言

軸流泵作為一種高比轉(zhuǎn)速泵,有流量大和揚(yáng)程低的特點(diǎn),廣泛應(yīng)用在農(nóng)業(yè)灌溉、防洪排澇、市政供水、水環(huán)境治理、電廠水循環(huán)以及船舶噴水推進(jìn)器等領(lǐng)域[1-3]。軸流泵在小流量工況區(qū)域易產(chǎn)生駝峰,即在揚(yáng)程和效率曲線上具有正斜率特性[4-10]。駝峰的出現(xiàn)即意味著運(yùn)行工況存在嚴(yán)重的不穩(wěn)定性,影響機(jī)組效率并造成大量能耗,更嚴(yán)重的會(huì)影響機(jī)組的運(yùn)行安全性。

對(duì)于軸流泵駝峰的研究和改善方法,國(guó)內(nèi)外學(xué)者開展了一定的研究。通過對(duì)軸流泵葉輪前后的速度場(chǎng)和靠近輪緣處的葉片壓力分布開展研究,Toyokura[11]發(fā)現(xiàn)在最優(yōu)工況點(diǎn)時(shí)葉輪內(nèi)的流動(dòng)較為平順并且沒有明顯的回流現(xiàn)象,但隨著流量降低,葉片發(fā)生失速時(shí),葉輪處的徑向速度突然增大,軸流泵的水力性能急劇下降。Goltz等[12]通過開展軸流泵的水力特性試驗(yàn)發(fā)現(xiàn):臨界失速工況下,在吸力面的前緣葉頂處和后緣靠近輪緣處分別捕捉到了回流結(jié)構(gòu);并且在深度失速工況下觀測(cè)到流道中存在垂直葉片表面的通道渦。Fay[13]通過研究表明失速是由于葉片表面的流動(dòng)分離引起的,當(dāng)軸流泵的葉輪葉片數(shù)為3~4個(gè)時(shí),失速團(tuán)在葉輪通道中不發(fā)生轉(zhuǎn)移,當(dāng)葉輪葉片數(shù)為6片以上時(shí),失速團(tuán)會(huì)在葉輪通道中轉(zhuǎn)移。仇寶云等[14]發(fā)現(xiàn)通過增設(shè)固定前導(dǎo)葉、選擇適當(dāng)?shù)膶?dǎo)水錐長(zhǎng)度以及流道形線優(yōu)化等方法,可以抑制和減弱葉片進(jìn)口斷面二次流,提高軸向流速均勻度,從而提高水泵運(yùn)行效率和壽命。錢忠東等[15]發(fā)現(xiàn)沖角和尾部脫流是致使導(dǎo)葉部分水力損失增加的兩大主要因素;可調(diào)式導(dǎo)葉可以通過調(diào)節(jié)角度顯著地改善軸流泵導(dǎo)葉部分的流態(tài),減小水力損失,提高泵的揚(yáng)程和效率。此外,有學(xué)者借鑒壓氣機(jī)中擴(kuò)大運(yùn)行工況范圍的“機(jī)匣”作用原理,在軸流泵進(jìn)口管壁面采用軸向開槽的方法,有效消除了軸流泵揚(yáng)程曲線上的駝峰[16-17]。而一些學(xué)者則在葉輪進(jìn)口采用雙進(jìn)口噴嘴的方法,來減小軸流泵小流量工況下葉輪進(jìn)口的預(yù)旋,從而抑制失速工況下葉輪葉頂附近的回流,改善葉輪入流條件進(jìn)而提高水力性能[18-19]。

本文針對(duì)軸流泵小流量工況的流動(dòng)特性開展研究,通過計(jì)算流體動(dòng)力學(xué)分析揭示了不穩(wěn)定工況下軸流泵內(nèi)部失速流動(dòng)的特征,并探究了軸流泵進(jìn)口管內(nèi)壁軸向開槽技術(shù)抑制泵內(nèi)不良流動(dòng)的機(jī)理,分析了泵進(jìn)口管軸向開槽前后對(duì)失速流動(dòng)的改善效果。同時(shí),本文還進(jìn)一步研究了不同槽的形狀參數(shù)對(duì)軸流泵水力性能的影響,為避免軸流泵內(nèi)部的失速流動(dòng)以及消除水力性能曲線上的駝峰提供了有價(jià)值的參考。

1 數(shù)值計(jì)算方法

本文所選取的研究對(duì)象為比轉(zhuǎn)速n=610的小型軸流泵。其葉輪直徑1=300 mm,葉輪葉片數(shù)為6,擴(kuò)壓器導(dǎo)葉葉片數(shù)為11,設(shè)計(jì)轉(zhuǎn)速=1450 r/min。該泵三維計(jì)算模型如圖1所示,包含進(jìn)口管、葉輪、擴(kuò)壓器及出口管。其中,進(jìn)口錐管壁面采用軸向開槽,軸向槽的數(shù)量=60,均布角度=3°,槽長(zhǎng)=200 mm[20]。

