国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

糞污肥料化產(chǎn)物對(duì)土壤磷淋失的影響*

2018-09-17 10:52:16馬金奉朱昌雄李紅娜李斌緒李艷苓
中國(guó)農(nóng)業(yè)氣象 2018年9期
關(guān)鍵詞:淋失淋溶小白菜

馬金奉,朱昌雄,李紅娜**,耿 兵,張 麗,李斌緒,李艷苓

?

糞污肥料化產(chǎn)物對(duì)土壤磷淋失的影響*

馬金奉1,朱昌雄1,李紅娜1**,耿 兵1,張 麗2,李斌緒1,李艷苓1

(1.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2.河北經(jīng)貿(mào)大學(xué),石家莊 050061)

以華北平原廣泛分布的潮土為研究對(duì)象,采用室內(nèi)模擬和室外淋溶試驗(yàn),通過(guò)比較生物有機(jī)肥(BOF)、普通有機(jī)肥(OF)、沼液(BS)、豬場(chǎng)廢水(WLF)、化學(xué)肥料(CF)和不施肥(NOP)6個(gè)施肥處理對(duì)土壤磷淋失量、土壤速效磷含量及小白菜產(chǎn)量的影響,以明確不同肥料施用后土壤磷的轉(zhuǎn)化及淋失能力的差異。結(jié)果表明:(1)由于下層土壤對(duì)從上層淋溶下的磷的吸附作用,模擬淋溶及室外淋溶實(shí)驗(yàn)中各處理組之間磷淋失量差異性不一致,淋失量平均值最大的分別為CF及WLF組。(2)不同肥料處理組在不同土壤深度中速效磷(Olsen-P)含量存在差異,與NOP組相比,CF處理組在0?20cm、BOF處理組在0?60cm深度土壤的Olsen-P含量顯著增加,其余處理組與NOP組在4個(gè)深度土壤中均無(wú)顯著差異。(3)在室外淋溶實(shí)驗(yàn)中,CF組小白菜產(chǎn)量比施有機(jī)肥組高17.8%~82.0%,比NOP組高923.5%,施有機(jī)肥組的產(chǎn)量比NOP組高462.4%~768.7%;各組之間植株磷吸收量均存在顯著差異,CF組磷吸收量比施有機(jī)肥組高22.0%~124.7%,比NOP組高1504.3%,施有機(jī)肥組磷吸收量比NOP組高614.0%~1214.9%。綜合實(shí)驗(yàn)結(jié)果可知,從控制磷淋失量、促進(jìn)植物生長(zhǎng)及磷吸收的角度看,BOF和OF是最適合糞污處置的應(yīng)用方式。

豬糞;資源化;淋溶;速效磷;生物有機(jī)肥

2010年第一次污染源普查公報(bào)顯示,農(nóng)業(yè)面源污染是中國(guó)地表水污染的主要來(lái)源,而畜禽養(yǎng)殖污染的化學(xué)需氧量(COD)、總氮(TN)和總磷(TP)分別占農(nóng)業(yè)污染源的96%、38%和56%[1]。將畜禽養(yǎng)殖產(chǎn)生的糞污進(jìn)行肥料化應(yīng)用既能消減糞污閑置污染環(huán)境[2],又能為種植業(yè)提供良好的肥料,同時(shí)解決磷的可持續(xù)利用問(wèn)題。糞污肥料化常用途徑有經(jīng)堆肥制成生物有機(jī)肥、有機(jī)肥,或者經(jīng)厭氧發(fā)酵處理成沼渣沼液。研究表明,施用有機(jī)肥、生物有機(jī)肥可顯著提高水果的產(chǎn)量及品質(zhì)[3?5],并能改善土壤質(zhì)量[4,6?7]。但是施用有機(jī)肥、生物有機(jī)肥是否會(huì)成為二次污染源鮮有報(bào)道。施用沼液也可以提高作物產(chǎn)量及蔬菜、水果品質(zhì)[8?9],還可以防治作物病害及蔬菜土傳病害[10?11]。然而施用沼液對(duì)土壤質(zhì)量的影響研究報(bào)道不一致[12?13]。關(guān)于施用沼液對(duì)水質(zhì)的影響多集中在硝態(tài)氮的污染風(fēng)險(xiǎn)上[14],而對(duì)于沼液灌溉后磷素在土壤中的運(yùn)移研究很少。養(yǎng)殖場(chǎng)污水總磷(TP)濃度一般為10~80mg·L?1[15],直接排放會(huì)給生態(tài)環(huán)境造成極大壓力,用于農(nóng)田灌溉是一種簡(jiǎn)單有效的方式,但是存在通過(guò)地表徑流和滲漏液污染受納水體的風(fēng)險(xiǎn)[15?16]。

