單亞飛,李天卉,楊竹強(qiáng),張博,劉峰
(大連理工大學(xué)能源與動力學(xué)院,116024,大連)
隨著新型高速飛行器機(jī)動性與多態(tài)化作戰(zhàn)能力要求的不斷提升,機(jī)載熱載荷不斷攀升。為了降低機(jī)載熱載荷,以自身攜帶的燃料作為冷源的“再生主動冷卻技術(shù)”成為了研究熱點[1-3]。當(dāng)燃料流經(jīng)布置多通道形式的換熱槽道時,雖然能吸收發(fā)動機(jī)表面的熱載荷[4],但可能會出現(xiàn)流動不穩(wěn)定的問題。這種靜態(tài)不穩(wěn)定性一方面會使壁溫超溫,出現(xiàn)傳熱惡化現(xiàn)象;另一方面還會引起機(jī)械振動,嚴(yán)重影響運行安全。
Ledinegg在1938年研究流體的靜態(tài)不穩(wěn)定性時發(fā)現(xiàn):在特定條件下,通道內(nèi)部的壓降-流量(Δp-m)曲線存在一負(fù)斜率區(qū);在這個負(fù)斜率區(qū)內(nèi),通道內(nèi)的壓降不是流量的單值函數(shù),而是一個壓降值對應(yīng)多個流量值,這種水動力學(xué)多值性也稱為水動力學(xué)特性,相應(yīng)的這條曲線稱為水動力學(xué)特性曲線[5]。Padki等分析認(rèn)為,水動力學(xué)多值性是靜態(tài)不穩(wěn)定性發(fā)生的必要條件,研究水動力學(xué)多值性對于避免靜態(tài)不穩(wěn)定性的發(fā)生具有重要意義[6]。因此,學(xué)者們對水動力學(xué)特性展開了大量研究,不斷發(fā)現(xiàn)其存在于兩相換熱或相變的流動過程中,并且認(rèn)為氣泡的生長以及氣液間比體積的劇烈變化是促使其存在的主要原因。其中:Boure、Ruspini等相繼對兩相流體的靜態(tài)不穩(wěn)定性進(jìn)行了綜述[7-8];Chiapero在水平加熱管中的水動力學(xué)實驗中發(fā)現(xiàn)了減小工作壓力、流體入口溫度或軸向的載荷分布可以加劇流體的水動力多值性[9-10];Zhang等人采用數(shù)值計算方法分析了水平微通道中的靜態(tài)不穩(wěn)定性,結(jié)果表明,增加通道內(nèi)壓力或通道管內(nèi)徑(后文簡稱管徑)以及減小通道數(shù)量或通道長度這4種方式均能使水平管換熱系統(tǒng)更為穩(wěn)定[11]。
對于超臨界流體的水動力學(xué)特性的存在性,學(xué)者們?nèi)晕催_(dá)成共識。Mahmoudi在水平矩形通道內(nèi)開展了超臨界CO2自然循環(huán)的熱力-水力研究,實驗發(fā)現(xiàn):該物質(zhì)具有水動力學(xué)多值性;增加通道內(nèi)壓力或減小流體初始焓值均有利于水平矩形通道的穩(wěn)定[12]。Swapnalee等同樣在超臨界水的自然循環(huán)實驗中發(fā)現(xiàn)了水動力學(xué)多值性,并且認(rèn)為流體密度的劇烈變化是促使其存在的原因[13]。Chatoorgoon利用線性理論分析了超臨界CO2和水的靜態(tài)不穩(wěn)定性,發(fā)現(xiàn)二者在向下流動的通道中靜態(tài)不穩(wěn)定性更易發(fā)生[14]。近期,Guo等通過實驗證實了吸熱型碳?xì)淙剂现兴畡恿W(xué)多值特性的存在,并且指出,擬沸騰和化學(xué)裂解是促使其存在的主要原因[15]。然而,也有部分學(xué)者認(rèn)為水動力學(xué)多值性在超臨界流體中并不存在。Yu等基于數(shù)值模型[16]、Liu等采用實驗手段[17],對超臨界流體的自然循環(huán)進(jìn)行了研究,結(jié)果均未發(fā)現(xiàn)循環(huán)回路中存在水動力學(xué)多值特性。熊挺等采用自編程序SCIA對并聯(lián)雙通道內(nèi)的超臨界水流動不穩(wěn)定的動態(tài)特性進(jìn)行了研究,未發(fā)現(xiàn)水動力學(xué)特性曲線存在負(fù)斜率區(qū),認(rèn)為靜態(tài)不穩(wěn)定很難發(fā)生[18]。