圖1 軸流泵計(jì)算域和過流部件網(wǎng)格

采用ANSYS ICEM-CFD對(duì)各過流部件進(jìn)行六面體網(wǎng)格劃分。計(jì)算域網(wǎng)格總的單元數(shù)為706萬。為了消除網(wǎng)格數(shù)對(duì)計(jì)算結(jié)果的影響,將計(jì)算網(wǎng)格加密到1 200萬進(jìn)行了結(jié)果對(duì)比。結(jié)果表明,當(dāng)網(wǎng)格數(shù)從706萬增加到1 200萬,泵的計(jì)算揚(yáng)程的相對(duì)變化僅為0.3%,效率變化約為0.4%。故認(rèn)為采用網(wǎng)格數(shù)為706的網(wǎng)格可以得到網(wǎng)格無關(guān)解,因此采用該網(wǎng)格對(duì)軸流泵開展進(jìn)一步的數(shù)值計(jì)算。

本文采用CFD商業(yè)軟件ANSYS CFX-16來求解軸流泵內(nèi)部三維湍流流場(chǎng)。邊界條件為:在進(jìn)口設(shè)置總壓,出口給定質(zhì)量流量,壁面邊界均采用水力光滑的無滑移條件。對(duì)流項(xiàng)采用二階中心差分方法進(jìn)行離散,湍流模型選擇壁面分離預(yù)測(cè)精度較高的SST湍流模型[21-23]。進(jìn)口管與葉輪以及葉輪與擴(kuò)壓器交界面之間的數(shù)據(jù)傳遞采用Frozen-rotor交界面來實(shí)現(xiàn),從而得泵內(nèi)的穩(wěn)態(tài)流場(chǎng),從而計(jì)算泵的揚(yáng)程和效率。同時(shí),為了研究軸流泵的壓力脈動(dòng),本文也對(duì)軸流泵內(nèi)部的非定常流動(dòng)進(jìn)行了計(jì)算。在非定常計(jì)算中,軸流泵轉(zhuǎn)動(dòng)部件和固定部件之間的交界面采用Transient rotor-stator;時(shí)間步長(zhǎng)設(shè)置為2.299×10-4s,對(duì)應(yīng)轉(zhuǎn)輪旋轉(zhuǎn)2°;在每個(gè)步長(zhǎng)內(nèi),設(shè)置收斂標(biāo)準(zhǔn)為最大殘差小于10-3。

2 結(jié)果與分析

2.1 數(shù)值模擬的可靠性驗(yàn)證

圖2為原始未開槽軸流泵模型數(shù)值模擬得到的揚(yáng)程曲線和試驗(yàn)結(jié)果的對(duì)比。此軸流泵模型為一工業(yè)用泵,其揚(yáng)程的試驗(yàn)數(shù)據(jù)由泵生產(chǎn)廠家據(jù)泵的出廠試驗(yàn)提供,試驗(yàn)數(shù)據(jù)與數(shù)值模擬結(jié)果列于表1。由圖2可知,數(shù)值模擬得到的揚(yáng)程與試驗(yàn)結(jié)果吻合較好,計(jì)算與試驗(yàn)得到的揚(yáng)程曲線具有相同的變化規(guī)律且二者之間的偏差較小,最大偏差在3.5%以內(nèi),驗(yàn)證了CFD數(shù)值模擬的可靠性。

注:H為揚(yáng)程;Hexp為試驗(yàn)所得最優(yōu)工況點(diǎn)揚(yáng)程;Q為流量;Qdes為最優(yōu)工況點(diǎn)流量。

表1 軸流泵揚(yáng)程誤差分析 Table 1 Error analysis of axial pump head

2.2 進(jìn)口管開槽對(duì)軸流泵水力性能的影響

為了研究泵進(jìn)口管內(nèi)壁面的開槽深度對(duì)駝峰的改善作用,本文對(duì)60個(gè)溝槽軸流泵模型進(jìn)行了研究,應(yīng)用進(jìn)口管4種不同開槽深度的軸流泵進(jìn)行水力性能對(duì)比。圖3給出了進(jìn)口管不同相對(duì)槽深的軸流泵揚(yáng)程及水力效率曲線,其中相對(duì)槽深定義為槽深與葉輪直徑1的比值。

由圖3a可知,泵進(jìn)口管未開槽即=0時(shí),軸流泵駝峰現(xiàn)象十分嚴(yán)重[24-25],具體表現(xiàn)為在/des=0.61附近,揚(yáng)程陡降40%,效率下降29.3%左右。采用相對(duì)槽深=0.013的軸向開槽進(jìn)口管以后,軸流泵的駝峰得到明顯改善,des=0.61附近的揚(yáng)程陡降現(xiàn)象基本消失。當(dāng)相對(duì)槽深增加到=0.02及=0.027時(shí)駝峰完全消除,此時(shí)軸流泵深度失速工況點(diǎn)的揚(yáng)程、效率分別提高了約66%和32%。為了進(jìn)一步分析具有溝槽特征的進(jìn)口管對(duì)軸流泵能量特性的影響,對(duì)圖3b中的軸流泵水力效率曲線進(jìn)行分析發(fā)現(xiàn),進(jìn)口管內(nèi)壁面開槽對(duì)最優(yōu)工況附近的效率影響不大;但在小流量工況下,進(jìn)口管內(nèi)壁面開槽能夠在一定程度上提高軸流泵的效率。隨著進(jìn)口管內(nèi)壁面開槽深度的增加,在大流量工況下泵的效率相比于進(jìn)口管未開槽的原始狀態(tài)有所降低,且效率的降低幅度隨著相對(duì)槽深的增大而增加。綜合上述分析,選定相對(duì)槽深=0.02為本文最終方案。

