周良富,張 玲,薛新宇,陳 晨
?
農(nóng)藥靜電噴霧技術(shù)研究進(jìn)展及應(yīng)用現(xiàn)狀分析
周良富,張 玲,薛新宇※,陳 晨
(農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,農(nóng)業(yè)部現(xiàn)代農(nóng)業(yè)裝備重點(diǎn)開放實(shí)驗(yàn)室,南京 210014)
農(nóng)藥靜電噴霧技術(shù)可以提高農(nóng)藥在葉背面的沉積效率,減少農(nóng)藥飄移對(duì)環(huán)境的污染,已經(jīng)成為國內(nèi)外學(xué)者研究的熱點(diǎn)課題。為明確農(nóng)藥靜電噴霧技術(shù)研究進(jìn)展及產(chǎn)業(yè)現(xiàn)狀和存在的瓶頸問題,該文從農(nóng)藥靜電噴霧技術(shù)基礎(chǔ)理論、機(jī)理研究分析、室內(nèi)/室外靜電噴霧效果評(píng)價(jià)和靜電噴霧裝備產(chǎn)業(yè)現(xiàn)狀進(jìn)行系統(tǒng)分析。重點(diǎn)概述了霧滴荷電、荷電霧滴動(dòng)力學(xué)、荷質(zhì)比及其持留時(shí)間,總結(jié)荷電霧滴的主要受力、感應(yīng)式充電的最佳荷電參數(shù)及荷質(zhì)比的合理比較方法。介紹了靜電噴霧中荷質(zhì)比、電位、霧滴粒徑、霧滴速度等測試方法,并提出加強(qiáng)(phase doppler particle analyzer,PDPA)測試技術(shù)和CFD仿真在靜電噴霧技術(shù)研究中的應(yīng)用建議。從荷電參數(shù)、環(huán)境參數(shù)、工作參數(shù)和靶標(biāo)參數(shù)4個(gè)方面綜述了荷電霧滴沉積的影響機(jī)理,認(rèn)為靜電噴霧沉積效率受荷電參數(shù)、環(huán)境參數(shù)、靶標(biāo)參數(shù)和工作參數(shù)的影響,但其之間的影響機(jī)理仍不明晰,仍需進(jìn)一步關(guān)注。大量靜電噴霧室內(nèi)/室外效果評(píng)價(jià)試驗(yàn)表明了荷電霧滴在靜電力、氣流曳力、重力的驅(qū)動(dòng)下,有助于霧滴在葉片的沉積,但靜電噴霧對(duì)霧滴飄移、穿透性能的影響還規(guī)律需進(jìn)一步研究,而且靜電噴霧裝備的產(chǎn)業(yè)化水平還有待加強(qiáng)。最后從荷電效果、機(jī)理研究、作業(yè)規(guī)范3方面提出了研究建議,以期為農(nóng)藥靜電噴霧技術(shù)及裝備研究提供參考。
農(nóng)藥;噴霧;機(jī)械化;感應(yīng)充電;荷質(zhì)比;測試;仿真
隨著人們對(duì)農(nóng)藥環(huán)境危害意識(shí)的提高,且由于靜電噴霧具有可以提高農(nóng)藥有效沉積、降低農(nóng)藥飄移等優(yōu)勢,受到越來越多的關(guān)注。靜電噴霧技術(shù)已經(jīng)在農(nóng)業(yè)、醫(yī)藥、工業(yè)噴涂等領(lǐng)域得到廣泛應(yīng)用[1-2]。21世紀(jì)以來,農(nóng)藥靜電噴霧技術(shù)得到快速發(fā)展。
通過采用合適的充電技術(shù)、合理的電極設(shè)計(jì)、更好的絕緣材料[3],結(jié)合氣流輔助對(duì)荷電霧滴輸運(yùn)、噴霧位置在線可調(diào)等技術(shù)[4],可以提高農(nóng)藥在葉背面的沉積效率,減少農(nóng)藥飄移對(duì)環(huán)境的污染[5]。靜電噴霧已經(jīng)成為廣大學(xué)者研究的熱點(diǎn)選題,
