毛蕾 付饒 馬天君 尹又
摘 要 血管性認(rèn)知功能障礙(vascular cognitive impairment, VCI)是指由腦血管疾病危險(xiǎn)因素和腦血管疾病引起的一類(lèi)認(rèn)知功能損害綜合征。VCI的發(fā)生、發(fā)展與腦血管疾病危險(xiǎn)因素、糖脂代謝、甲狀腺功能、慢性炎癥和阿爾茨海默病(Alzheimers disease, AD)相關(guān)的β-淀粉樣蛋白、tau蛋白等均相關(guān),篩選VCI相關(guān)的有效的生物標(biāo)志物并在VCI早期有效地控制其危險(xiǎn)因素可能是延緩VCI患者認(rèn)知功能下降和癡呆發(fā)生的關(guān)鍵。本文從代謝相關(guān)的生物標(biāo)志物、炎癥相關(guān)的生物標(biāo)志物和AD相關(guān)的生物標(biāo)志物這3個(gè)主要方面對(duì)近年來(lái)VCI相關(guān)的生物標(biāo)志物的研究進(jìn)展作一概要介紹。
關(guān)鍵詞 血管性認(rèn)知功能障礙 危險(xiǎn)因素 生物標(biāo)志物
中圖分類(lèi)號(hào):R749.13 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2018)17-0013-05
Advances in biomarkers of early vascular cognitive impairment*
MAO Lei1, 2, FU Rao1, MA Tianjun1, YIN You1**
(1. Department of Neurology, Changzheng Hospital affiliated to the Naval Military Medical University, Shanghai 200003, China; 2. Department of Neurology, Baoshan Branch of Shanghai First Peoples Hospital, Shanghai 200940, China)
ABSTRACT Vascular cognitive impairment (VCI) is a type of cognitive impairment syndrome caused by cerebrovascular disease risk factors and cerebrovascular diseases. The occurrence and development of VCI are related to vascular risk factors, glycolipid metabolism, thyroid function, chronic inflammation, amyloid β-protein and tau protein associated with Alzheimers disease (AD) and so on. Screening of effective biomarkers related to VCI and effective control of risk factors at the early stage of VCI may be the key to delay cognitive decline and reduce the risk of dementia. This article reviews the recent research progress in three major VCI-related biomarkers including metabolic biomarkers, inflammatory biomarkers and AD-related biomarkers.
KEy WORDS vascular cognitive impairment; risk factors; biomarkers
血管性認(rèn)知功能障礙(vascular cognitive impairment, VCI)是指由腦血管疾病危險(xiǎn)因素和腦血管疾病引起的一類(lèi)認(rèn)知功能損害綜合征。隨著人口老齡化,我國(guó)VCI的發(fā)病率逐年升高。VCI涵蓋了起源于腦血管病變的輕度認(rèn)知功能障礙至血管性癡呆的所有疾病階段,其可嚴(yán)重影響患者的日常生活質(zhì)量,使患者家屬背負(fù)沉重的精神和經(jīng)濟(jì)負(fù)擔(dān)[1-3]。2011年,中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì)癡呆與認(rèn)知障礙學(xué)組提出,VCI的診斷應(yīng)具備三要素,即認(rèn)知功能損害、血管因素、認(rèn)知功能障礙與血管因素之間有因果關(guān)系[4]。VCI的發(fā)生、發(fā)展與腦血管疾病危險(xiǎn)因素相關(guān)。篩查VCI相關(guān)的有效的生物標(biāo)志物并在VCI早期對(duì)其危險(xiǎn)因素進(jìn)行有效的控制可能是延緩VCI患者認(rèn)知功能下降和癡呆發(fā)生的關(guān)鍵[5]。本文主要就近年來(lái)VCI相關(guān)的生物標(biāo)志物的研究進(jìn)展作一概要介紹。