注:Hdes為未開槽模型數(shù)值模擬所得最優(yōu)工況點(diǎn)揚(yáng)程。

2.3 進(jìn)口管開槽改善駝峰的機(jī)理分析

開槽進(jìn)口管通過對(duì)葉輪進(jìn)口前的流體進(jìn)行主動(dòng)控制從而改善軸流泵的駝峰,為了分析進(jìn)口管開槽對(duì)葉輪前來流的影響,探尋其改善駝峰的機(jī)理,在圖4中分別給出了2種流量工況下進(jìn)口管開槽和未開槽時(shí)葉輪進(jìn)口的軸面速度分布和周向速度分布。變量Span為從輪轂到輪緣的相對(duì)葉高。由圖4可知,在相同工況下,2種方案的葉輪進(jìn)口軸面速度的分布規(guī)律基本相同,特別是在靠近軸流泵最優(yōu)工況區(qū),葉輪進(jìn)口的軸面速度分布比較均勻,周向速度趨于0,同時(shí),進(jìn)口管開槽軸流泵葉輪進(jìn)口的軸面速度明顯大于未開槽的軸流泵,周向速度則正好相反。此外,通過分析不同流量工況下速度分布發(fā)現(xiàn),當(dāng)軸流泵運(yùn)行在小流量工況下時(shí),葉輪進(jìn)口的軸面速度隨半徑分布不均勻,隨著半徑的增大,軸面速度先增大后減小至負(fù)值,導(dǎo)致水流在靠近管壁處出現(xiàn)回流,同時(shí)周向速度先減小后增大,在靠近輪緣處達(dá)到最大值[26-27]。通過上述分析可見,在小流量工況下,軸流泵的軸面速度減小,周向速度增大,根據(jù)軸流泵葉輪進(jìn)口速度三角形可知進(jìn)口沖角逐步增加,導(dǎo)致相鄰兩葉片間的脫流渦進(jìn)一步累積、發(fā)展,最終堵塞了整個(gè)流道。

注:相對(duì)槽深為0.02,溝槽數(shù)目為60,下同。

葉輪內(nèi)的能量損失和來流角有關(guān)[28],為了研究進(jìn)口管開槽對(duì)軸流泵葉輪進(jìn)口的液流角影響規(guī)律,分別對(duì)設(shè)計(jì)工況(des=1)、臨界失速工況(des=0.61)、失速工況(des0.55)及深度失速工況(des=0.45)下軸流泵葉輪進(jìn)口相對(duì)液流角進(jìn)行了計(jì)算。圖5列出了臨界失速工況和失速工況下開槽和未開槽相對(duì)液流角變化規(guī)律。通過對(duì)比泵進(jìn)口管開槽和未開槽的情況可以發(fā)現(xiàn),進(jìn)口管開槽使得靠近輪緣附近的相對(duì)液流角顯著增加,最大增幅超過了40°,相對(duì)液流角大幅增加所帶來的有益效果是減少了該處葉片進(jìn)口的沖角,有效的遏制了葉片背部脫流[29],從而提高了軸流泵在小流量工況下的揚(yáng)程,抑制駝峰。但在臨界失速時(shí),進(jìn)口管開槽后使得葉片進(jìn)口靠近輪轂處的相對(duì)液流角反而減小,說明進(jìn)口管開槽能很好地抑制輪緣處的沖角,但開槽對(duì)靠近輪轂處流動(dòng)狀態(tài)的改善作用十分有限。

圖5 不同相對(duì)葉高下葉輪進(jìn)口相對(duì)液流角

圖6分別給出了失速工況(/des=0.55)不同相對(duì)葉高截面處的速度流線圖。由圖6可知,當(dāng)Span=0.8時(shí),葉輪流道內(nèi)出現(xiàn)雙排渦,靠近葉輪進(jìn)口處的渦順時(shí)針旋轉(zhuǎn),靠近出口的渦呈逆時(shí)針旋轉(zhuǎn),旋渦幾乎堵塞了整個(gè)流道。當(dāng)Span=0.85時(shí),葉輪出口處未發(fā)現(xiàn)渦旋結(jié)構(gòu),取而代之的是一條出流和回流的分界線,此時(shí)葉輪進(jìn)口處旋渦結(jié)構(gòu)較小,更貼近于葉片進(jìn)口。當(dāng)截面進(jìn)一步擴(kuò)大,在Span=0.9時(shí),葉輪進(jìn)口渦縮小,回流進(jìn)一步加大,并在葉輪進(jìn)口處受來流沖擊作用,改變流動(dòng)方向,向下一級(jí)葉輪通道流動(dòng)。開槽以后,由圖6b、6d、6f可知,葉輪進(jìn)口管壁面開槽改變了來流方向,增大了葉輪輪緣處進(jìn)口的流速,能夠有效的消除葉輪流道中的通道渦。

