李林,劉立斌,章立鋼
?
Ti-Al-Nb三元系1 100 ℃等溫截面的研究
李林,劉立斌,章立鋼
(中南大學 材料科學與工程學院,長沙 410083)
采用電弧熔煉法制備17個不同成分的Ti-Al-Nb三元合金樣品,在1 100 ℃退火1 080 h后取出,在冰水中淬火。利用掃描電鏡(SEM)、電子探針(EPMA)和X射線衍射(XRD)等手段對退火后的合金樣品進行分析,研究Ti-Al-Nb三元系1 100 ℃等溫截面,確定該截面下(Al摩爾分數(shù)為0~75%成分區(qū)間)的9個單相區(qū)、15個兩相區(qū)和7個三相區(qū),并與Witusiewicz與Cupid的優(yōu)化計算結果進行比較。結果表明,本研究所得1 100 ℃等溫截面的Al摩爾分數(shù)為30%~60%的成分區(qū)間與Witusiewicz和Cupid的計算結果存在明顯差異。采用實驗方法確定了Ti-Al-Nb三元系1 100 ℃等溫截面與計算結果不同的α2+β+γ和β+γ+σ兩個三相區(qū)以及β+γ兩相區(qū)。
TiAl合金;金屬間化合物;相圖;微觀結構;等溫截面
TiAl 金屬間化合物密度低,高溫下具有良好的力學性能,是一種非常有應用潛力的新型高溫結構材 料[1?2]。Nb作為TiAl基合金的添加元素不但可以有效提高其抗高溫抗氧化性能,而且可進一步提高合金的力學性能[3?6]。Ti-Al-Nb三元系含有很多有潛力的金屬間化合物,它們可用來制備力學性能優(yōu)異的合金[2]。最近,人們研究了Ti-Al-Nb三元系在800 ℃以上的潛力合金[7],這些合金包含的多種組織,例如γ-TiAl,α2-Ti3Al,O-Ti2NbAl,σ-Nb2Al和β有序固溶體,均可作為高溫應用的候選材料[2, 8?10]。關于Ti-Al-Nb相圖的信息對于鈦合金的設計和制造是不可或缺 的[11?12]。三個子二元的相圖,即Ti-Al[13?15],Ti-Nb[16?17]和Al-Nb[18]已得到很好地研究和優(yōu)化。目前,也有用熱力學方法優(yōu)化Ti-Al-Nb三元相圖的報道[15, 18?23]。2009年WITUSIEWICZ[18]和CUPID[19]都采用CALP- HAD(即calculation of phase diagram)方法優(yōu)化了Ti-Al-Nb三元相圖,但它們的結果有很大的差異,包括在1 000 ℃以上的α,β和γ相的平衡。本文作者采用電弧熔煉法制備17個Al摩爾分數(shù)為0~75%的Ti- Al-Nb合金樣品,在1 100 ℃退火1 080 h后取出,在冰水中淬火,用掃描電鏡(SEM),電子探針顯微分析(EPMA)和X射線衍射(XRD)對退火合金進行檢測,根據合金中發(fā)生相變時相變發(fā)生的點和邊界進行推斷來測量合金相圖,研究Ti-Al-Nb體系在1 100 ℃的相平衡,豐富了航空用鈦合金的基礎研究數(shù)據。表1所列為文獻普遍采用的Ti-Al-Nb三元系物相晶體結構[18]。
以金屬Ti、Al和Nb為原料(純度均為99.99%,由中國金鈺研材料科技股份有限公司生產),采用電弧熔煉法制備17個不同成分的Ti-Al-Nb合金樣品,每個樣品的質量限制在6 g,合金樣品編號及其成分與物相組成列于表2。首先通過分析天平稱量金屬Ti、Al和Nb原料,倒入銅坩堝內(為了避免熔煉過程中鋁的質量損失過大,需要先將純鋁棒放在銅坩堝底部,然后將純鈮和純鈦棒覆蓋在鋁棒上),在電弧爐內氬氣氣氛下進行熔煉,用純鈦作為吸氧劑,低電流起弧時電弧先接觸熔煉鈦和鈮,熔融的鈦鈮合金將鋁包裹住,然后加大電流使整個合金熔成紐扣狀。為了確保熔煉合金的均勻性,至少重復熔化4次,每次熔化前將樣品翻轉。熔煉后樣品的質量損失率不超過1%。將得到的鈕扣合金樣品密封在高純度氬氣石英管中,1 100 ℃退火1 080 h后,將合金取出,在冰水中淬火。
表1 Ti-Al-Nb體系常用相及其晶體結構[18]
表2 用EPMA法測定的1 100 ℃下的Ti-Al-Nb平衡相組成與各相的成分
Note: Nb content in different phases(Nb)=100%?(Al)?(Ti)
將退火后的樣品拋光,用JEOL JXA-8530F電子探針微量分析(EPMA)對合金的化學成分以及各相的化學成分進行測定,成分分析的標準偏差為±0.5%(摩爾分數(shù)),檢測出各相中Ti,Al,Nb的質量分數(shù)在97%~103%之間,可以忽略樣品與石英管反應的影響。用Rigaku D-max/2500X輻射射線衍射儀對一些選定的退火合金樣品進行XRD分析,CuKα靶,在電壓為40 kV,電流200 mA下操作。用Jade 6.0對合金的各組成相進行晶體結構分析。