目前靜電噴霧技術(shù)主要關(guān)注點(diǎn)在靜電噴霧基礎(chǔ)理論、荷電霧滴沉積機(jī)理、靜電噴霧沉積效果評(píng)價(jià)和靜電噴霧裝備研究等方面,為全面了解農(nóng)藥靜電噴霧技術(shù)研究進(jìn)展及產(chǎn)業(yè)現(xiàn)狀和存在的瓶頸問題,本文亦從以上幾方面對(duì)靜電噴霧技術(shù)現(xiàn)狀進(jìn)行詳細(xì)闡述,為后續(xù)靜電噴霧技術(shù)研究與應(yīng)用提供技術(shù)參考。
農(nóng)藥靜電噴霧是通過高壓靜電發(fā)生裝置使靜電噴頭與作物靶標(biāo)之間形成電場,噴霧機(jī)噴出的霧滴帶電在電極電場的作用下荷電形成荷電霧滴群,農(nóng)藥霧滴在在靜電力、氣流曳力和重力作用霧滴快速沉積到植株表面,脫離靶標(biāo)的霧滴也會(huì)受冠層吸引力力作用,形成“靜電環(huán)繞”效果(圖1),減少了農(nóng)藥霧滴的飄移同時(shí)增加了霧滴在葉片背面的沉積量。
圖1 靜電噴霧效果示意圖
靜電噴霧一般與風(fēng)送噴霧相結(jié)合。與常規(guī)液力噴霧相比,靜電噴霧的荷電霧滴受氣流曳力和電場力共同作用下,可增加藥液沉積量和沉積均勻,圖2為荷電霧滴在作物葉片和果實(shí)上狀態(tài)的紫外圖像。風(fēng)送靜電噴霧的具體技術(shù)優(yōu)勢有:1)在靜電力作用下,增加霧滴在葉片背面的沉積量,提高農(nóng)藥有效利用率。2)靜電噴霧在一定程度上可以減少風(fēng)送噴霧的霧滴飄移,降低環(huán)境污染。3)風(fēng)送噴霧氣流對(duì)冠層擾動(dòng)翻轉(zhuǎn)可以克服靜電噴霧霧滴穿透性差的劣勢。4)靜電噴霧所需的施藥量少、霧滴粒徑小,在一定程度上可以省水節(jié)藥。5)荷電后霧滴表面張力降低,減小了霧化阻力,提高霧化程度,有利于靶標(biāo)對(duì)霧滴的吸附[6]。
圖2 紫外光下荷電霧滴沉積狀態(tài)
Fig.2 Deposition state of charged drops under ultraviolet light
19世紀(jì)末,研究者發(fā)現(xiàn)瀑布下落后細(xì)小水霧滴大約帶有0.6 uC/kg的電荷,隨后Wampler等[7]在金屬壓力噴頭上加載15 V直流電,發(fā)現(xiàn)霧滴的荷電量增加了6倍,但依然還不能影響霧滴在靶標(biāo)的沉積。隨著電離理論發(fā)展,20世紀(jì)40年代大量圍繞電暈充電開展農(nóng)藥靜電噴霧試驗(yàn)研究。Bowen等[8]從理論與試驗(yàn)2個(gè)方面闡明了荷電霧滴群在空間中會(huì)產(chǎn)生電場便于農(nóng)藥霧滴沉積,該研究豐富了靜電噴霧基礎(chǔ)理論。美國佐治亞大學(xué)的Law等[9]于1966年就采用了感應(yīng)式充電進(jìn)行農(nóng)藥靜電噴霧,并提出靜電噴霧與風(fēng)送噴霧相結(jié)合有助于霧滴沉積與穿透,推薦了最佳的靜電噴霧霧滴粒徑等結(jié)論,并從1970年就將技術(shù)商業(yè)化[10],使靜電噴霧技術(shù)得到長足發(fā)展。而Inculet[11]、Kihm等[12]提出相反電荷充電方法,解決了航空靜電噴霧藥液在機(jī)體上聚集的難題,推動(dòng)了靜電噴霧技術(shù)在航空施藥領(lǐng)域的應(yīng)用。進(jìn)入新世紀(jì)以來,在此基礎(chǔ)上開展了大量靜電噴霧在果園、農(nóng)業(yè)航空及溫室內(nèi)的應(yīng)用研究。
1.3.1 荷電參數(shù)