1 代謝相關(guān)的生物標(biāo)志物
1.1 糖代謝
慢性高糖血癥、高胰島素血癥、代謝綜合征和糖尿病均是認(rèn)知功能減退的重要危險(xiǎn)因素,但有關(guān)機(jī)制仍存爭(zhēng)議。糖尿病與血管性癡呆風(fēng)險(xiǎn)增加相關(guān)。一項(xiàng)基于不同人群的薈萃分析發(fā)現(xiàn),與非糖尿病個(gè)體相比,老年糖尿病患者罹患血管性癡呆的風(fēng)險(xiǎn)高約2.4倍[6]。在所有癡呆患者中,有7% ~ 13%的患者在發(fā)生癡呆前存在糖尿病危險(xiǎn)因素[7]。2型糖尿病患者的認(rèn)知功能變化涉及多個(gè)認(rèn)知領(lǐng)域[8],其中腦處理速率減緩是最一致的表現(xiàn)[9]。糖尿病對(duì)認(rèn)知功能的影響可通過(guò)多種機(jī)制介導(dǎo),包括血管損傷、葡萄糖毒性、高胰島素血癥和淀粉樣蛋白代謝紊亂[9]。糖尿病與微血管、大血管疾病和腦血流改變有關(guān),但部分可通過(guò)改善患者的血糖水平得到逆轉(zhuǎn)[10]。此外,糖尿病患者更可能在神經(jīng)影像學(xué)上出現(xiàn)癥狀性腦梗死[9],這與觀察到的糖尿病與血管性癡呆相關(guān)的結(jié)果相符。然而,糖尿病常在已存在代謝綜合征的其他組分的背景下發(fā)生、發(fā)展,因此通過(guò)糖尿病或代謝綜合征其他組分介導(dǎo)的對(duì)患者認(rèn)知功能變化的影響程度仍需進(jìn)一步的研究[11]。“糖尿病患者記憶研究(Memory in Diabetes Study)”觀察了強(qiáng)化與標(biāo)準(zhǔn)血糖控制對(duì)2型糖尿病患者腦結(jié)構(gòu)和認(rèn)知功能影響的差異[12],結(jié)果發(fā)現(xiàn)在40個(gè)月時(shí),與標(biāo)準(zhǔn)控制組患者相比,強(qiáng)化控制組患者的腦總體積顯著更大,表明他們的腦總體積自基線下降速率減緩。然而,采用任何認(rèn)知功能量表評(píng)估發(fā)現(xiàn),兩種治療方案對(duì)患者認(rèn)知功能的影響沒(méi)有顯著差異。“ADVANCE”試驗(yàn)也顯示,強(qiáng)化血糖控制沒(méi)有減緩2型糖尿病患者認(rèn)知功能下降速率的作用,且強(qiáng)化控制組的事件性癡呆數(shù)量比例更高。
綜上所述,高糖血癥或糖尿病是血管性癡呆的危險(xiǎn)因素[13-18],而強(qiáng)化血糖控制對(duì)此類(lèi)患者認(rèn)知功能保護(hù)作用的證據(jù)水平非常低[19]。此外,一項(xiàng)以老年2型糖尿病患者為對(duì)象的研究發(fā)現(xiàn),嚴(yán)重低血糖事件與癡呆風(fēng)險(xiǎn)增加相關(guān)[20],但低血糖事件與VCI的關(guān)聯(lián)還需進(jìn)一步研究證實(shí)。
1.2 脂質(zhì)和血脂異常
膽固醇可能與血管性癡呆和阿爾茨海默?。ˋlzheimers disease, AD)均相關(guān),因這兩種疾病的發(fā)病機(jī)制有部分重疊[13]。流行病學(xué)研究發(fā)現(xiàn),中年人較高的血清總膽固醇水平與其多年后發(fā)生的認(rèn)知功能障礙之間存在關(guān)聯(lián)[21],且此種關(guān)聯(lián)在血管性癡呆和AD患者中均被發(fā)現(xiàn)[22],提示血清高膽固醇水平可增加血管性癡呆和AD風(fēng)險(xiǎn)。然而,有關(guān)膽固醇與癡呆之間的關(guān)聯(lián)仍存爭(zhēng)議,特別是在老年人群中。認(rèn)知功能是“心臟保護(hù)研究(Heart Protection Study)”[23]和“PROSPER”試驗(yàn)[24]的一項(xiàng)三級(jí)結(jié)果,這兩項(xiàng)研究的平均隨訪時(shí)間分別為5和3.5年?!靶呐K保護(hù)研究”在最終隨訪時(shí)采用了電話訪談方式,其評(píng)估了歸類(lèi)為認(rèn)知功能障礙和罹患癡呆事件的患者的百分比?!