通過EPMA分析,得到表2所列的Ti-Al-Nb合金在1 100 ℃下平衡狀態(tài)的化學成分以及各相的化學成分。圖1所示為A2#,A4#和A3#合金樣品的背散射電子顯微(BSE)圖片和XRD譜,由表2和圖1可知,A2#合金樣品為α2,β和σ 三相平衡,A4#樣品包含α2,σ和γ這三相。A3#合金樣品為σ和α2兩相平衡。
圖1 1 100 ℃退火后的Ti-Al-Nb合金B(yǎng)SE圖和XRD譜
(a), (b) A2#; (c), (d) A4#; (e), (f) A3#
圖2所示為1100℃退火后的A1#,A14#,A8#,A9#,A5#,A13#,A15#,A16#和A17#合金樣品的SEM背散射電子顯微照片,A1#和A14#樣品分別為β+δ+σ和γ+σ+ε三相平衡,A8#,A9#,A5#,A13#,A15#,A16#和A17#合金樣品分別為β+δ,δ+σ,α2+γ,γ+σ,ε+σ,γ+ε和ε+η兩相平衡。
圖2 1 100 ℃退火合金的掃描電鏡BSE圖
(a) A1#; (b) A14#; (c) A8#; (d) A9#; (e) A5#; (f) A13#; (g) A15#; (h) A16#; (i) A17#
圖3(a)為本研究得到的1 100 ℃等溫截面以及該截面的共軛線和三相區(qū)。圖3(b)和(c)分別為WITUSIE- WICZ[18]和CUPID[19]計算得到的1 100 ℃等溫截面。本研究確定了α2+β+σ和α2+σ+γ兩個三相區(qū)以及σ+α2兩相區(qū),而WITUSIEWICZ[18]和CUPID[19]的計算結果在該區(qū)域為α2+β+γ和β+γ+σ兩個三相區(qū)以及β+γ兩相區(qū),這可能是由該截面優(yōu)化時所采用的實驗數(shù)據不充分所致。本研究所確定的β+σ+δ和γ+σ+ε這兩個三相區(qū)與WITUSIEWICZ[18]和CUPID[19]的計算結果一致,但位置有差異,這是由WITUSIEWICZ[18]和CUPID[19]優(yōu)化計算時所采用的實驗數(shù)據之間的差異所致。
圖3 Ti-Al-Nb合金1 100 ℃等溫截面
(a) The tie-lines, the tie-triangles and the 1 100 ℃ isothermal section of phase diagram identified by the present work; (b) Calculated results from WITUSIEWICZ’s work; (c) Calculated results from CUPID’s work
1) 采用合金法和掃描電鏡、電子探針、X射線衍射等分析手段確定了Ti-Al-Nb三元系相圖1 100 ℃等溫截面(Al摩爾分數(shù)為0~75%成分區(qū)間)的9個單相區(qū)、15個兩相區(qū)和7個三相區(qū)。
2) 本研究所得的30%~60%Al成分區(qū)間與WITUSIEWICZ[18]和CUPID[19]計算的相關系存在明顯差異,確定了不同于計算結果的α2+β+γ和β+γ+σ兩個三相區(qū)以及β+γ兩相區(qū)。
[1] POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8): 809.
[2] DE Arag?o B J, EBRAHIMI F. High temperature deformation of NbTiAl alloys with σ+γ microstructure[J]. Materials Science and Engineering A ,1996, 208(1): 37?46.
[3] KENEL C, LEINENBACH C. Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti-Al-(Nb, Mo) alloys[J]. Intermetallics ,2016, 69(Supplement C): 82?89.
[4] CLEMENS H, WALLGRAM W, KREMMER S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability[J]. Advanced Engineering Materials, 2008, 10(8): 707?713.