荷電參數(shù)主要包括電極材料及安裝位置、充電電壓和電極極性(+/-)等,很多學(xué)者開展了荷電參數(shù)對(duì)靜電噴霧性能影響的研究。如Law等[13]就認(rèn)為電極與液膜越近,荷電效果越好,但霧滴容易受庫倫力作用吸附在電極上,因此需要找到最佳的電極安裝距離。Patel等[14-15]研究了電極形狀和位置對(duì)荷電效果的影響,研究結(jié)果顯示內(nèi)圓截面的方形電極效果最明顯,而電極距離噴嘴出口截面2~3 mm為最佳。而周良富等[16]提出了一種與圓錐霧噴頭霧型一致的仿型電極,同樣認(rèn)為電極與噴頭出口的距離必須小于5 mm。
Maski等[17]研究了感應(yīng)電壓對(duì)霧滴沉積的影響,發(fā)現(xiàn)作業(yè)速度為0.417 m/s時(shí),葉片背面沉積量隨充電電壓(0~4 kV)增大而增加,但作業(yè)速度為0.278 m/s時(shí),葉片背面沉積量隨充電電壓增大而減少,最后得出中等作業(yè)速度、高充電電壓有助于霧滴沉積的結(jié)論。Yule[18]等研究了充電電壓與噴霧角的關(guān)系,研究結(jié)果顯示噴霧角與荷電電壓成正相關(guān),當(dāng)荷電電壓達(dá)到煤油的擊穿電壓時(shí),噴霧角急劇下降。而Uwe[19]的研究結(jié)果顯示噴霧錐角隨荷電電壓增大而減小,紋影照片顯示荷電后噴霧湍流擾動(dòng)增強(qiáng)。周良富等[20]、李恒等[21]研究了工作電壓(0~6 kV)對(duì)靜電噴霧效果的影響,發(fā)現(xiàn)充電電壓是影響霧滴在葉背面沉積的最主要因素。王士林等[22]認(rèn)為充電電壓和極性對(duì)水溶液霧滴體積中徑和霧滴譜寬沒有明顯影響,但油劑溶液噴霧時(shí),靜電噴霧電壓和極性對(duì)霧滴體積中徑和霧滴譜寬有明顯的影響。
1.3.2 環(huán)境參數(shù)
環(huán)境參數(shù)包括溫濕度、空氣質(zhì)量和氣流速度等,由荷電霧滴衰減理論可知,環(huán)境參數(shù)是影響荷電量衰減的重要因素。目前關(guān)于溫濕度、空氣質(zhì)量對(duì)靜電噴霧影響的研究較少,對(duì)靜電噴霧試驗(yàn)只是明示了試驗(yàn)時(shí)的溫濕度。大部分研究重點(diǎn)在氣流速度對(duì)荷電霧滴沉積影響,如Gan-Mor等[23]研究了噴嘴附近氣流速度對(duì)荷電量的影響,結(jié)果表明當(dāng)噴嘴附近的氣流速度為10 m/s的荷電量是無氣流時(shí)的幾倍。周良富等[20]認(rèn)為荷電霧滴主要受氣流曳力和靜電力作用,因此氣流速度、感應(yīng)電壓及其交互作用對(duì)霧滴沉積有顯著性影響。Patel等[24]發(fā)現(xiàn)噴霧氣流對(duì)靜電噴霧有顯著影響,而且外部氣流場分布顯著影響噴霧覆蓋的范圍。
1.3.3 作業(yè)參數(shù)
作業(yè)參數(shù)包括作業(yè)速度、噴霧方向、噴霧距離、噴霧溶液及噴霧量等。王士林等[22]發(fā)現(xiàn)在相同試驗(yàn)條件下,水的荷質(zhì)比大于油劑的荷質(zhì)比,而靜電噴油劑的沉積量明顯高于水基化藥劑。Pascuzzi等[25]研究了作業(yè)速度對(duì)靜電噴霧沉積的影響,對(duì)沉積量歸一化處理后發(fā)現(xiàn)作業(yè)速度對(duì)霧滴沉積沒有影響。同時(shí)發(fā)現(xiàn)冠層位置(噴霧距離)是影響霧滴沉積的重要因素。在冠層下部靜電噴霧沉積量增加了50%,而冠層上部僅增加12.5%。Maski等[17]研究作業(yè)速度、噴霧高度(距離)對(duì)靜電噴霧沉積效果的影響,發(fā)現(xiàn)噴霧距離和作業(yè)速度都對(duì)霧滴沉積效率有影響。