磷素雖然在土壤中易被吸附和固定,不易發(fā)生移動(dòng)損失,但由于投入土壤中的糞肥和沼液中包含較多水溶態(tài)以及有機(jī)態(tài)和膠體態(tài)磷,這些形態(tài)的磷素在土壤中易發(fā)生移動(dòng)[17?18],在降雨量較大或大量灌溉的條件下,磷素淋失的風(fēng)險(xiǎn)更大。由糞污制成的有機(jī)肥等施入土壤中磷的遷移行為研究報(bào)道較少,鑒于磷是公認(rèn)的引起水體富營(yíng)養(yǎng)化的限制因素,本研究選擇土柱淋溶模擬方法,以生物有機(jī)肥、普通有機(jī)肥、沼液、未加處理的豬場(chǎng)廢水為糞污肥料化產(chǎn)物的代表,以化肥為對(duì)照,研究其施用于土壤后磷在豎直方向的遷移能力,并在此基礎(chǔ)上進(jìn)一步開展室外放大實(shí)驗(yàn),考察施用以上不同糞污肥料化產(chǎn)物對(duì)小白菜生長(zhǎng)的影響及對(duì)受納水體的污染潛力,以期為糞污處理方式的優(yōu)化推廣提供依據(jù)。

1 材料與方法

1.1 實(shí)驗(yàn)材料

1.1.1 供試肥料化產(chǎn)物

糞污肥料化產(chǎn)物有4種,包括生物有機(jī)肥(BOF)、普通有機(jī)肥(OF)、沼液(BS)、未經(jīng)處理的豬場(chǎng)廢水(WLF),以施化肥(CF)和不施肥(NOP)為對(duì)照。BOF來(lái)自山西省某公司,為褐色球形肥料顆粒,是一種高效多功能生物肥料,利用畜禽糞便、作物秸稈和其它有機(jī)質(zhì)高溫發(fā)酵而成;OF為自制,由豬糞露天堆置自然發(fā)酵而成;BS為液態(tài),采自北京市順義區(qū)柴家林沼氣站;WLF為液態(tài),采自北京市順義區(qū)小型養(yǎng)豬場(chǎng);CF為一種復(fù)合肥,其N、P2O5、K2O含量均為15%。各種材料的基本性質(zhì)見表1。按照常規(guī)蔬菜種植磷施用量,設(shè)定施磷量為40kg·hm?2,根據(jù)淋溶柱橫截面積和肥料含磷量計(jì)算肥料施用量。

1.1.2 實(shí)驗(yàn)設(shè)置

淋溶實(shí)驗(yàn)設(shè)室內(nèi)和室外兩個(gè)部分,實(shí)驗(yàn)裝置參考文獻(xiàn)[19]。室內(nèi)淋溶實(shí)驗(yàn)于2014年8月26日在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所環(huán)境修復(fù)研究室進(jìn)行,實(shí)驗(yàn)用土為順義基地大田土壤0?30cm混合樣。室外淋溶實(shí)驗(yàn)于2016年9月28日在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所順義基地(40.09°N,116.92°E,35m)3#大棚進(jìn)行,實(shí)驗(yàn)用土為3#大棚0?100cm土壤混合樣。兩次實(shí)驗(yàn)用土均過(guò)2mm篩,各自混勻后裝入土柱中。土壤性質(zhì)如表2所示。室內(nèi)及室外淋溶裝置如圖1所示,室內(nèi)及室外淋溶實(shí)驗(yàn)各6個(gè)處理,每個(gè)處理3次重復(fù),各18根淋溶柱。

表1 各處理肥料的基本性質(zhì)

注:BOF為生物有機(jī)肥,OF為普通有機(jī)肥,BS為沼液,WLF為未經(jīng)處理的豬場(chǎng)廢水,CF為化肥。下同。

Note: BOF means biological organic fertilizer; OF means ordinary organic fertilizer; BS means biogas slurry; WLF means waste-water from livestock farm; CF means chemical fertilizer.The same as below.

表2 實(shí)驗(yàn)用土的基本性質(zhì)

圖1 室內(nèi)模擬淋溶(a)和室外種植小白菜情況下淋溶(b)裝置示意圖

1.2 實(shí)驗(yàn)方法

1.2.1 模擬淋溶

采用高150cm、直徑11cm的UPVC管作為淋溶柱,淋溶柱置于鐵三腳架上,1L燒杯用于承接淋溶液,柱子底端為螺旋扣蓋,淋溶液通過(guò)蓋子上的孔流出。實(shí)驗(yàn)開始兩周前,先向每個(gè)柱子中填入10.0kg混合均勻的土壤,向每個(gè)淋溶柱中加入2.0L去離子水使土壤沉實(shí),含水量一致。兩周后實(shí)驗(yàn)開始時(shí),對(duì)于不施肥(NOP)對(duì)照、沼液(BS)和豬場(chǎng)廢水(WLF)處理組,柱中再裝入2.0kg混勻土壤,后兩者再分別均勻?yàn)⑹〣S和WLF,施用量分別為11.23、554.24mL(相當(dāng)于11.82、583.50m3·hm?2);對(duì)于生物有機(jī)肥(BOF)、普通有機(jī)肥(OF)和施化肥(CF)處理組,均裝入2.0kg土壤和肥料混合物,BOF、OF、CF處理肥料加入量分別為4.76、1.74、0.58g(相當(dāng)于5011.32、1831.87、610.62kg·hm?2)。完成裝填步驟后,填入3cm經(jīng)鹽酸和去離子水洗凈的石英砂,以保證灌溉時(shí)水的均勻分布并減輕灌水對(duì)土壤的沖刷。模擬蔬菜一個(gè)生長(zhǎng)季的需水量進(jìn)行澆水,按照淋溶柱橫截面積計(jì)算,總澆水量為5.68L,每5天澆水一次,共澆水8次,每次澆水710.0mL。對(duì)于沼液(BS)和豬場(chǎng)廢水(WLF)處理組,前兩次澆水時(shí)各加入施肥量的50%,以BS或WLF與水的總體積為計(jì)量。每次澆水后收集全部淋溶液,觀測(cè)體積并測(cè)定全磷含量,計(jì)算磷淋失量和淋失率。