在水動力學(xué)特性的研究過程中,流動不穩(wěn)定起始點(onset of flow instability,OFI)的發(fā)生機(jī)理以及判定準(zhǔn)則一直以來是學(xué)者們關(guān)注的重點。因為掌握了OFI的出發(fā)機(jī)制以及判定準(zhǔn)則,將尋求到抑制或避免流動不穩(wěn)定性發(fā)生的方法。Whittle和Yu等認(rèn)為,單通道流體水動力學(xué)特性曲線的最低點可視為OFI[19-20]。同樣的觀點也被學(xué)者們在多通道內(nèi)的流量分配過程中采用[21-22]。目前,針對OFI的研究集中在不同條件下的兩相流體中,得到了一些預(yù)測OFI的經(jīng)驗公式。Duffey等運用分析模型研究了豎直管道內(nèi)的靜態(tài)不穩(wěn)定性,結(jié)果表明,OFI與熱流密度之間存在著線性關(guān)系[23]。一些學(xué)者研究認(rèn)為,利用Saha-Zuber關(guān)聯(lián)式預(yù)測得到的OFI對應(yīng)的質(zhì)量流量更為準(zhǔn)確[24-28]。Whittle等研究了在近似大氣壓力下,長方形和圓形管道內(nèi)過冷沸騰時的壓力損失,研究認(rèn)為,對于給定的管長徑比,OFI發(fā)生在一固定值R=(Tout-Tin)/(Tsat-Tin)(Tout、Tsat和Tin分別表示出口溫度、飽和溫度和入口溫度)處,該值為管路溫升與過冷度的比值[19]。Dougherty等對管長徑比為100~150的豎直管內(nèi)的靜態(tài)不穩(wěn)定性進(jìn)行了實驗研究,發(fā)現(xiàn)基于實驗數(shù)據(jù)計算的參數(shù)Qr=qπDl/(mCpf(Tsat-Tin))(q表示熱流密度,D和l分別表示管外徑和管長量,m表示入口質(zhì)量流量,Cpf表示比熱容)與Whittle提出的R一致[29]?;趨?shù)Qr,一些學(xué)者通過研究得到了不同的用于預(yù)測OFI的經(jīng)驗公式[30-31]??紤]到管道結(jié)構(gòu)參數(shù)對于靜態(tài)不穩(wěn)定性的影響,Babelli等運用數(shù)學(xué)模型預(yù)測了低壓條件下流體向下流動時的OFI,獲得了包含管長的模型公式[19]。Stelling等通過實驗研究提出了包含管長和管徑兩種結(jié)構(gòu)參數(shù)的經(jīng)驗關(guān)聯(lián)式[20]。
基于上述文獻(xiàn)的研究基礎(chǔ),本文的研究內(nèi)容分別從以下3個方面進(jìn)行:(1)驗證超臨界流體水動力學(xué)特性的存在,給出明確的水動力學(xué)特性曲線;(2)探究影響超臨界流體水動力學(xué)多值性以及OFI的主要因素;(3)結(jié)合實驗數(shù)據(jù)并采用歸一化方法,給出OFI的預(yù)測關(guān)聯(lián)式,為設(shè)計超臨界流體換熱結(jié)構(gòu)提供參考依據(jù)。