1.3.4 靶標(biāo)參數(shù)
靶標(biāo)參數(shù)包括材質(zhì)、形狀、冠層大小、葉面積指數(shù)、葉片傾角等。靶標(biāo)參數(shù)也是影響霧滴沉積的主要因素之一,Guo等[26]研究了霧滴屬性、界面力和靜電力之間的關(guān)系,認(rèn)為靜電吸附是一個(gè)多學(xué)科復(fù)雜的問題,不同的靶標(biāo)截面會(huì)有不同的吸附效果。
李恒等[21]研究植株葉片、金屬靶標(biāo)和塑料靶標(biāo)對(duì)霧滴沉積的影響,結(jié)果發(fā)現(xiàn)靶標(biāo)材質(zhì)是影響沉積效果的重要因素,認(rèn)為金屬材料靶標(biāo)沉積效果最佳。Maski等[17]在試驗(yàn)室條件下,研究了葉傾角(30°、0°、-30°)對(duì)靜電噴霧效果的影響,發(fā)現(xiàn)葉傾角越大,背面沉積量越多。周良富[27]初步研究了Y型果樹與紡錘型果樹對(duì)靜電噴霧的影響,認(rèn)為Y型果樹更有利于荷電霧滴沉積。周良富等[28]也發(fā)現(xiàn)在靠近噴霧機(jī)一側(cè),葉片反面霧滴覆蓋密度提高20%,遠(yuǎn)離噴霧機(jī)一側(cè)僅提高7.2%。
靶標(biāo)界面屬性及其與霧滴間的作用關(guān)系是學(xué)者關(guān)注的另一重點(diǎn)。認(rèn)為霧滴與靶標(biāo)界面接觸后會(huì)發(fā)生粘附、反彈和噴濺等運(yùn)動(dòng)行為,賈衛(wèi)東等[29]采用相位多普勒粒子分析儀(phase doppler particle analyzer,PDPA)方法觀察了荷電霧滴群撞擊界面的過程,發(fā)現(xiàn)荷電霧滴撞擊界面后只會(huì)產(chǎn)生粘附或反彈,不會(huì)發(fā)生噴濺現(xiàn)象。薛新宇[30]研究了當(dāng)霧滴與靶標(biāo)粘附后,9種水稻常規(guī)藥劑霧滴在水稻葉面的潤濕與展布性能。賈衛(wèi)東等[31]采用2臺(tái)高速攝影儀冠層了霧滴撞擊大豆表面的過程,分析了撞擊速度對(duì)霧滴展鋪性能的影響,研究結(jié)果認(rèn)為在相同粒徑和撞擊角度下,液滴撞擊速度越高最大鋪展越大,鋪展時(shí)間也越長,但撞擊速度高和撞擊速度低的液滴最終鋪展比接近。
1.3.5 小 結(jié)
從以上文獻(xiàn)研究可以看出,荷電霧滴沉積機(jī)理及其影響因素分析是目前的研究熱點(diǎn),但目前主要研究以荷質(zhì)比為指標(biāo)研究荷電參數(shù)對(duì)沉積的影響?;诃h(huán)境參數(shù)、靶標(biāo)參數(shù)和工作參數(shù)的荷電霧滴沉積及影響機(jī)理研究相對(duì)缺乏,已有的研究都集中在試驗(yàn)測試與定性分析階段,很多影響因素仍需進(jìn)一步研究確認(rèn)。
靜電力有助于霧滴在靶標(biāo)面上的沉積均勻性,同時(shí)提高霧滴輸運(yùn)與沉積效率。靜電力的靶向性可以克服重力、氣流曳力引起的地面沉積與飄移,靜電力主要與霧滴粒徑、霧滴密度、表面張力和荷電量有關(guān)[32-33]。而靜電噴霧過程主要涉及:1)電流體動(dòng)力學(xué)過程,主要包括液體霧化及荷電過程;2)空氣動(dòng)力學(xué)過程,要求實(shí)現(xiàn)荷電霧滴輸運(yùn)軌跡控制;3)靜電學(xué)過程,實(shí)現(xiàn)荷電霧滴在靶標(biāo)附近的快速沉積。其中液體霧化可以參考離心霧化、壓力霧化、氣力霧化等成熟理論,只有當(dāng)荷電霧滴間的靜電力大于霧滴表面張力時(shí),荷電霧滴會(huì)發(fā)生破裂,而對(duì)農(nóng)藥靜電噴霧而言霧滴可能持有的最大電荷小于Rayleigh極限[34]。因此該部分僅主要闡述荷電方式、荷質(zhì)比及荷電霧滴動(dòng)力學(xué)其相關(guān)測試技術(shù)4部分。