圖7為深度失速工況(/des=0.45)下,葉輪葉片表面不同葉高上的壓力分布對(duì)比。表示從葉片頭部到尾部的無量綱相對(duì)弦長(zhǎng)。由圖7可知,在深度失速工況下,除在靠近輪轂處葉片背面出口處壓力變化較大外,其他位置葉片正背面的壓力分布比較均勻,進(jìn)口管開槽后,葉輪葉片正背面的壓力特別是靠近葉片出口處葉片正背面的壓力提升都十分明顯。而葉片中部壓差被進(jìn)一步增大,增加了葉片中部的負(fù)載,這也表明葉片轉(zhuǎn)換能量的能力得到提升,提高了軸流泵的揚(yáng)程。

圖6 不同葉輪截面的流線分布(Q/Qdes=0.55)

圖7 Q/Qdes=0.45時(shí),葉輪葉片表面壓力分布

2.4 進(jìn)口管開槽對(duì)軸流泵壓力脈動(dòng)特性的影響

為了研究進(jìn)口管開槽對(duì)軸流泵壓力脈動(dòng)的影響,對(duì)該軸流泵模型進(jìn)行了非定常計(jì)算,并在葉輪進(jìn)口沿徑向設(shè)置3個(gè)監(jiān)控點(diǎn)(如圖8所示),監(jiān)控壓力脈動(dòng)特性。其中P1靠近輪轂,P2處于半葉高位置,P3靠近輪緣。

注:P1靠近輪轂;P2處于半葉高位置;P3靠近輪緣。

采用式(1)定義的無量綱壓力脈動(dòng)系數(shù)C來表示壓力脈動(dòng)[7]。

圖9給出了設(shè)計(jì)工況下葉輪進(jìn)口截面上3個(gè)監(jiān)控點(diǎn)上的壓力脈動(dòng)系數(shù)頻域圖,其中為捕捉到的頻率和葉輪轉(zhuǎn)頻的比值。由圖9可知,設(shè)計(jì)工況下的壓力脈動(dòng)幅值由輪轂到輪緣依次增大,壓力脈動(dòng)的主頻為6倍轉(zhuǎn)頻,即葉片通過頻率。這充分說明在最優(yōu)工況下,2種方案下葉輪進(jìn)口前的壓力脈動(dòng)主要受葉輪轉(zhuǎn)動(dòng)影響[30-32]。從監(jiān)測(cè)點(diǎn)P1和P2可以看出在2種方案下壓力脈動(dòng)幅值變化不大,說明在最優(yōu)工況下,進(jìn)口管開槽對(duì)遠(yuǎn)離輪緣區(qū)域壓力脈動(dòng)影響不大。進(jìn)口管開槽對(duì)靠近輪緣的監(jiān)測(cè)點(diǎn)P3的壓力脈動(dòng)幅值影響較大,進(jìn)口管開槽方案下的最大壓力脈動(dòng)幅值約為未開槽的5倍左右,因此進(jìn)口管開槽增大了葉輪轉(zhuǎn)頻下的壓力脈動(dòng)幅值。

圖10給出了失速工況下葉輪進(jìn)口截面壓力脈動(dòng)頻域圖。由圖10可知,在失速工況下,進(jìn)口管開槽的軸流泵的壓力脈動(dòng)主頻包含葉片通過頻率和3.5倍轉(zhuǎn)頻下的脈動(dòng)值;與之對(duì)應(yīng)的是進(jìn)口管未開槽的情況下,壓力脈動(dòng)的主頻為6倍轉(zhuǎn)頻。通過對(duì)比發(fā)現(xiàn),進(jìn)口管開槽增加了高頻脈動(dòng)的幅值。但值得注意的是,除靠近輪緣的監(jiān)測(cè)點(diǎn)P3外,監(jiān)測(cè)點(diǎn)P1和P2的低頻壓力脈動(dòng)幅值有所降低。對(duì)比圖10,在最優(yōu)工況下和失速工況下,監(jiān)測(cè)點(diǎn)P1和P2上的壓力脈動(dòng)幅值變化不大,壓力脈動(dòng)幅值的最大值均低于0.3。但由于監(jiān)測(cè)點(diǎn)P3靠近葉輪進(jìn)口壁面,而每個(gè)葉輪葉片通道對(duì)應(yīng)10個(gè)軸向槽,葉片在高速轉(zhuǎn)動(dòng)過程中與軸向槽形成動(dòng)靜干涉作用[33],使得葉輪進(jìn)口靠近輪緣處的壓力脈動(dòng)急劇增大。因此,在使用壁面開槽來抑制軸流泵的駝峰時(shí),盡量使用較少的軸向槽數(shù),以便減少靠近壁面的壓力脈動(dòng)幅值。