癙ROSPER”試驗(yàn)使用了4種不同的結(jié)果參數(shù)[《簡(jiǎn)易精神狀態(tài)檢查(Mini-Mental State Examination)》、 Stroop色詞測(cè)驗(yàn)、字母數(shù)字編碼和圖片學(xué)習(xí)評(píng)分],并分析了最后1次治療后的結(jié)果與基線之間的差異。兩項(xiàng)研究均表明,控制血脂水平對(duì)任何認(rèn)知功能評(píng)估結(jié)果都沒(méi)有改善作用。換言之,他汀類(lèi)藥物治療對(duì)老年人的認(rèn)知功能沒(méi)有改善作用。然而,前瞻性研究顯示,脂質(zhì)和血脂異常是VCI、特別是血管性癡呆的危險(xiǎn)因素[13-15, 21]。
1.3 甲狀腺激素水平
正常的甲狀腺激素水平對(duì)促進(jìn)及維持學(xué)習(xí)、記憶等高級(jí)認(rèn)知功能活動(dòng)極為重要[25],但甲狀腺激素水平異常與VCI的關(guān)聯(lián)尚無(wú)定論[26-28]。例如,Ichibangase等[25]的研究發(fā)現(xiàn),伴有癡呆的血管性疾病患者的血清三碘甲狀腺原氨酸(triiodothyronine, T3)水平顯著低于無(wú)癡呆癥狀的血管性疾病患者,提示血清低T3水平與認(rèn)知功能障礙相關(guān)。Forti等[29]評(píng)估了受試者的血清促甲狀腺激素(thyroid-stimulating hormone, TSH)水平與認(rèn)知功能變化之間的關(guān)聯(lián),發(fā)現(xiàn)基線血清TSH水平高的受試者在4年后隨訪時(shí)的VCI發(fā)生率更高,提示高TSH水平可能是VCI的預(yù)測(cè)因子。但Agarwal等[30]在比較了105例健康對(duì)照者和35例血管性癡呆患者的血清甲狀腺激素水平后發(fā)現(xiàn),健康對(duì)照者和血管性癡呆患者的血清T3、甲狀腺素和TSH水平均無(wú)顯著差異,提示甲狀腺激素水平與VCI無(wú)關(guān)。各項(xiàng)研究結(jié)果之間存在差異這一事實(shí)提示,血清甲狀腺激素水平可能與納入研究的VCI患者的疾病分型密切相關(guān),并受到諸多因素如入組時(shí)的年齡、既往病史、腦梗死的類(lèi)型及部位等的影響,因此甲狀腺激素水平異常是否可用于預(yù)測(cè)VCI還有待進(jìn)一步研究的確認(rèn)。
2 炎癥相關(guān)的生物標(biāo)志物
固有免疫和系統(tǒng)性炎癥在認(rèn)知功能損害的病理生理學(xué)過(guò)程中起著重要作用[31-32]。因此,篩選認(rèn)知功能損害相關(guān)的炎性標(biāo)志物有助于VCI的早期識(shí)別。目前,對(duì)炎癥相關(guān)的VCI的生物標(biāo)志物研究主要集中于C-反應(yīng)蛋白(C-reactive protein, CRP)和白介素-6上。CRP是臨床上最為常用的炎癥標(biāo)志物,外周血CRP水平升高已被證實(shí)可增加VCI風(fēng)險(xiǎn)[33-35]?!疤聪闵?亞洲老齡化研究(Honolulu-Asia Aging Study)”為了研究炎癥與認(rèn)知功能損害之間的關(guān)聯(lián),對(duì)入組人群進(jìn)行了長(zhǎng)達(dá)25年的隨訪,發(fā)現(xiàn)基線血清CRP水平高(≥0.34 mg/L)的男性個(gè)體出現(xiàn)血管性癡呆的風(fēng)險(xiǎn)較高,且血管性癡呆發(fā)生風(fēng)險(xiǎn)與CRP水平呈正相關(guān)性[35],提示CRP水平的變化早于癡呆相關(guān)臨床癥狀的出現(xiàn)。與此研究結(jié)果一致,Ravaglia等[34]和Engelhart等[33]進(jìn)行的前瞻性研究也均發(fā)現(xiàn),基線血清CRP水平高的個(gè)體更易出現(xiàn)血管性癡呆。白介素-6是一種炎癥因子,其也被認(rèn)為與VCI相關(guān)。Ravaglia等[34]對(duì)804例中年受試者進(jìn)行了長(zhǎng)達(dá)4年的觀察,發(fā)現(xiàn)基線血清白介素-6水平升高聯(lián)合血清CRP水平升高可以預(yù)測(cè)血管性癡呆的發(fā)生。盡管如此,但因血清CRP和白介素-6的水平受到多種因素的影響,它們聯(lián)合用于VCI預(yù)測(cè)的敏感性和特異性仍有待進(jìn)一步研究的揭示。
3 AD相關(guān)的生物標(biāo)志物