安全可靠的霧滴荷電方法是農(nóng)藥靜電噴霧技術(shù)中重要的環(huán)節(jié)之一[35],荷電量的多少直接決定了靜電力的作用效果[36]。荷電方式主要包括電暈充電、摩擦生電、直接導(dǎo)電充電和感應(yīng)式充電4種。在農(nóng)藥靜電噴霧中,摩擦生電基本沒有應(yīng)用,其余3種充電方式所需的充電電壓及特點(diǎn)見表1[37-38]。與感應(yīng)式充電法相比導(dǎo)電式充電可以產(chǎn)生較大的目標(biāo)電荷[39],但導(dǎo)電式充電時(shí)使噴霧液體直接帶電,導(dǎo)致整個(gè)噴霧系統(tǒng)均處于帶電狀態(tài),若噴霧系統(tǒng)絕緣效果不理想,致使整個(gè)噴霧機(jī)帶電造成嚴(yán)重的安全隱患。
目前農(nóng)藥靜電噴霧中,感應(yīng)充電是使用最普遍的方式。通過在噴頭處安裝感應(yīng)電極,并在電極上加載高電壓,在電極附近形成靜電場,霧滴通過電極電場區(qū)域后,霧滴中的自由電子在電場力作用下定向移動(dòng),使霧滴呈現(xiàn)與電極極性相反的電荷。而液膜表面感應(yīng)出的電荷總量與電極材料所能承載最大的電子密度有關(guān)。因此電極材料是關(guān)注的重點(diǎn),蘭玉彬等[37]研究了紫銅、黃銅、不銹鋼和鋁材料對(duì)荷電效果的影響,發(fā)現(xiàn)紫銅更有利于荷電。Manoj等[15]在相同試驗(yàn)條件下研究了不同電極材料(鎳,銅,不銹鋼,黃銅和鋁)的荷電效果,發(fā)現(xiàn)鎳材料更有利于霧滴荷電。Patel等[40]研究了電極材料分別為鎳(200/201鍛造棒)、銅(98%純度,表面鍍鎳)、銅(98%純度)、不銹鋼(304)和黃銅(70%Cu、30%Zn)對(duì)荷電量的影響,同樣發(fā)現(xiàn)鎳材料對(duì)霧滴荷電效果更好,銅表面鍍鎳次之。綜上所述,鎳是一種惰性材料,在正常工作條件下不容易發(fā)生極化,但鎳材料價(jià)格比銅高,因此鎳材料或鍍鎳的銅材料可以被推薦為感應(yīng)充電的電極材料。
表1 三種充電方式對(duì)比
受農(nóng)業(yè)應(yīng)用場景的安全性出發(fā),導(dǎo)電充電和電暈充電法沒有得到廣泛應(yīng)用。從上述感應(yīng)式充電原理分析可知,在相同感應(yīng)電壓下,荷電性能主要與電極材料與霧滴屬性有關(guān),關(guān)于霧滴屬性對(duì)荷電性能影響的研究報(bào)道不多,本小節(jié)未能進(jìn)行歸納總結(jié)。但霧滴屬性(霧滴大小、噴霧劑型)對(duì)靜電噴霧影響在后續(xù)部分進(jìn)行介紹。
荷電霧滴的動(dòng)力學(xué)是霧滴輸運(yùn)、沉積與飄移的理論基礎(chǔ),一般來說荷電霧滴受重力場、靜電場、氣流場、溫度場共同作用。當(dāng)前文獻(xiàn)認(rèn)為霧滴主要受包括布朗力、熱泳力、重力、浮力等與相對(duì)運(yùn)動(dòng)無關(guān)的力,還有如曳力、視質(zhì)量力、Saffman升力等與相對(duì)運(yùn)動(dòng)有關(guān)的力[41]。寧智等[42]模擬分析了微粒在湍流通道內(nèi)的受力與沉降規(guī)律,研究結(jié)果認(rèn)為氣流曳力起決定作用,熱泳力相對(duì)較小,升力可以忽略,僅為氣流曳力的10-3量級(jí),Saffman升力、熱泳力和浮力等與微粒粒徑和空間尺度有關(guān)。而農(nóng)藥霧滴一般在大田空間中應(yīng)用,其空間尺度足以可以忽略升力等對(duì)沉積過程的影響。因此分析農(nóng)藥荷電霧滴動(dòng)力學(xué)時(shí),主要考慮霧滴所受的曳力、重力和靜電力[43]。其動(dòng)力學(xué)方程如(1)式,