磷淋失量=淋溶液體積×淋溶液中全磷含量(1)

磷淋失率=磷淋失量/(土壤全磷量+施磷量)(2)

1.2.2 室外淋溶實(shí)驗(yàn)

采用高100cm、直徑54cm的UPVC管作為淋溶柱,裝入過(guò)篩土壤約100cm高,按照最大持水量灌入水使土壤沉實(shí),放置8個(gè)月后進(jìn)行淋溶實(shí)驗(yàn),實(shí)驗(yàn)開始兩周前加水至最大持水量,使各處理組土壤含水量一致。澆水兩周后按等磷量施用原則將固態(tài)肥料分別均勻拌入約3cm的表層土壤中,BOF、OF和CF施入量分別為93.20、32.82、13.98g(相當(dāng)于4071.68、1433.69、610.75kg·hm?2),將BS及WLF分別均勻?yàn)⑹┯谕寥辣砻?,二者施用量分別為0.50、8.78L(相當(dāng)于21.96、383.50m3·hm?2)。為避免氮成為植株生長(zhǎng)的限制因素,所有施磷處理均補(bǔ)加氮至210kg·hm?2。空白對(duì)照組不施氮磷。輕微壓實(shí)后,開溝(溝深約3cm),撒入小白菜種子,澆水,兩周后間苗,株距約10cm,小白菜種植密度為每柱10株。按照室內(nèi)模擬淋溶情況及蔬菜需水情況澆水,總澆水量為67.50L,每7天澆水一次,共澆水6次,每次澆水11.25L。每次澆水后收集所有淋溶液用于后續(xù)分析;42d淋溶實(shí)驗(yàn)后從每個(gè)淋溶柱中選取5株小白菜測(cè)定植株長(zhǎng)勢(shì)(葉片數(shù)、葉長(zhǎng)、葉寬)、整個(gè)淋溶柱小白菜的產(chǎn)量(地上部分)、含水量及全磷含量;小白菜收獲后分層采集土壤樣品,每20cm為一層,共采集4層。土樣采集后風(fēng)干,過(guò)2mm篩測(cè)定速效磷(Olsen-P)含量,比較各肥料化產(chǎn)物對(duì)土壤中Olsen-P的活化能力。

1.3 測(cè)定方法

采用常規(guī)方法測(cè)定土壤和肥料中的養(yǎng)分含量,采用鉬酸銨分光光度法(GB11893-89)測(cè)定水樣及BS、WLF中總磷,采用硫酸-過(guò)氧化氫消解-鉬銻抗分光光度法測(cè)定植株總磷含量(NY/T 2017-2011)。

1.4 數(shù)據(jù)分析方法

采用SAS 8統(tǒng)計(jì)分析軟件進(jìn)行差異顯著性分析(LSD,P<0.05),采用Origin8軟件進(jìn)行制圖。

2 結(jié)果與分析

2.1 不同糞污肥料化產(chǎn)物對(duì)土壤磷淋失的影響

2.1.1 室內(nèi)模擬土柱淋溶

由圖2可見,室內(nèi)模擬淋溶過(guò)程共澆水8次,所有處理包括未施肥處理(NOP)每次收集的淋溶液中,總磷(TP)含量幾乎都高于0.1mg·L?1(富營(yíng)養(yǎng)化限值[20]),表明各處理土壤均有明顯的磷淋失。比較不同處理間磷淋失數(shù)據(jù)發(fā)現(xiàn),各處理組淋溶液中TP含量變化并無(wú)規(guī)律,其中第1、4、5、8次澆水后各處理組的淋溶液TP含量差異不顯著,第2、3、6、7次澆水后各處理淋溶液TP含量雖然存在顯著差異,但亦無(wú)明顯的規(guī)律。總體上看,施化肥(CF)處理淋溶液中TP含量較高,4次澆水后為各處理中的最高值,且其每次測(cè)定結(jié)果都有一定差異。未施肥處理(NOP)土柱淋溶液中,TP含量也較高,第3次、第6次澆水后甚至為各處理中最大,說(shuō)明土壤本底磷含量(9.24g)較高,土壤本身磷的淋失遠(yuǎn)遠(yuǎn)大于各肥料處理施入的磷量(0.038g),因此,利用淋溶液磷含量高低難以區(qū)分各處理的表現(xiàn)。

鑒于此,進(jìn)一步將8次淋溶結(jié)果進(jìn)行匯總,計(jì)算各處理淋溶液收集總量及相應(yīng)的磷淋失量和淋失率,結(jié)果見表3。由表可見,OF(普通有機(jī)肥)處理組收集的淋溶液最少,TP淋失量和淋失率也最低,顯著低于CF(化肥)處理,但與其它處理組間的差異不顯著;相反,CF處理組收集的淋溶液最多,其TP淋失量和淋失率也均最高,但與其它處理組間的差異亦不顯著。