已有研究提示,腦血管疾病與AD密切相關(guān)[36-38],這主要表現(xiàn)在以下幾個(gè)方面:①有關(guān)AD的流行病學(xué)研究提示,AD與腦血管疾病有著共同的危險(xiǎn)因素[39];②腦卒中后AD的發(fā)生風(fēng)險(xiǎn)顯著增加,且腦卒中可引起AD患者的認(rèn)知功能進(jìn)一步下降[40-42];③尸檢結(jié)果顯示,AD患者腦內(nèi)存在著一系列的腦血管病變,包括腦淀粉樣變、腦室周?chē)踪|(zhì)病變和腦梗死[43]?;谝陨涎芯拷Y(jié)果,有研究者認(rèn)為AD的本質(zhì)是血管性疾病而非神經(jīng)系統(tǒng)變性疾病[44],提示AD相關(guān)的生物標(biāo)志物可能可用于VCI預(yù)測(cè)。
3.1 β-淀粉樣蛋白(amyloid β-protein, Aβ)水平
Aβ42是AD患者老年斑的主要成分。AD患者腦脊液中的Aβ42水平與腦內(nèi)淀粉樣蛋白的沉積量呈負(fù)相關(guān)性。一項(xiàng)長(zhǎng)達(dá)9年的前瞻性研究發(fā)現(xiàn),腦脊液中Aβ42水平下降可預(yù)測(cè)AD的發(fā)生[45]。Kapaki等[46]的研究顯示,與健康對(duì)照者相比,AD患者腦脊液中的Aβ42水平下降,使用腦脊液中Aβ42水平下降診斷AD的敏感性和特異性均>80%。以上研究結(jié)果提示,腦脊液中Aβ42水平下降既可用于AD預(yù)測(cè),又可用于AD診斷。然而,有關(guān)VCI患者腦脊液中Aβ42水平的變化目前尚無(wú)定論:一部分研究認(rèn)為,VCI患者腦脊液中的Aβ42水平下降,且下降至與AD患者的水平相當(dāng)或介于健康對(duì)照者和AD患者的水平之間[38, 47-49];另一部分研究則認(rèn)為,VCI患者腦脊液中的Aβ42水平與健康對(duì)照者的水平相當(dāng)[46, 50-53]。鑒于研究結(jié)果的不一致性,腦脊液中Aβ42水平下降可否用于VCI預(yù)測(cè)仍需進(jìn)一步研究的確認(rèn)。
3.2 tau蛋白水平
tau蛋白是神經(jīng)原纖維纏結(jié)的主要成分,腦內(nèi)總tau蛋白水平升高被認(rèn)為是神經(jīng)元和(或)軸突變性的標(biāo)志,而磷酸化的tau蛋白(phosphory tau protein, P-tau)水平升高是AD中神經(jīng)原纖維纏結(jié)形成的標(biāo)志[54]。目前,大部分研究均顯示,VCI患者腦脊液中的總tau蛋白和P-tau水平較健康對(duì)照者高,介于AD患者和健康對(duì)照者的水平之間,與AD患者的水平有部分重疊[50-52, 55-56]。然而,VCI患者腦脊液中的總tau蛋白和P-tau水平與認(rèn)知功能量表評(píng)分之間并沒(méi)有顯著的相關(guān)性[56]。因此,腦脊液中總tau蛋白和P-tau水平用于VCI預(yù)測(cè)的可行性仍待考量。
4 結(jié)語(yǔ)
腦卒中后的認(rèn)知功能障礙發(fā)生率很高,其中部分患者在腦卒中后迅即出現(xiàn)癡呆癥狀,另有部分患者出現(xiàn)認(rèn)知功能障礙,盡管未達(dá)到癡呆的程度,但日后罹患癡呆的風(fēng)險(xiǎn)仍很高。VCI已受到臨床的高度重視,但在對(duì)VCI的早期甄別方面仍需進(jìn)行大量的研究,其中VCI生物標(biāo)志物是研究熱點(diǎn)之一,其可能為VCI的早期診斷提供科學(xué)的依據(jù)。然而,迄今發(fā)現(xiàn)的VCI生物標(biāo)志物均不具有特異性,且其中不少還存爭(zhēng)議。尋找到切實(shí)有效的VCI生物標(biāo)志物將是未來(lái)數(shù)十年內(nèi)VCI相關(guān)研究領(lǐng)域最重要的任務(wù)之一。
參考文獻(xiàn)
[1] Panza F, Frisardi V, Capurso C, et al. Possible predictors of vascular cognitive impairment-no dementia [J]. J Am Geriatr Soc, 2009, 57(5): 943-944.
[2] Ghio L, Natta W, Fravega R, et al. Cognitive impairment and psychopharmacological treatment: a drug utilization study in the emergency department [J]. Int J Geriatr Psychiatry, 2011, 26(4): 438-439.