圖9 Q/Qdes=1時(shí),設(shè)計(jì)工況下葉輪進(jìn)口壓力脈動(dòng)頻譜

圖10 Q/Qdes=0.55時(shí),失速工況下葉輪進(jìn)口壓力脈動(dòng)頻譜

圖11中給出了不同開槽參數(shù)下、在駝峰區(qū)域附近軸流泵揚(yáng)程的對(duì)比。由圖11可知,減小開槽個(gè)數(shù)在一定程度上降低了開槽的效果,達(dá)不到完全消除駝峰的目的。原因是葉輪進(jìn)口的周向速度沒有能降低到消除駝峰的程度。此外,將開槽長(zhǎng)度1從2/3降低到1/3時(shí),對(duì)軸流泵駝峰的改善效果略有降低,因此,60個(gè)溝槽與2/3倍葉輪直徑的槽長(zhǎng)在其他參數(shù)相同的條件下消除駝峰的能力更強(qiáng)。由此可見,合理選擇軸向槽的參數(shù)對(duì)提高軸流泵小流量工況的水力性能、改善駝峰非常重要,值得進(jìn)一步研究。

注:K為相對(duì)槽深,K=h/D1, h為槽深,D1為葉輪直徑;Z為溝槽數(shù)目;L為溝槽長(zhǎng)度,L/D1為相對(duì)槽長(zhǎng)。

3 結(jié) 論

本文采用數(shù)值仿真的方法,研究了軸流泵進(jìn)口軸向開槽對(duì)軸流泵水力特性上的駝峰的改善作用,探究了軸向開槽抑制葉輪內(nèi)流動(dòng)失速的機(jī)理,具體結(jié)論如下:

1)在0.61倍最優(yōu)流量工況點(diǎn)(有效最高點(diǎn)),軸流泵的揚(yáng)程和效率存在一個(gè)突降,分別下降了40%和29.3%,從而造成揚(yáng)程曲線存在明顯的駝峰現(xiàn)象。在小流量工況下,葉輪進(jìn)口的軸面速度降低,周向速度增加,水流在葉輪葉片頭部的沖角增大,導(dǎo)致在葉輪葉片背面脫流嚴(yán)重,并產(chǎn)生回流?;亓髟趤砹鞯臎_擊作用下形成了回流渦,堵塞了整個(gè)流道,導(dǎo)致?lián)P程急劇下降。

2)采用了進(jìn)口段壁面軸向開槽的方法來抑制葉輪內(nèi)的流動(dòng)失速。當(dāng)相對(duì)槽深為0.02時(shí),軸向開槽增加了軸流泵葉輪葉片進(jìn)口處的軸向速度,改善了軸流泵葉輪葉片進(jìn)口處的水流沖角,有效的抑制葉輪進(jìn)口預(yù)旋回流和通道渦的產(chǎn)生,對(duì)消除軸流泵駝峰、提高軸流泵駝峰區(qū)效率起到積極作用。

3)在0.55倍最優(yōu)流量工況點(diǎn),軸向開槽提高了葉輪葉片正背面的壓力,這種現(xiàn)象在靠近葉片出口更加明顯。在葉片中部正背面壓差被進(jìn)一步拉大,導(dǎo)致葉片中部載荷增加,從而提高了軸流泵的揚(yáng)程。

4)在葉輪的旋轉(zhuǎn)過程中,葉輪葉片和進(jìn)口管軸向槽流體之間的相對(duì)運(yùn)動(dòng)造成流體的動(dòng)靜干涉效應(yīng),在一定程度上增加了軸流泵葉輪內(nèi)高頻壓力脈動(dòng)的幅值,且引入了多種軸流泵轉(zhuǎn)頻倍頻,但同時(shí)抑制了葉輪內(nèi)低頻壓力脈動(dòng)的產(chǎn)生。

[1] 何川. 泵與風(fēng)機(jī)(第四版)[M].北京:中國(guó)電力出版社,2014.

[2] 洛馬金(蘇). 梁榮厚譯. 離心泵與軸流泵[M]. 北京:機(jī)械工業(yè)出版社,1978.

[3] 關(guān)醒凡. 現(xiàn)代泵理論與設(shè)計(jì)[M]. 北京:中國(guó)宇航出版社,2011.

[4] 王麗慧,施偉,沈昌榮,等. 立式軸流泵裝置模型水力性能數(shù)值分析及預(yù)測(cè)[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(9):767-773. Wang Lihui, Shi Wei, Shen Changrong, et al. Numerical analysis and prediction of hydraulic performance of vertical axial-flow pump system model[J]. Journal of drainage and irrigation machinery engineering, 2016, 34(9): 767-773. (in Chinese with English abstract)

[5] 馬皓晨,丁榮,楊東升. 低比轉(zhuǎn)數(shù)離心泵駝峰現(xiàn)象的CFD分析[J]. 流體機(jī)械,2013(12):43-47.