2.1.2 室外種植小白菜模擬淋溶

小白菜生長(zhǎng)期內(nèi)共灌水6次,BOF、OF、BS、WLF、CF和NOP處理組分別收集淋溶液36.71± 9.27、36.34±9.45、39.02±0.42、41.51±4.53、38.03±0.42和44.15±0.22L,每次灌水后淋溶液總磷(TP)含量見圖3。由圖可見,相對(duì)于室內(nèi)模擬淋溶液磷含量,種植條件下淋溶液中TP含量明顯較低,均低于0.1mg·L?1(富營(yíng)養(yǎng)化限值),最大僅為0.06mg·L?1。總體上看,前3次灌水后CF(化肥)處理組淋溶液中TP含量較高,后3次灌水后OF(普通有機(jī)肥)處理組淋溶液中TP含量相對(duì)較低。

圖2 不同處理土柱歷次淋溶后淋溶液中總磷含量的比較

注:NOP表示空白對(duì)照。小寫字母表示處理間在0.05水平上的差異顯著性。短線表示標(biāo)準(zhǔn)差。下同。

Note: NOP means treatment with control. Lowercase indicates the difference significance among treatments at 0.05 level. The bar is standard deviation. The same as below.

表3 模擬淋溶實(shí)驗(yàn)不同處理組磷淋失情況比較(平均值±標(biāo)準(zhǔn)差)

圖3 種植小白菜時(shí)淋溶液磷含量比較

比較不同肥料處理淋溶液中TP含量變化可知,BOF(生物有機(jī)肥)處理組在6次澆水過(guò)程中有3次淋溶液中TP含量最低,而未施肥的NOP處理組有3次TP含量平均值高于BOF處理組,亦有兩次高于OF處理組,說(shuō)明土壤本身磷的淋失遠(yuǎn)遠(yuǎn)大于各肥料處理施入的磷造成的淋失,因此,利用磷溶液磷含量高低難以區(qū)分各處理的表現(xiàn),與室內(nèi)模擬淋溶實(shí)驗(yàn)結(jié)果一致。比較各處理的磷總淋失量(圖4)發(fā)現(xiàn),WLF(豬場(chǎng)廢水)處理組磷總淋失量顯著高于BOF、OF、NOP處理組,分別高17.0%、11.5%、11.1%,而與CF、BS組之間無(wú)顯著差異,BOF、OF、CF、BS、NOP之間則無(wú)顯著差異。

圖4 種植小白菜時(shí)磷淋失量差異性比較

2.2 不同糞污肥料化產(chǎn)物對(duì)小白菜磷吸收量的影響

由表4可見,生長(zhǎng)42d后各處理小白菜的長(zhǎng)勢(shì)出現(xiàn)了一定的差異,導(dǎo)致其產(chǎn)量也出現(xiàn)顯著差異,其中CF(化肥)處理產(chǎn)量最高,其次為WLF(豬場(chǎng)廢水)處理,NOP(未施磷肥)處理組的產(chǎn)量最低。施化肥組(CF)的產(chǎn)量比施有機(jī)肥組高17.8%~82.0%,比NOP高923.5%,施有機(jī)肥組的產(chǎn)量比NOP組高462.4%~768.7%。在產(chǎn)量差異的基礎(chǔ)上,各組測(cè)得的小白菜含磷量也表現(xiàn)出相應(yīng)的差異性,造成各組之間磷吸收量差異性更顯著。其中CF(化肥)處理中磷吸收量最高,其次為WLF(豬場(chǎng)廢水)處理,之后依次為OF(普通有機(jī)肥)、BOF(生物有機(jī)肥)、BS(沼液)處理,NOP(未施肥)處理組的磷吸收量最低。施化肥組(CF)的磷吸收量比施有機(jī)肥組高22.0%~124.7%,比NOP組高1504.3%,施有機(jī)肥組的磷吸收量比NOP組高614.0%~1214.9%(表4)。對(duì)比圖4的結(jié)果,發(fā)現(xiàn)植株對(duì)磷的吸收影響了磷淋溶量,WLF(豬場(chǎng)廢水)處理組植株磷吸收量顯著低于CF(化肥)組,而磷淋失量高于CF組;與BOF(生物有機(jī)肥)、OF(有機(jī)肥)組相比,WLF組磷淋失量較高,磷吸收量也較高,說(shuō)明WLF組的磷既容易淋失也容易被植株吸收利用。

表4 室外淋溶實(shí)驗(yàn)中各處理小白菜播種后42d長(zhǎng)勢(shì)、產(chǎn)量及其磷吸收量比較(平均值±標(biāo)準(zhǔn)差)

2.3 不同糞污肥料化產(chǎn)物對(duì)土壤速效磷含量的影響

小白菜收獲后,每20cm為一層采集土壤,共采集4層,樣品帶回實(shí)驗(yàn)室風(fēng)干,過(guò)2mm篩,測(cè)定速效磷(Olsen-P)含量,結(jié)果如圖5所示。由圖可知,對(duì)于CF(化肥組)、BOF(生物有機(jī)肥組)、BS(沼液組)、OF組(有機(jī)肥),其Olsen-P含量在0?20cm深度土壤中均顯著高于其在20?40cm、40?60cm、60?80cm深度土壤中,對(duì)于NOP(不施肥組)和WLF(豬場(chǎng)廢水組),其Olsen-P含量在4個(gè)深度土壤中各自均無(wú)顯著差異。在0?20cm深度土壤中,CF(化肥組)Olsen-P含量最高,比施有機(jī)肥組高21.2%~84.4%,比NOP(不施肥組)高111.8%,施有機(jī)肥組比NOP組高14.8%~74.7%。在20?60cm深度土壤中,BOF組Olsen-P含量顯著高于其它組,且遠(yuǎn)低于中國(guó)北方石灰性菜地土壤磷滲漏明顯增加的“Change-point”(55.6mg·kg?1)[21],各處理組Olsen-P含量在60?80cm深度土壤差異不顯著。