超臨界環(huán)己烷流動換熱實驗系統(tǒng)主要由流體供給、流動管路、壓力控制裝置、參數(shù)測量系統(tǒng)和數(shù)據(jù)采集系統(tǒng)5部分組成。實驗過程中,測試流體由恒流泵加壓后以恒定體積流量流入實驗管路,其質(zhì)量流量由高精度質(zhì)量流量計測量監(jiān)控,同時,恒流泵和質(zhì)量流量計入口分別裝有過濾器,防止雜質(zhì)污染;流入實驗管路的流體經(jīng)預(yù)熱段加熱至預(yù)設(shè)溫度后,流體進(jìn)入測試段;測量后的流體經(jīng)冷凝器冷卻后流出實驗系統(tǒng);整個過程中的系統(tǒng)工作壓力由出口處的背壓閥進(jìn)行調(diào)節(jié)。實驗系統(tǒng)簡圖如圖1所示,實驗測試參數(shù)如表1所示。
圖1 超臨界環(huán)己烷流動換熱實驗臺系統(tǒng)
參數(shù)取值范圍壓力p/MPa4.0~5.5入口溫度Tin/℃30~100熱流密度q/kW·m-2158~450測試管長l/mm200~890測試管徑d/mm1.0,2.0
圖2 測試段熱電偶的分布
實驗過程中,選取一定管長和管徑的316不銹鋼管為測試管路,維持系統(tǒng)的測試壓力與流體入口溫度在某一恒定工況。將質(zhì)量流量由高到代調(diào)節(jié),可得到相應(yīng)測試段下的壓降值,進(jìn)而得到壓降隨質(zhì)量流量的變化曲線,即為所研究的水動力學(xué)特性曲線。測試壓降由安放在管路進(jìn)出口處的壓差傳感器(Rosemount 3051CD4)測定,而管路表面的溫度由焊接在管外壁的K型熱電偶(Omega TJ36)測定。針對不同管長的測試管路,熱電偶也采用了不同的分布方式,如圖2和表2所示。為了減少測試管路的熱量損失,測試管路還包裹玻璃棉作絕熱處理。實驗過程中嚴(yán)格控制測試管壁的溫度不超過540 ℃,流體出口溫度Tout不超過420 ℃,以確保測試工質(zhì)不發(fā)生化學(xué)反應(yīng)。
表2 熱電偶分布位置
實驗中采用純度為摩爾分?jǐn)?shù)99.5%的環(huán)己烷作為測試工質(zhì)。
測試段加熱管外壁熱流密度由下式獲得
(1)
式中:I、U分別為交流電流與電壓;Ql為加熱管熱損,計算為
Ql=-20.618+0.296T-7.650×10-4T2+
1.691×10-6T3-7.074×10-10T4
(2)
其中T為測試溫度。測試溫度范圍內(nèi),Ql控制在總功率的6%以內(nèi)。
流體焓值計算為
(3)
式中:x為熱電偶的分布位置;hb,in為流體入口焓值;min為流體質(zhì)量流量。
在NIST軟件中查詢管中流體焓值,可以得到對應(yīng)的主流流體溫度Tb。
管內(nèi)壁溫度Twi(x)通過管外壁溫度Two(x)及管內(nèi)熱源qv(x)計算得出
(4)
式中:λ為管材導(dǎo)熱系數(shù);qv(x)的計算公式為
(5)
實驗過程中系統(tǒng)參數(shù)的不確定度如表3所示。表3中,對于可以直接測量的物理量,如流體溫度、體積流量、壓力和壓降,這些物理量的不確定度是由對應(yīng)測量設(shè)備和采集卡的精度共同決定的。對于通過一些計算得到的物理量,如加熱功率、熱流密度、質(zhì)量流量和內(nèi)壁面溫度,這些物理量的不確定度是由與之相關(guān)的一些基本測量量的不確定度累積而成的。假設(shè)物理量F由n個基本測量量Fi(i=1,2,3,…,n)合成,則其不確定度為
(6)
因此,熱流密度q的不確定度計算為
(7)