Ma Haochen, Ding Rong, Yang Dongsheng. CFD research on hump phenomenon of low specific speed centrifugal pump[J]. Fluid Machinery, 2013(12): 43-47. (in Chinese with English abstract)

[6] 劉君,段宏江,劉立峰,等. 低揚(yáng)程立式軸流泵裝置模型試驗(yàn)研究[J]. 水泵技術(shù),2011(6):1-6.

[7] 鄭源,陳宇杰,張睿,等. 軸流泵失速工況下非定常流動(dòng)特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):127-135.

Zheng Yuan, Chen Yujie, Zhang Rui, et al. Analysis on Unsteady stall flow characteristics of axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 127-135. (in Chinese with English abstract)

[8] 冒杰云,袁壽其,張金鳳,等. 低比轉(zhuǎn)速離心泵駝峰工況附近內(nèi)部流動(dòng)特性分析[J]. 排灌機(jī)械工程學(xué)報(bào),2014,33(4):283-289.

Mao Jieyun, Yuan Shouqi, Zhang Jinfeng, et al. Analysis of inner flow characteristics in low specific speed centrifugal pump around hump conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 33(4):283-289. (in Chinese with English abstract)

[9] 鄭源,茅媛婷,周大慶,等. 低揚(yáng)程大流量泵裝置馬鞍區(qū)的流動(dòng)特性[J]. 排灌機(jī)械工程學(xué)報(bào),2011,29(5):369-373.

Zheng Yuan, Mao Yuanting, Zhou Daqing, et al. Flow characteristics of low-lift and large flow rate pump installation in saddle zone[J]. Journal of Drainage and Irrigation Engineering, 2011, 29(5): 369-373. (in Chinese with English abstract)

[10] 張睿. 軸流泵失速和空化流動(dòng)特性及其性能改善研究[D].上海:上海大學(xué),2014. Zhang Rui. Research on the Stall and Cavitation Flow Characteristics and the Performance Improvement of Axial-flow Pump[D].Shanghai: Shanghai University, 2014. (in Chinese with English abstract)

[11] Toyokura T. Studies on the characteristics of axial-flow Pumps: Part 1, General tendencies of the characteristics of pumps[J]. Bulletin of JSME, 1961, 4(14): 287-293.

[12] Goltz I, Kosyna G, Stark U, et al. Stall inception phenomena in a single-stage axial-flow pump[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 471-479.

[13] Fay A. Analysis of separated flows in hydro machines[R]. 6th IASME/WSEAS International Conference, 2008.

[14] 仇寶云,林海江,黃季艷,等. 大型立式軸流泵葉片進(jìn)口流場(chǎng)及其對(duì)水泵影響研究[J]. 機(jī)械工程學(xué)報(bào),2005,41(4):28-34.

Qiu Baoyun, Lin Haijiang, Huang Jianyan, et al. Study on flow field in blade inlet of large vertical axial-flow pump and its influence on pump [J] .Journal of Mechanical Engineering, 2005, 41(4): 28-34. (in Chinese with English abstract)

[15] 錢忠東,王焱,鄭彪,等. 可調(diào)導(dǎo)葉式軸流泵水力特性數(shù)值模擬[J]. 水力發(fā)電學(xué)報(bào),2011,30(2):123-127.

Qian Zhongdong, Wang Yan, Zheng Biao, et al. Numerical simulation and analysis of performance of axial flow pump with adjustable guide vanes[J]. Journal of Hydroelectric Engineering, 2011, 30(2): 123-127. (in Chinese with English abstract)

[16] Goltz I, Kosyna G, Stark U, et al. Eliminating the head instability of an axial-flow pump using axial grooves[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 227(2): 206-215.

[17] 張睿,陳紅勛. 改善失速工況下軸流泵水力性能的研究[J]. 水力發(fā)電學(xué)報(bào),2014,33(3):292-298.

Zhang Rui, Chen Hongxun. Study on the improvement of hydrodynamic performance of axial-flow pump at stall condition[J]. Journal of Hydroelectric Engineering, 2014, 33(3): 292-298. (in Chinese with English abstract)

[18] Flores P, Kosyna G, Wulff D. Suppression of performance curve instability of an axial-flow pump by using a double-inlet-nozzle[J]. International Journal of Rotating Machinery, 2014, 2008: 7.

[19] Hans Josef Dohmen, Friedrich-Karl Benra, Sven Brinkhorst. Improvement of axial-flow pump part load behavior by a double inlet nozzle [C]// ASME 2012 Fluids Engineering Summer Meeting, 2012:479-489.

[20] Goltz I, Kosyna G, Wulff D, et al. Structure of the rotor tip flow in a highly loaded single-stage axial-flow pump approaching stall: Part II-Stall Inception-Understanding the mechanism and overcoming its negative impacts[C]// ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2004: 301-306.

[21] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. Aiaa Journal, 1994, 32(8): 1598-1605.

[22] 王德軍,周惠忠,黃志勇,等. 對(duì)旋式軸流泵全流道三維定常紊流場(chǎng)的數(shù)值模擬[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2003,43(10):1339-1342.