圖5 不同處理0?80cm深度土壤Olsen-P含量

注:同行不同小寫字母表示處理間在0.05水平上的差異顯著性,按圖例順序從左向右。

Note: Lowercase within the same row indicates the difference significance among treatments at 0.05 level, from left to right according to the legends.

3 結(jié)論與討論

(1)模擬淋溶實(shí)驗(yàn)和室外淋溶實(shí)驗(yàn)均表明,所設(shè)5種肥料處理之間磷淋失情況(淋溶液中磷含量)不存在顯著的差異和規(guī)律性。這與文獻(xiàn)[19,22]研究結(jié)果一致,即由于淋溶柱下層土壤對(duì)磷的吸附作用,在這些研究中所用土壤的性質(zhì)及施磷量等條件與本研究一致。然而,文獻(xiàn)[23?24]中實(shí)驗(yàn)卻說(shuō)明施用磷肥或有機(jī)肥,磷都會(huì)發(fā)生明顯的淋失現(xiàn)象,分析出現(xiàn)這種明顯差異的可能原因是淋溶柱的長(zhǎng)短,金圣愛等試驗(yàn)所用土壤高度為30cm,張作新等試驗(yàn)所用土壤高度為20cm,淋溶柱高度都比較小,而本文所用淋溶柱的長(zhǎng)度分別為150cm(室內(nèi))和100cm(室外)。另外,磷施用量也是影響磷淋失特性的一個(gè)重要因素,杜會(huì)英等[25]在豬糞施用量為30t·hm?2(豬糞中TP含量18.61g·kg?1)的磷施用水平下確定了豬糞中磷有明顯的淋失特性,但其施磷量是本研究的14倍(本研究施磷量為40kg·hm?2)。魯如坤等[26]的研究也表明,華北平原石灰性潮土磷易隨大水灌溉淋失。在中國(guó)化肥減量的背景下,本研究采用低施磷量研究畜禽糞污肥料化產(chǎn)物的磷淋失特征,發(fā)現(xiàn)低施磷情況下磷淋失較少,不同處理之間差異不明顯。

模擬淋溶實(shí)驗(yàn)和室外淋溶實(shí)驗(yàn)TP淋失量差異較大,且淋失量最大的處理組不同,分別為施化肥(CF)組和豬場(chǎng)廢水(WLF)組。產(chǎn)生這種差異的原因有可能是:第一,室內(nèi)淋溶和室外淋溶實(shí)驗(yàn)所用土壤存在差異,導(dǎo)致本底磷含量差異較大。室外淋溶實(shí)驗(yàn)土壤磷含量相對(duì)較低,對(duì)從上層淋溶下來(lái)的磷吸附能力更強(qiáng),導(dǎo)致兩個(gè)實(shí)驗(yàn)磷淋失量存在差異。第二,室外淋溶實(shí)驗(yàn)中小白菜生長(zhǎng)過(guò)程要吸收磷素,對(duì)磷淋溶性質(zhì)也有一定的影響。其中CF組磷淋失量平均值低于WLF組而高于其它組,這可能與CF中的磷最易被小白菜吸收有關(guān)。

(2)不同肥料化產(chǎn)物的施用對(duì)土壤Olsen-P含量的提升能力不同,原因在于肥料化產(chǎn)物本身磷形態(tài)及施用后磷在土壤中礦化能力的差異。與NOP組相比,BOF及OF的施用分別可以提高0?60cm、0?20cm深度土壤的Olsen-P含量,這與BOF及OF富含有機(jī)質(zhì)有關(guān)。有機(jī)質(zhì)在微生物作用下分解產(chǎn)生的腐殖酸可活化堿性土壤中的磷[7,27],同時(shí)腐殖酸離子可以與磷酸離子競(jìng)爭(zhēng)吸附位點(diǎn),增加土壤溶液中的磷含量[28],利于植物生長(zhǎng)吸收,而本研究所用土壤pH也大于7。但在等磷施入的條件下,OF組施入的有機(jī)質(zhì)總量低于BOF組的施入量,因而其對(duì)土壤磷的活化能力低于BOF,但二者小白菜產(chǎn)量無(wú)顯著差異。BS的施入能提高0?20cm深度土壤的Olsen-P含量,盡管BS是一種速效營(yíng)養(yǎng)能力強(qiáng)的肥料[29],其提供的磷應(yīng)該能為植物直接吸收又易被土壤固定,但是本研究中BS組小白菜產(chǎn)量較低,可能與BS中含有有害物質(zhì)抑制小白菜生長(zhǎng)有關(guān),另需試驗(yàn)驗(yàn)證。CF的施入僅可以提高0?20cm深度土壤的Olsen-P含量,這是由于CF施用后無(wú)機(jī)磷通過(guò)鈣離子(高pH土壤)的吸附和沉淀作用被快速轉(zhuǎn)化成不可利用的形式[30-32],也是化肥磷利用率低的原因。WLF的施入對(duì)土壤Olsen-P含量無(wú)影響,這主要是由于WLF中有機(jī)磷占優(yōu)勢(shì),容易隨淋溶液向下遷移,并累積在土壤中[33]。