圖3給出了在超臨界壓力(臨界壓力pcr=4.05 MPa)條件下,不同實驗測試參數(shù)條件下獲得的環(huán)己烷水動力學(xué)特性曲線,可以看出,水動力學(xué)特性曲線存在明顯的負(fù)斜率區(qū)。因此,水動力學(xué)多值性在超臨界流體中的存在性得到了證實。同時,多值性負(fù)斜率區(qū)間的斜率以及OFI隨著壓力p、入口溫度Tin、熱流密度q、管長l和管徑d的不同而呈現(xiàn)出變化趨勢。因此,需要針對不同的實驗測試參數(shù)對超臨界流體的水動力學(xué)多值性進(jìn)行進(jìn)一步詳細(xì)的研究。
圖3 超臨界壓力環(huán)己烷的水動力學(xué)特性曲線
圖4展示了水平圓管內(nèi)水動力學(xué)特性曲線隨著系統(tǒng)壓力的變化規(guī)律,可以看出,隨著系統(tǒng)壓力的增大,水動力學(xué)特性曲線負(fù)斜率區(qū)域減小,即系統(tǒng)更加穩(wěn)定。當(dāng)系統(tǒng)壓力低于臨界壓力(4.05 MPa)時,水動力學(xué)多值性明顯,這是由相變點附近區(qū)域工質(zhì)比體積的劇烈變化造成的[19]。當(dāng)系統(tǒng)壓力為4.5和5.5 MPa時,系統(tǒng)壓力大于臨界壓力,同樣存在負(fù)斜率區(qū),這是因為與亞臨界壓力類似,超臨界壓力下工質(zhì)在擬臨界溫度(見圖4中所標(biāo)注的直線288 ℃和303 ℃,這兩個溫度分別對應(yīng)于4.5 MPa和5.5 MPa的擬臨界溫度)附近,密度急劇減小,比體積也受溫度變化影響較大,只是程度相對要小一些。在超臨界壓力下,隨著壓力的增大,在擬臨界溫度附近,流體密度的變化趨勢越來越平緩[13],同時,隨著壓力的增大,流體的擬臨界溫度增大,轉(zhuǎn)變?yōu)槌R界態(tài)點向后延遲,出現(xiàn)OFI對應(yīng)的質(zhì)量流量向低質(zhì)量流量移動。因此,提高壓力可以改善超臨界壓力下流體的水動力穩(wěn)定性。
實心點:對應(yīng)左側(cè)壓降坐標(biāo)軸;空心點:對應(yīng)右側(cè)出口溫度坐標(biāo)軸圖4 系統(tǒng)壓力對于水動力學(xué)特性曲線的影響
在超臨界壓力實驗條件下,通過改變測試段入口溫度,得到不同入口溫度下通道內(nèi)的水動力學(xué)特性曲線,如圖5所示。
圖5 入口溫度對于水動力學(xué)特性曲線的影響
從圖5中可以看出,隨著入口溫度的增加,負(fù)斜率區(qū)越來越平緩,水動力學(xué)多值性趨勢減弱。因此,入口溫度越高,越有利于提升系統(tǒng)的水動力學(xué)穩(wěn)定性。同時,入口溫度的增加使得單位流體到達(dá)負(fù)斜率區(qū)的起始點所需的熱量變少,OFI對應(yīng)的流量向高質(zhì)量流量移動,且對應(yīng)出口流體溫度不斷升高,接近擬臨界溫度點(Tpc=288 ℃)。
超臨界壓力下熱流密度對通道內(nèi)水動力學(xué)特性曲線的影響如圖6所示,可以看出,隨著熱流密度的增大,負(fù)斜率區(qū)越來越陡峭,水動力學(xué)多值性趨勢增強(qiáng)。所以,降低熱流密度有利于系統(tǒng)的水動力學(xué)穩(wěn)定性。同時,熱流密度的增大使得流體由更易由液態(tài)變?yōu)槌R界態(tài),OFI對應(yīng)的質(zhì)量流量向高質(zhì)量流量移動。
圖6 熱流密度對于水動力學(xué)特性曲線的影響
圖7展示了不同管長下通道內(nèi)的水動力學(xué)特性曲線,可見在相同的實驗參數(shù)條件下,隨著管長的增加,負(fù)斜率區(qū)不斷變大,也就意味著管長的增加會導(dǎo)致靜態(tài)不穩(wěn)定更易發(fā)生。這是因為在水動力學(xué)特性曲線負(fù)斜率區(qū)間,流體進(jìn)入擬臨界溫度和超臨界狀態(tài)區(qū)間,此時流體的物性發(fā)生急劇的變化。在相同的熱流密度條件下,管長的增加使得通道中工質(zhì)由液態(tài)轉(zhuǎn)變?yōu)槌R界流體的過渡區(qū)間所占的比例增大,也就是管道內(nèi)物性(尤其是密度)劇烈變化的區(qū)間長度增加。因此,管長越長,水動力學(xué)特性曲線的負(fù)斜率部分越陡峭。