[3] Schneider LS. Commentary on “a roadmap for the prevention of dementia II: Leon Thal Symposium 2008”. A federally funded corporation for the prevention and treatment of cognitive impairment and brain aging [J]. Alzheimers Dement, 2009, 5(2): 172-179.
[4] 中華醫(yī)學(xué)會(huì)神經(jīng)病學(xué)分會(huì)癡呆與認(rèn)知障礙學(xué)組寫(xiě)作組. 血管性認(rèn)知障礙診治指南[J]. 中華神經(jīng)科雜志, 2011, 44(2): 142-147.
[5] Román GC. Vascular dementia prevention: a risk factor analysis [J]. Cerebrovasc Dis, 2005, 20(Suppl 2): 91-100.
[6] Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multisystem aging phenotypes: a systematic review and metaanalysis [J/OL]. PLoS One, 2009, 4(1): e4144 [2018-04-17]. doi: 10.1371/journal.pone.0004144.
[7] Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective [J]. Lancet Neurol, 2008, 7(2): 184-190.
[8] Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review [J]. Lancet Neurol, 2006. 5(1): 64-74.
[9] Saczynski JS, Jónsdóttir MK, Garcia ME, et al. Cognitive impairment: an increasingly important complication of type 2 diabetes: the age, gene/environment susceptibility —Reykjavik study [J]. Am J Epidemiol, 2008, 168(10): 1132-1139.
[10] Cosentino F, Battista R, Scuteri A, et al. Impact of fasting glycemia and regional cerebral perfusion in diabetic subjects: a study with technetium-99m-ethyl cysteinate dimer single photon emission computed tomography [J]. Stroke, 2009, 40(1): 306-308.
[11] Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged [J]. Arch Neurol, 2009, 66(3): 300-305.
[12] Launer LJ, Miller ME, Williamson JD, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy [J]. Lancet Neurol, 2011, 10(11): 969-977.
[13] Dichgans M, Zietemann V. Prevention of vascular cognitive impairment [J]. Stroke, 2012, 43(11): 3137-3146.
[14] Dichgans M, Leys D. Vascular cognitive impairment [J]. Circ Res, 2017, 120(3): 573-591.
[15] Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2011, 42(9): 2672-2713.
[16] Yang J, Wong A, Wang Z, et al. Risk factors for incident dementia after stroke and transient ischemic attack [J]. Alzheimers Dement, 2015, 11(1): 16-23.