兼顧磷淋失情況、土壤中速效磷含量提升情況及植株磷吸收情況,相比未經(jīng)處理的豬場(chǎng)廢水(WLF)、沼液(BS)和施化肥(CF)處理,生物有機(jī)肥(BOF)處理是最合適的糞污處理方式,普通有機(jī)肥(OF)處理次之。BOF和OF富含有機(jī)質(zhì),有在土壤微生物作用下持續(xù)為作物提供磷營(yíng)養(yǎng)并限制磷淋失的潛力。

[1]Fu Q,Zhu Y Q,Kong Y F,et al.Spatial analysis and districting of the livestock and poultry breeding in China[J].Journal of Geographical Sciences,2012,22(6):1079-1100.

[2]楊世琦,韓瑞蕓,劉晨峰.中國(guó)畜禽糞便磷的農(nóng)田消納量及承載負(fù)荷研究[J].中國(guó)農(nóng)學(xué)通報(bào),2016,32(32):111-116.

Yang S Q,Han R Y,Liu C F.The given amount and loading capacity of phosphorus from livestock and poultry manure in China[J].Chinese Agricultural Science Bulletin,2016,32(32): 111-116.(in Chinese)

[3]Bokhtiar S M,Sakurai K.Effect of application of inorganic and organic fertilizers on growth,yield and quality of sugarcane[J]. Sugar Technology,2005,7(1):33-37.

[4]袁英英,李敏清,胡偉,等.生物有機(jī)肥對(duì)番茄青枯病的防效及對(duì)土壤微生物的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(7): 1344-1350.

Yuan Y Y,Li M Q,Hu W,et al.Effect of biological organic fertilizer on tomato bacterial wilt and soil microorganism[J]. Joumal of Agro-Environment Science,2011,30(7): 1344-1350. (in Chinese)

[5]El-Sayed S F,Hassan H A,El-Mogy M M.Impact of bio- and organic fertilizers on potato yield,quality and tuber weight loss after harvest[J].Potato Research,2015,58:67-81.

[6]宋震震,李絮花,李娟,等.有機(jī)肥和化肥長(zhǎng)期施用對(duì)土壤活性有機(jī)氮組分及酶活性的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014, 20(3):525-533.

Song Z Z,Li X H,Li J,et al.Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil[J].Journal of Plant Nutrition and Fertilizer,2014,20(3):525-533.(in Chinese)

[7]谷思玉,汪睿,耿澤銘,等.生物有機(jī)肥對(duì)鹽漬土酶活性和腐殖質(zhì)組分的影響[J].水土保持學(xué)報(bào),2014,28(1):147-151.

Gu S Y,Wang R,Geng Z M,et al.Effects of bio-organic fertilizer on enzyme activity and humus compositions in saline soil[J]. Journal of Soil and Water Conservation,2014,28(1):147-151.(in Chinese)

[8]吳華山,郭德杰,馬艷,等.豬糞沼液施用對(duì)土壤氨揮發(fā)及玉米產(chǎn)量和品質(zhì)的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(2):163-168.

Wu H S,Guo D J,Ma Y,et al.Effects of pig manure-biogas slurry application on soil ammonia volatilization and maize output and quality[J].Chinese Journal of Eco-Agriculture, 2012,20(2): 163-168.(in Chinese)

[9]趙莉.施用沼液對(duì)水芹產(chǎn)量、品質(zhì)及土壤氨揮發(fā)的影響[D].南京:南京農(nóng)業(yè)大學(xué),2013:15.

Zhao L.Effect of biogas slurry application on the growth and quality ofand ammonia volatilization from soils[D].Nanjing:Nanjing Agricultural University,2013: 15.(in Chinese)

[10]張無(wú)敵,劉士清,賴建華,等.厭氧消化殘留物在防治農(nóng)作物病蟲害中的作用[J].中國(guó)沼氣,1996,14(1):6-8.

Zhang W D,Liu S Q,Lai J H,et al.The effects of anaerobic fermentation residue on prevention of diseases and insect pests for crops[J].China Biogas,1996,14(1):6-8.(in Chinese)

[11]曹云,常志州,馬艷,等.沼液施用對(duì)辣椒疫病的防治效果及對(duì)土壤生物學(xué)特性的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(3): 507-516.

Cao Y,Chang Z Z,Ma Y,et al.Effects of application of anaero- bically digested slurry on suppression of pepper(L) blight and soil biological characteristics[J]. Scientia Agricultura Sinica,2013, 46(3): 507-516. (in Chinese)

[12]鄭學(xué)博,樊劍波,周靜.沼液還田對(duì)旱地紅壤有機(jī)質(zhì)及團(tuán)聚體特征的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2015,48(16):3201-3210.

Zheng X B,Fan J B,Zhou J.Effects of biogas slurry on soil organic matter and characteristics of soil aggregates in upland red earth[J].Scientia Agricultura Sinica,2015,48(16): 3201-3210.(in Chinese)

[13]甘福丁,魏世清,覃文能,等.施用沼液對(duì)玉豆品質(zhì)及土壤肥效的影響[J].中國(guó)沼氣,2011,29(1):59-60.