Wang Dejun, Zhou Huizhong, Huang Zhiyong, et al. 3-D steady turbulence flow numerical simulation on the full passage of a counter-rotating axial flow pump[J]. Journal of Tsinghua University: Science and Technology, 2003, 43(10): 1339-1342. (in Chinese with English abstract)

[23] 張德勝,吳蘇青,施衛(wèi)東,等. 軸流泵小流量工況條件下葉頂泄漏空化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(22):68-75.

Zhang Desheng, Wu Suqing, Shi Weidong, et al. Characteristics of tip leakage vortex cavitation in axial flow pump at small flow rate condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 68-75. (in Chinese with English abstract)

[24] 張海勝,徐建葉,陳宇杰,等. 立式軸流泵水力不穩(wěn)定工況流場(chǎng)數(shù)值預(yù)測(cè)[J]. 水泵技術(shù),2016(2):29-32.

Zhang Haisheng, Xu Jianye, Chen Yujie, et al. Numerical prediction of flow field in vertical axial flow pump with unstable hydraulic conditions [J]. Water Pump Technology, 2016(2): 29-32. (in Chinese with English abstract)

[25] 姚洋陽(yáng). 水泵水輪機(jī)泵工況駝峰特性流動(dòng)機(jī)理數(shù)值研究[D]. 北京:清華大學(xué),2015.

Yao Yangyang. Hydrodynamic Mechanism Analysis of the Pump Hump District For a Pump-Turbine[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)

[26] Benra F K, Dohmen H J, Schmidt M. Flow phenomena in a highly-loaded single-stage axial-flow pump: Comparison of experimental and numerical results[C]// ASME/JSME 2007, Joint Fluids Engineering Conference, 2007: 979-984.

[27] Kosyna G, Goltz I, Stark U. Flow structure of an axial-flow pump from stable operation to deep stall[C]// ASME 2005 Fluids Engineering Division Summer Meetin, 2005: 1389-1396.

[28] 朱俊華. 軸流泵葉片外緣液流角∞對(duì)軸流泵性能的影響[J]. 水泵技術(shù),1995(6):3-6.

Zhu Junhua. Effect of the flow angle∞at the outer edge of axial flow pump on the performance of axial-flow pump[J]. Pump Technology, 1995(6): 3-6. (in Chinese with English abstract)

[29] 王凡,錢忠東,郭志偉,等. 可調(diào)導(dǎo)葉式軸流泵壓力脈動(dòng)數(shù)值分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):119-123.

Wang Fan, Qian Zhongdong, Guo Zhiwei, et al, Pressure oscillations prediction of axial flow pump with adjustable guide vanes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 119-123. (in Chinese with English abstract)

[30] 王福軍,張玲,張志民. 軸流泵不穩(wěn)定流場(chǎng)的壓力脈動(dòng)特性研究[J]. 水利學(xué)報(bào),2007,38(8):1003-1009.

Wang Fujun, Zhang Ling, Zhang Zhimin. Analysis on pressure fluctuation of unsteady flow in axial-flow pump[J]. Journal of Hydraulic Engineering, 2007, 38(8): 1003-1009. (in Chinese with English abstract)

[31] 施衛(wèi)東,冷洪飛,張德勝,等. 軸流泵內(nèi)部流場(chǎng)壓力脈動(dòng)性能預(yù)測(cè)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(5):44-48.

Shi Weidong, Leng Hongfei, Zhang Desheng, et al. Performance prediction and experiment for pressure fluctuation of interior flow in axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 44-48. (in Chinese with English abstract)

[32] 張德勝,施衛(wèi)東,李通通,等. 軸流泵葉輪出口尾跡區(qū)非定常壓力和速度場(chǎng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(17):32-37.

Zhang Desheng, Shi Weidong, Li Tongtong, et al. Property of unsteady pressure and meridional velocity in wake region of axial-flow pump impeller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 32-37. (in Chinese with English abstract)

[33] 張德勝,耿琳琳,施衛(wèi)東,等. 軸流泵水力模型壓力脈動(dòng)和振動(dòng)特性試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):66-72.

Zhang Desheng, Geng Linlin, Shi Weidong, et al. Experimental investigation on pressure fluctuation and vibration in axial-flow pump model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 66-72. (in Chinese with English abstract)

Elimination of hump in axial pump characteristic curve by adopting axial grooves on wall of inlet pipe

Feng Jianjun, Yang Koufan, Zhu Guojun, Luo Xingqi, Li Wenfeng

(,,710048,)