[17] Panza F, Solfrizzi V, Logroscino G, et al. Current epidemiological approaches to the metabolic-cognitive syndrome [J]. J Alzheimers Dis, 2012, 30(Suppl 2): S31-S75.
[18] Zietemann V, Wollenweber FA, Bayer-Karpinska A, et al. Peripheral glucose levels and cognitive outcome after ischemic stroke — results from the Munich Stroke Cohort [J]. Eur Stroke J, 2016, 1(1): 51-60.
[19] Areosa SA, Grimley EV. Effect of the treatment of type II diabetes mellitus on the development of cognitive impairment and dementia [J/OL]. Cochrane Database Syst Rev, 2002(4): CD003804 [2018-04-17]. doi:10.1002/14651858.CD003804.
[20] Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus [J]. JAMA, 2009, 301(15): 1565-1572.
[21] Solomon A, K?reholt I, Ngandu T, et al. Serum total cholesterol, statins and cognition in non-demented elderly [J]. Neurobiol Aging, 2009, 30(6): 1006-1009.
[22] Solomon A, Kivipelto M, Wolozin B, et al. Midlife serum cholesterol and increased risk of Alzheimers and vascular dementia three decades later [J]. Dement Geriatr Cogn Disord, 2009, 28(1): 75-80.
[23] Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial [J]. Lancet, 2002, 360(9326): 7-22.
[24] Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial [J]. Lancet, 2002, 360(9346): 1623-1630.
[25] Ichibangase A, Nishikawa M, Iwasaka T, et al. Relation between thyroid and cardiac functions and the geriatric rating scale [J]. Acta Neurol Scand, 1990, 81(6): 491-498.
[26] Ganguli M, Burmeister LA, Seaberg EC, et al. Association between dementia and elevated TSH: a community-based study [J]. Biol Psychiatry, 1996, 40(8): 714-725.
[27] Yoshimasu F, Kokmen E, Hay ID, et al. The association between Alzheimers disease and thyroid disease in Rochester, Minnesota [J]. Neurology, 1991, 41(11): 1745-1747.
[28] Chen Z, Liang X, Zhang C, et al. Correlation of thyroid dysfunction and cognitive impairments induced by subcortical ischemic vascular disease [J/OL]. Brain Behav, 2016, 6(4): e00452 [2018-04-17]. doi: 10.1002/brb3.452.
[29] Forti P, Olivelli V, Rietti E, et al. Serum thyroid-stimulating hormone as a predictor of cognitive impairment in an elderly cohort [J]. Gerontology, 2012, 58(1): 41-49.
[30] Agarwal R, Kushwaha S, Chhillar N, et al. A cross-sectional study on thyroid status in North Indian elderly outpatients with dementia [J]. Ann Indian Acad Neurol, 2013, 16(3): 333-337.
[31] Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimers disease [J]. Nat Immunol, 2015, 16(3): 229-236.
[32] Holmes C. Review: systemic inflammation and Alzheimers disease [J]. Neuropathol Appl Neurobiol, 2013, 39(1): 51-68.
[33] Engelhart MJ, Geerlings MI, Meijer J, et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study [J]. Arch Neurol, 2004, 61(5): 668-672.
[34] Ravaglia G, Forti P, Maioli F, et al. Blood inflammatory markers and risk of dementia: the Conselice Study of Brain Aging [J]. Neurobiol Aging, 2007, 28(12): 1810-1820.
[35] Schmidt R, Schmidt H, Curb JD, et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study [J]. Ann Neurol, 2002, 52(2): 168-174.
[36] Strickland S. Blood will out: vascular contributions to Alzheimers disease [J]. J Clin Invest, 2018, 128(2): 556-563.
[37] Vijayan M, Kumar S, Bhatti JS, et al. Molecular links and biomarkers of stroke, vascular dementia, and Alzheimers disease [J]. Prog Mol Biol Transl Sci, 2017, 146: 95-126.
[38] Wallin A, Nordlund A, Jonsson M, et al. Alzheimers disease— subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies [J]. J Cereb Blood Flow Metab, 2016, 36(1): 95-113.