式中u為霧滴速度,m/s;F為氣流曳力系數(shù);為氣流速度,m/s;為霧滴粒徑,m;ρ為霧滴的骨架密度,kg/m3;為霧滴荷電量,C;為電場強(qiáng)度,V/m 。
舒朝然等[44]建立了樹冠靜電噴霧過程的電子-機(jī)械簡化模型來分析荷電霧滴在作物靶標(biāo)的沉積過程,并提出靜電力的大小用與所受氣流曳力的比值來衡量,為果樹風(fēng)送靜電噴霧沉積動(dòng)力學(xué)提供了一種新思路。Jordi等[45]針對(duì)經(jīng)典的液滴拉格朗日軌跡計(jì)算方法中要求計(jì)算大量液滴的相互作用的問題,提出采用平均電場來計(jì)算荷電霧滴的相互作用,發(fā)現(xiàn)在相同精度下,計(jì)算26 000和3 500個(gè)霧滴運(yùn)算速度分別提高了112倍和9倍。Zhang等[46]分析了荷電霧滴受力,模擬了靜電噴霧中荷電霧滴群的運(yùn)動(dòng)行為,模擬結(jié)果與試驗(yàn)結(jié)果相一致。茹煜等[47]對(duì)感應(yīng)充電噴頭環(huán)狀電極誘導(dǎo)電場的進(jìn)行了數(shù)學(xué)分析,給出電位—電場的計(jì)算公式,提出用橢圓積分表示出電場強(qiáng)度在全空間的普遍分布。這些研究為靜電噴霧荷電霧滴輸運(yùn)沉積分析奠定基礎(chǔ)。
由2.2節(jié)荷電霧滴動(dòng)力學(xué)可知,與非靜電噴霧相比,靜電噴霧的霧滴受靜電場引起靶標(biāo)吸引的吸引力,該吸引力與霧滴的荷電量及霧滴和靶標(biāo)之間的空間位置直接相關(guān)。因此荷電量及其滯留時(shí)間是廣大學(xué)者關(guān)注的重點(diǎn),相應(yīng)的計(jì)算式為(2)~(4)。
式中i為荷質(zhì)比,mC/kg;為總荷電量,C;為荷電霧滴放電電流值,A;為霧滴群的質(zhì)量,kg;為相應(yīng)的測量時(shí)間,s。
目前,普遍認(rèn)為靜電噴霧的關(guān)鍵點(diǎn)之一是增加霧滴荷電量,并且在輸運(yùn)過程中荷電量不衰減。對(duì)于靜電噴霧所要求的具體荷質(zhì)比值,依然沒有形成定量的結(jié)論。但荷質(zhì)比越大,靜電噴霧沉積效果越理想的結(jié)論被廣大學(xué)者所接受。不同文獻(xiàn)推薦不同靜電噴霧最小的荷質(zhì)比,范圍在0.8 ~2.0 mC/kg之間,但也有研究表明更低的荷質(zhì)比也具有很好的藥液沉積[48-49]。
霧滴荷電后,在輸運(yùn)過程中不斷與空氣中的氣體、灰塵等接觸發(fā)生衰減[50],荷電量是按照式(3)的指數(shù)規(guī)律衰減。而實(shí)際應(yīng)用中以荷電量衰減到原始電量一半的時(shí)間1/2,如式(4)所示。
式中為荷電量,C;0為原始電量,C;為電量衰減時(shí)間常數(shù);1/2為靜電半衰期。表2列舉了電荷在不同介質(zhì)中的平均壽命時(shí)間,可見輸運(yùn)介質(zhì)對(duì)荷質(zhì)比也有較大影響。而Shrimpton 等[51]測試了燃油靜電噴霧的霧滴粒徑,發(fā)現(xiàn)霧滴粒徑越大,慣性越大,荷質(zhì)比越小,不容易受空間電荷力的影響。