[5] KIM Y W. Ordered intermetallic alloys, part III: Gamma titanium aluminides[J]. JOM, 1994, 46(7): 30?39.
[6] SHULESHOVA O, HOLLAND-MORITZ D, L?SER W, et al. In situ observations of solidification processes in γ-TiAl alloys by synchrotron radiation[J]. Acta Materialia, 2010, 58(7): 2408? 2418.
[7] HOELZER D T, EBRAHIMI F. Phase stability of sigma+beta microstructures in the ternary Nb-Ti-Al system[J]. Mrs Proceedings, 1990, 194 (Symposium R-Intermetallic Matrix Composites I): 393.
[8] CLEMENS H, MAYER S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013, 15(4): 191? 215.
[9] DIMIDUK D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J]. Materials Science & Engineering A, 1999, 263(2): 281?288.
[10] WU X. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10/11): 1114?1122.
[11] LEYENS C, PETERS M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Hoboken, N J, USA:J Been and J S Grauman, 2006: 401.
[12] LIU Y, CHEN L F, TANG H P, et al. Design of powder metallurgy titanium alloys and composites[J]. Materials Science & Engineering A, 2006, 418(1/2): 25?35.
[13] OHNUMA I, FUJITA Y, MITSUI H, et al. Phase equilibra in The Ti-Al binary system[J]. Acta Materialia, 2000, 48(12): 3113? 3123.
[14] WITUSIEWICZ V T, BONDAR A A, HECHT U, et al. The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti[J]. Journal of Alloys & Compounds, 2008, 465(1/2): 64?77.
[15] KATTNER U R, LIN J C, CHANG Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transactions A, 1992, 23(8): 2081?2090.
[16] KUMAR K C H, WOLLANTS P, DELAEY L. Thermodynamic calculation of Nb-Ti-V phase diagram[J]. Calphad, 1994, 18(1): 71?79.
[17] WITUSIEWICZ V T, BONDAR A A, HECHT U, et al. The Al-B-Nb-Ti system: II. Thermodynamic description of the constituent ternary system B-Nb-Ti[J]. Journal of Alloys & Compounds, 2008, 456(1): 143?150.
[18] WITUSIEWICZ V T, BONDAR A A, HECHT U, et al. The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems[J]. Journal of Alloys & Compounds 2008, 472(1): 133? 161.
[19] CUPID D M, FABRICHNAYA O, RIOS O, et al. Thermodynamic reassessment of the Ti-Al-Nb system[J]. International Journal of Materials Research, 2009, 100(2): 218? 233.
[20] ANSARA I, DUPIN N, RAND M H. Thermochemical Database for Light Metal Alloys[M]. COST 507, vol. 2. European Commission, Luxembourg, 1998.
[21] SERVANT C, ANSARA I. Thermodynamic assessment of the Al-Nb-Ti system[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie,1998,102(9): 1189?205.
[22] SERVANT C, ANSARA I. Thermodynamic modelling of the order-disorder transformation of the orthorhombic phase of the Al-Nb-Ti system[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2001, 25(4): 509?525.
[23] ZHU Z, DU Y, ZHANG L, et al. Experimental identification of the degenerated equilibrium and thermodynamic modeling in the Al-Nb system[J]. Journal of Alloys & Compounds, 2008, 460(1): 632?638.
(編輯 湯金芝)
Study on isothermal section of Ti-Al-Nb ternary system at 1 100℃
LI Lin, LIU Libin, ZHANG Ligang
(School of Materials Science and Engineering, Central South University, Changsha 410083, China)
Seventeen Ti-Al-Nb alloy samples were prepared by arc melting, annealing at 1 100 ℃ for 1 080 h, quenching in ice water. Isothermal section of Ti-Al-Nb ternary system at 1 100 ℃ were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Nine single-phase regions, fifteen two-phase regions and seven three-phase regions under the section (0?75%Al composition interval) were identified. The results show that, compared with the isothermal section of 1 100 ℃ obtained from the optimized calculation results of Witusiewicz and Cupid, there is a significant difference between experimental results (30?60%Al composition intervals) and the calculated results. The experimental results show that two three-phase α2+β+γ and β+γ+σ regions and a two-phase β+γ region of the isothermal section of 1 100 ℃ are different from the calculated results.
TiAl alloy; intermetallics; phase diagram; microstructure; isothermal section
TG146.4+16
A
1673-0224(2018)04-341-06
科技部重大專項(2016YFB0701301)
2017?12?21;
2018?02?26
劉立斌,教授,博士。電話:0731-88877732;E-mail: lbliu@csu.edu.cn