圖7 管長對于水動力學(xué)特性曲線的影響
不同管徑對于通道內(nèi)流體的水動力學(xué)多值性的影響如圖8所示,可以看出,在熱流密度相同的情況下,管徑越小,水動力學(xué)特性曲線的負(fù)斜率部分越陡峭,也就意味著水動力學(xué)穩(wěn)定性越差。這是因為在相同工況條件下,管徑的減小使得沿徑向方向上的內(nèi)壁面流體溫度與主流溫度的梯度增加,此時,近壁面流體溫度顯著高于擬臨界溫度,而主流溫度則低于擬臨界溫度,如圖9所示。此時徑向的溫度梯度增大導(dǎo)致了徑向密度變化幅度和區(qū)間都增大,從而小管徑通道內(nèi)的水動力學(xué)特性曲線的負(fù)斜率部分變得陡峭。同時,小管徑對應(yīng)的測試段加載的熱量變少。由于在相同流體入口溫度條件下,流體達(dá)到擬臨界溫度附近所需的焓增基本相同,因此在小管徑內(nèi)OFI向低質(zhì)量流量發(fā)展。
實心點:對應(yīng)左側(cè)壓降坐標(biāo)軸;空心點:對應(yīng)右側(cè)壓降坐標(biāo)軸圖8 管徑對于水動力學(xué)特性曲線的影響
圖9 x/l=0.85時不同管徑下Twi和Tb 隨質(zhì)量流量的變化
通過對實驗數(shù)據(jù)的分析,發(fā)現(xiàn)影響水動力學(xué)特性曲線上OFI的主要參數(shù)有系統(tǒng)壓力、入口溫度、熱流密度、管長和管徑。首先,采用量綱分析得到一個預(yù)測OFI的經(jīng)驗關(guān)聯(lián)式;然后,基于實驗數(shù)據(jù)使用多元線性回歸方法得到相應(yīng)的系數(shù)值;最終,得到具體的歸一化關(guān)聯(lián)式。
基于上述影響因素進(jìn)行量綱分析,描述OFI的方程可表示為
F(Q,m,l,d,Δhin,Δhout,ρ)=0
(8)
式中:Q表示加熱量,代表熱流密度的影響;m表示OFI出現(xiàn)時的質(zhì)量流量;l和d分別表示管長和管內(nèi)徑;Δhin和Δhout表示入口和出口欠焓值,代表入口溫度和壓力的影響;ρ表示流體密度。
選擇d、Δhin和ρ作為基本參量,通過π定理進(jìn)行分析,得到4個量綱一參數(shù)如下
(9)
(10)
(11)
(12)
上述4個量綱一參數(shù)可簡化為以下3個量綱一參數(shù)
(13)
(14)
(15)
(16)
式中:C1、C2和C3是常數(shù)?;趯嶒灁?shù)據(jù),利用多元線性回歸方法,得到水平管內(nèi)預(yù)測OFI的歸一化公式為
(17)
該公式應(yīng)用范圍為:100 本文通過實驗研究了水平圓管內(nèi)超臨界環(huán)己烷在不同工況條件下的水動力學(xué)過程,得到以下結(jié)論。 (1)超臨界壓力下,流體水動力學(xué)特性曲線存在負(fù)斜率區(qū),即水動力學(xué)多值特性存在。 (2)提高系統(tǒng)壓力或入口溫度、降低熱流密度、減小加熱管長、增加加熱管徑,均有利于提升系統(tǒng)水動力學(xué)穩(wěn)定性。 (3)降低系統(tǒng)壓力、提高入口溫度、增大熱流密度,會使得OFI對應(yīng)的質(zhì)量流量向高質(zhì)量流量方向移動,相反,減小管長和管徑將促使OFI向低質(zhì)量流量方向移動。 (4)通過歸一化方法,獲得了適用于超臨界流體OFI的預(yù)測公式。3 結(jié) 論