Axial flow pumps are widely utilized for transporting fluid with large flow rates. The internal flow field is extremely complex and fully turbulent. When an axial flow pump operates at small flow rate, the incidence angle at the impeller leading edge will increase because of the decreasing meridional velocity. Rotating stall may occur when the incidence angle reaches a threshold, which will reduce greatly the delivery head of the pump and produce a hump in the pump performance curve. The hump phenomenon is a source of instability for the pump operation, which will normally limit the safe operating range of an axial flow pump. Therefore, it is very important to understand the flow behavior inside the pump during the range corresponding to the hump, so as to find a way to improve the flow condition. In this paper, the commercial software ANSYS CFX-16 was adopted to calculate the three-dimensional turbulent flow in an axial flow pump with a specific speed of 610 at different flow conditions. The pump impeller has an outer diameter of 0.3 m, with 6 three-dimensional blades, and the diffuser has 11 two-dimensional vanes. The computational meshes were created by ICEM-CFD (integrated computer engineering and manufacturing code for computational fluid dynamics) in structured format, andSST turbulence model was chosen for the unsteady simulations. The obtained results show that there is an obvious hump in the performance curve of the axial flow pump, occurring in the flow range of between 30% and 61% design flow rate. In the critical stall condition (61% design flow rate), flow separations have been observed at the leading edge of the impeller blade near the shroud and at the blade trailing edge near the hub. Under a deep stall condition (45% design flow rate), the flow is seriously developed and combined with the incoming flow to form a stable vortex structure that blocks the whole flow passage. In order to improve the hydraulic performance of the axial flow pump under small flow conditions, axial grooves were applied to the wall of the pump inlet pipe. The effects of axial grooves on the internal flow field and pump performance curves have been examined in detail, and different configurations of the grooves have also been tested, in order to find the best one for improving the pump performance. The results show that under the condition of small flow rates, the axial grooves can effectively reduce the inlet circulation and the attack angle at the leading edge of the impeller as well. As a result, the back flow on the suction side of the impeller has been reduced. Consequently, the unstable hump phenomenon in the performance curve of the axial flow pump has been eliminated. At the same time, it is found that the relative groove depth is one of the most important factors to improve the stability in performance curves for the axial flow pump under small flow rate conditions. When the groove depth reaches 1/50 of the impeller diameter with the axial length being 2/3 of the impeller diameter, the axial grooves increase the axial velocity and the relative flow angle near the shroud of the impeller. As a consequence, both the inlet circulation and the attack angle of the inlet of impeller have been greatly reduced. The backflow occurring near the impeller leading edge is obviously eliminated, the channel vortex is almost eliminated, and the hump phenomenon of the axial flow pump has been removed. However, the pressure fluctuation in the impeller has been magnified by the axial grooves, caused by the rotor-stator interaction effects between the rotating impeller blades and stationary axial grooves. In addition, the introduction of axial grooves has introduced some high-order harmonics of the impeller rotation frequency and depressed low-order harmonics to the frequency spectrum of unsteady pressure fluctuations.

pumps; computer simulation; impellers;computational fluid dynamics; axial flow pump; hump; performance; axial grooves

馮建軍,楊寇帆,朱國(guó)俊,羅興锜,李文鋒. 進(jìn)口管壁面軸向開槽消除軸流泵特性曲線駝峰[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):105-112.doi:10.11975/j.issn.1002-6819.2018.13.013 http://www.tcsae.org

Feng Jianjun, Yang Koufan, Zhu Guojun, Luo Xingqi, Li Wenfeng. Elimination of hump in axial pump characteristic curve by adopting axial grooves on wall of inlet pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 105-112. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.013 http://www.tcsae.org

2017-12-29

2018-04-04

國(guó)家自然科學(xué)基金(51679195;51339005);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃(2018JM5102)

馮建軍,教授,博士生導(dǎo)師,研究方向?yàn)榱黧w機(jī)械流動(dòng)理論及優(yōu)化設(shè)計(jì)。Email:jianjunfeng@xaut.edu.cn

10.11975/j.issn.1002-6819.2018.13.013

TH312

A

1002-6819(2018)-13-0105-08

猜你喜歡
軸流泵駝峰揚(yáng)程
給水泵揚(yáng)程曲線斜率的研究實(shí)踐
潛水軸流泵運(yùn)行故障分析與排除研究
軸流泵裝置性能曲線馬鞍形區(qū)的特點(diǎn)及應(yīng)用
潛水軸流泵電機(jī)運(yùn)行工況的特點(diǎn)及可靠性探討
基于數(shù)值模擬的軸流泵效率分析
多級(jí)離心泵取級(jí)改造節(jié)能研究
蝸殼式離心泵外特性仿真與實(shí)驗(yàn)研究
駝峰場(chǎng)編發(fā)線向到發(fā)場(chǎng)交授權(quán)電路探討
駝峰信號(hào)機(jī)與駝峰輔助信號(hào)機(jī)顯示不一致問題分析
駝峰第三制動(dòng)位減速器夾停鉤車問題的改進(jìn)
安溪县| 吴川市| 泾阳县| 弥勒县| 广水市| 焉耆| 鄯善县| 天峨县| 泊头市| 贵州省| 平顺县| 阜南县| 洪江市| 宜君县| 昂仁县| 彭阳县| 库尔勒市| 德清县| 湘潭县| 贵溪市| 营口市| 清河县| 贡觉县| 安溪县| 车险| 比如县| 南靖县| 阿克苏市| 民权县| 阿克陶县| 兖州市| 若羌县| 铁岭县| 榕江县| 深州市| 怀远县| 波密县| 双江| 靖江市| 敦化市| 五峰|