[39] Pansari K, Gupta A, Thomas P. Alzheimers disease and vascular factors: facts and theories [J]. Int J Clin Pract, 2002, 56(3): 197-203.
[40] Ballard C, McKeith I, OBrien J, et al. Neuropathological substrates of dementia and depression in vascular dementia, with a particular focus on cases with small infarct volumes[J]. Dement Geriatr Cogn Disord, 2000, 11(2): 59-65.
[41] Kokmen E, Whisnant JP, OFallon WM, et al. Dementia after ischemic stroke: a population-based study in Rochester, Minnesota (1960-1984) [J]. Neurology, 1996, 46(1): 154-159.
[42] Pasquier F, Leys D, Scheltens P. The influence of coincidental vascular pathology on symptomatology and course of Alzheimers disease [J]. J Neural Transm Suppl, 1998, 54: 117-127.
[43] Attems J, Jellinger KA. The overlap between vascular disease and Alzheimers disease — lessons from pathology [J/OL]. BMC Med, 2014, 12: 206 [2018-04-17]. doi: 10.1186/s12916-014-0206-2.
[44] Kalaria RN. The role of cerebral ischemia in Alzheimers disease [J]. Neurobiol Aging, 2000, 21(2): 321-330.
[45] Stomrud E, Minthon L, Zetterberg H, et al. Longitudinal cerebrospinal fluid biomarker measurements in preclinical sporadic Alzheimers disease: a prospective 9-year study [J/ OL]. Alzheimers Dement (Amst), 2015, 1(4): 403-411 [2018-04-17]. doi: 10.1016/j.dadm.2015.09.002.
[46] Kapaki E, Paraskevas GP, Zalonis I, et al. CSF tau protein and β-amyloid (1-42) in Alzheimers disease diagnosis: discrimination from normal ageing and other dementias in the Greek population [J]. Eur J Neurol, 2003, 10(2): 119-128.
[47] Bjerke M, Zetterberg H, Edman ?, et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimers disease [J]. J Alzheimers Dis, 2011, 27(3): 665-676.
[48] Bjerke M, Andreasson U, Rolstad S, et al. Subcortical vascular dementia biomarker pattern in mild cognitive impairment [J]. Dement Geriatr Cogn Disord, 2009, 28(4): 348-356.
[49] Rosenberg GA, Prestopnik J, Adair JC, et al. Validation of biomarkers in subcortical ischaemic vascular disease of the Binswanger type: approach to targeted treatment trials [J]. J Neurol Neurosurg Psychiatry, 2015, 86(12): 1324-1330.
[50] Andreasen N, Minthon L, Davidsson P, et al. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice [J]. Arch Neurol, 2001, 58(3): 373-379.
[51] Jia JP, Meng R, Sun YX, et al. Cerebrospinal fluid tau, Aβ1-42 and inflammatory cytokines in patients with Alzheimers disease and vascular dementia [J]. Neurosci Lett, 2005, 383(1-2): 12-16.
[52] Stefani A, Bernardini S, Panella M, et al. AD with subcortical white matter lesions and vascular dementia: CSF markers for differential diagnosis [J]. J Neurol Sci, 2005, 237(1-2): 83-88.
[53] Paraskevas GP, Kapaki E, Papageorgiou SG, et al. CSF biomarker profile and diagnostic value in vascular dementia[J]. Eur J Neurol, 2009, 16(2): 205-211.
[54] Cavedo E, Lista S, Khachaturian Z, et al. The road ahead to cure Alzheimers disease: development of biological markers and neuroimaging methods for prevention trials across all stages and target populations [J]. J Prev Alzheimers Dis, 2014, 1(3): 181-202.
[55] Tato RE, Frank A, Hernanz A. Tau protein concentrations in cerebrospinal fluid of patients with dementia of the Alzheimer type [J]. J Neurol Neurosurg Psychiatry, 1995, 59(3): 280-283.
[56] Andreasen N, Vanmechelen E, Van de Voorde A, et al. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimers disease: a community based follow up study [J]. J Neurol Neurosurg Psychiatry, 1998, 64(3): 298-305.