Gan F D,Wei S Q,Qin W N,et al.Effect of biogas slurry on tabe bean quality and soil fertility[J].China Biogas,2011, 29(1):59-60.(in Chinese)

[14]Matsunaka T,Sawamoto T,Ishimura H,et al.Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland[J].International Congress Series, 2006, 1293:242-252.

[15]何連生,劉鴻亮,朱迎波,等.養(yǎng)殖場(chǎng)污水灌溉土壤滲出液磷特征分析[J].環(huán)境科學(xué),2005,26(5):200-204.

He L S,Liu H L,Zhu Y B,et al.Phosphorus characteristics in leachate from soils irrigated with liivestock wastewater[J]. Environmental Science,2005,26(5):200-204.(in Chinese)

[16]于丹,王風(fēng),黃治平,等.豬場(chǎng)廢水灌溉對(duì)潮土磷素肥力的影響[J].水土保持學(xué)報(bào),2009,23(6):103-107.

Yu D,Wang F,Huang Z P,et al.Effects of swine wastewater

irrigation on phosphorus fertility in fluvo-aquic soil[J]. Journal of Soil and Water Conservation,2009,23(6):103- 107. (in Chinese)

[17]Galvāo S R S,Salcedo I H.Soil phosphorus fractions in sandy soils amended with cattle manure for long periods[J].Revista Brasileira de Ciência do Solo,2009,33(3):613-622.

[18]Toor G S,Condron L M,Di H J,et al.Characterization of organic phosphorus in leachate from a grassland soil[J].Soil Biology and Biochemistry,2003,35(10):1317-1323.

[19]馬金奉,朱昌雄,李紅娜,等.模擬條件下生物腐殖酸肥對(duì)土壤磷素淋失及流失的影響[J].中國(guó)農(nóng)業(yè)氣象,2017,38(11): 699-708.

Ma J F,Zhu C X,Li H N,et al.Effects of bio-active humic acid fertilizer on phosphorus leach-loss and runoff-loss under simulated conditions[J].Chinese Journal of Agromete- orology,2017,38(11):699-708.(in Chinese)

[20]Sharpley A N,Chapra S C,Wedepohl R,et al.Managing agricultural phosphorus for protection of surface waters: issues and options[J].Journal of Environmental Quality,1994, 23(3):437-451.

[21]王新軍,廖文華,劉建玲.菜地土壤磷素淋失及其影響因素[J].華北農(nóng)學(xué)報(bào),2006,21(4):67-70.

Wang X J,Liao W H,Liu J L.Phosphorus leaching from vegetable fields and impact factors[J].Acta Agriculturae Boreali-Sinice,2006,21(4):67-70.(in Chinese)

[22]Ma J F,Zhu C X,Geng B,et al.Phosphorus mobility in soil columns of different manure treatment products under simulated and field leaching conditions[J].Communications in Soil Science and Plant Analysis, 2018,49(11):1344-1354.

[23]金圣愛,王恒,劉慶花,等.山東壽光設(shè)施菜地富磷土壤磷素淋溶特征研究[J].土壤通報(bào),2010,41(3):577-581.

Jin S A,Wang H,Liu Q H,et al.Phosphorus leaching charact- eristics of the phosphorus-rich soils in protected field production in Shouguang[J].Chinese Journal of Soil Science,2010,41(3): 577-581.(in Chinese)

[24]張作新,劉建玲,廖文華,等.磷肥和有機(jī)肥對(duì)不同磷水平土壤磷滲漏影響研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(4): 729-735.

Zhang Z X,Liu J L,Liao W H,et al.The effect of phosphate fertilizer and manure on phosphorus leaching in different phosphorus levels soil[J].Journal of Agro-environment Science, 2009,28(4):729-735.(in Chinese)

[25]杜會(huì)英,袁志華,常玉海,等.畜禽糞便中磷釋放運(yùn)移特征[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(12):2363-2367.

Du H Y,Yuan Z H,Chang Y H,et al.The character of phosphorus release and movement in livestock and poultry manure[J].Journal of Agro-Environment Science,2010,29(12):2363-2367.(in Chinese)

[26]魯如坤,時(shí)正元.退化土壤肥力障礙特征及重建措施Ⅲ:典型地區(qū)紅壤磷素積累及其環(huán)境意義[J].土壤,2001,33(5): 227-231.

Lu R K,Shi Z Y.Fertility obstruction character and reestablishment of degraded soil Ⅲ:phosphorus accumulation and its environmental significance in red soil region[J].Soil,2001,33(5):227-231.(in Chinese)

[27]王婷婷,王俊,趙牧秋,等.有機(jī)肥對(duì)設(shè)施菜地土壤磷素累積及有效性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(1):95-100.

Wang T T,Wang J,Zhao M Q,et al.Effects of organic manure on phosphorus accumulating and its availability in a green house soil in Shenyang suburb[J].Journal of Agro-Environment Science,2009,28(1):95-100.(in Chinese)

[28]Stevenson F J.Humus chemistry:genesis,composition,reactions [M].New York:Wiley Interscience,1982.

[29]沈其林,單勝道,周健駒,等.豬糞發(fā)酵沼液成分測(cè)定與分析[J].中國(guó)沼氣,2014,32(3):83-86.

Shen Q L,Shan S D,Zhou J J,et al.Determination and analysis of compositions in biogas slurry produced by swine manure digestion[J].China Biogas,2014,32(3):83-86.(in Chinese)

[30]Takeda M,Nakamoto T,Miyazawa K,et al.Phosphorus availa- bility and soil biological activity in an Andosol under compost application and winter cover cropping[J].Applied Soil Ecology, 2009,42:86-95.

[31]Khan K S,Joergensen R G.Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers[J].Bioresource Technology,2009, 100:303-309.

[32]Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237:173-195.

[33]Heathwaite A L,Dils R M.Characterising phosphorus loss in surface and subsurface hydrological pathways[J].Science of the Total Environment,2000,25(1):523-538.

Effects of Resource Products from Pig Manure on Phosphorus Leaching Ability

MA Jin-feng1, ZHU Chang-xiong1, LI Hong-na1, GENG Bing1, ZHANG Li2, LI Bin-xu1, LI Yan-ling1

(1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Hebei University of Economics and Business, Shijiazhuang 050061)

Simulate and outdoor leaching experiments were conducted with fluvo-aquic soil in order to clarify the differences on transformation of phosphorus and leaching progress with different resource products from pig manure. The amount of phosphorus leach-loss, Olsen-P content in soil and yields of Chinese cabbage were all determined in the experiments. The treatments included biological organic fertilizer (BOF), ordinary organic fertilizer (OF), biogas slurry (BS), waste-water from livestock farm (WLF), with chemical fertilizer (CF) and no P application (NOP) as control. The results showed that, (1) due to the reason that soil in lower layer can absorb P leached from soil in upper layer, TP leaching amount of simulate and outdoor leaching experiments showed different trends, and the maximum average amount was from treatment with CF and WLF, respectively. (2) There were significant differences on Olsen-P content in different soil depths with different treatments. Compared with NOP treatment, there was a significant increase of Olsen-P content in 0?20cm soil with CF treatment and in 0?60cm soil with BOF treatment. However, there was no significant difference between NOP and other treatments on Olsen-P content in all the four soil depths, respectively. (3) As for the outdoor leaching experiment, the yield of the Chinese cabbage with CF treatment was 17.8%?82.0% higher than the treatments with organic fertilizers, and 923.5% higher than NOP treatment. Moreover, the yields of the Chinese cabbage with organic treatments were 462.4%?768.7% higher than NOP treatment. There were significant differences on the P content in vegetable among different treatments. The content of P in vegetable of CF treatment was 22.0%?124.7% higher than treatments with organic fertilizers , and 1504.3% higher than NOP treatment, moreover, P in vegetable of treatments with organic fertilizers were 614.0%?1214.9% higher than NOP treatment. Above all, it was pointed out that, the most appropriate approach to deal with pig manure were BOF and OF, according to the comprehensive analysis of phosphorus-leaching control, vegetable growth acceleration and phosphorus up-taking ability.

Pig manure; Recycling; Leaching; Olsen-P ; Biological organic fertilizer

10.3969/j.issn.1000-6362.2018.09.004

2018?01?21

。E-mail:lihongna828@163.com

國(guó)家水污染控制與治理科學(xué)與技術(shù)重大工程(2017ZX07401-002;2014ZX07101-012-001);國(guó)家科技支撐計(jì)劃“重金屬超標(biāo)農(nóng)田安全利用技術(shù)研究與示范”項(xiàng)目(2015BAD05B01)

馬金奉(1989?),女,博士生,研究方向?yàn)樯鷳B(tài)農(nóng)業(yè)與清潔生產(chǎn)。E-mail:majinfeng00@126.com

馬金奉,朱昌雄,李紅娜,等.糞污肥料化產(chǎn)物對(duì)土壤磷淋失的影響[J].中國(guó)農(nóng)業(yè)氣象,2018,39(9):585?593

猜你喜歡
淋失淋溶小白菜
小白菜
長(zhǎng)期施肥對(duì)砂姜黑土可溶性碳淋溶的影響
【小白菜】
不同淋溶方式對(duì)二甲戊靈藥效的影響
小白菜
福建菜田氮、磷積累狀況及其淋失潛力研究
春小白菜品種的耐抽薹性評(píng)價(jià)
不同水氮用量對(duì)日光溫室黃瓜季硝態(tài)氮淋失的影響
武漢市城郊區(qū)集約化露天菜地生產(chǎn)系統(tǒng)硝態(tài)氮淋溶遷移規(guī)律研究
模擬酸雨對(duì)赤紅壤磷素及Ca2+、Al3+、Fe2+淋失特征的影響
德保县| 右玉县| 广西| 浦县| 会同县| 桂林市| 浦北县| 柘城县| 砀山县| 昌都县| 封开县| 瓦房店市| 兴海县| 延吉市| 宣威市| 嘉定区| 新丰县| 玛沁县| 凤阳县| 洱源县| 镇坪县| 贡山| 名山县| 永平县| 浑源县| 北宁市| 锡林郭勒盟| 阆中市| 新丰县| 邵阳市| 河津市| 卓尼县| 临澧县| 论坛| 罗山县| 金昌市| 高唐县| 亚东县| 东城区| 霍林郭勒市| 开封县|