由以上分析可以,荷質(zhì)比與噴霧流量、荷電量、衰減時(shí)間、霧滴粒徑等有關(guān)。因此建議在測量荷質(zhì)比時(shí),以下幾個(gè)參數(shù)需有明示:1)荷電流,需給出測量儀表的量程與精度。2)噴霧量,單位時(shí)間內(nèi)的噴頭流量(kg/min)。3)測量距離,噴頭出口與收集測量面(法拉第桶或網(wǎng)狀金屬)之間的距離。4)霧滴譜及粒徑,最少需要給出額定工況下的體積中徑及霧滴譜寬。5)氣流速度及分布,氣流速度沿射程分布曲線。只有在這些參數(shù)基本一致的前提下,比較不同靜電噴頭的荷質(zhì)比才更有意義。
表2 電荷的平均壽命
由式(1)可知,荷電霧滴沉積動(dòng)力學(xué)方程包含有氣流/霧滴速度、霧滴粒徑、荷電量和電場強(qiáng)度4個(gè)待測參數(shù)。
2.4.1 荷質(zhì)比測試
準(zhǔn)確的荷質(zhì)比是預(yù)測荷電霧滴在電場、氣流場和重力場中運(yùn)動(dòng)的基礎(chǔ)。因此荷質(zhì)比是靜電噴霧技術(shù)研究中特別關(guān)注的一個(gè)指標(biāo),其測量主要有2種方法[52]:1)直接測量出霧滴群中所帶電荷總量。2)通過觀察荷電霧滴在外加電場中的動(dòng)力學(xué)參數(shù),計(jì)算出荷質(zhì)比。
荷質(zhì)比測試裝置有如江蘇大學(xué)自行研制的用于測量荷質(zhì)比的法拉第桶[53],如圖3a;印度學(xué)者Patel[54]研制的法拉第籠,如圖3b;還有如美國學(xué)者Daniel等[55]采用如圖3c所示的簡易網(wǎng)狀目標(biāo)法來測試荷質(zhì)比。測試的原理都是根據(jù)式(2)來計(jì)算,采用皮安表先測量出荷電流,采用稱質(zhì)量法測出單位時(shí)間的噴霧量。
圖3 荷質(zhì)比測試裝置
2.4.2 靜電電位測量
對(duì)于高壓靜電發(fā)生器可以采用象限靜電計(jì)、Q-V表等接觸式測量儀。而靜電場的場強(qiáng)小,很難用儀表直接精確讀取。目前主要有2種測量原理,1)采用一個(gè)與場強(qiáng)同方向的振動(dòng)探頭,按照一定頻率振動(dòng),可以獲取按該頻率變化的脈沖信號(hào),處理后放大就可精確讀取。2)抵消測量法,即外加一個(gè)與待測場強(qiáng)等量但相反的場強(qiáng),當(dāng)二者抵銷時(shí),探頭就檢測不到信號(hào),這樣外加場強(qiáng)就是待測場強(qiáng)的相反場強(qiáng)。主要的靜電電位計(jì)包括振動(dòng)電容型電位計(jì)、旋轉(zhuǎn)扇葉型電位計(jì)、旋轉(zhuǎn)探頭型表面電位計(jì)[56]。Thompson等[57]利用半球形電鏡來收聚空間電荷并傳入真空粒子儀,研制了一種空間電流密度分析儀,測量精度提高40%以上。
2.4.3 霧滴粒徑測試
霧滴譜及霧滴粒徑是評(píng)價(jià)霧化及施藥效果的重要指標(biāo)之一[58]。何勇等[59]分析了目前霧滴粒徑測量的方法,包括有斑痕法、紙卡法、染色劑法、激光/霧滴圖像分析儀、相位多普勒粒子分析法和激光粒度儀法,認(rèn)為激光粒度儀是相對(duì)快捷、準(zhǔn)確地獲取霧滴譜及霧滴粒徑的方法。但受電場力的作用,荷電霧滴容易在激光粒度儀激光的發(fā)生端和接受端吸附,造成測量不準(zhǔn)確[27]。而相PDPA是目前測量球形粒子粒徑和速度精度最高的儀器,該方法在霧滴粒徑較小、霧滴稀疏場合更有優(yōu)勢[60],該優(yōu)勢與靜電噴霧的特點(diǎn)相符,建議有條件采用該方法。而植保機(jī)械通用試驗(yàn)方法[61]中規(guī)定油盤法雖然測量過程繁雜,但測試結(jié)果可靠,也可采用。Zhu等[62]集成手持式掃描儀和圖像處理軟件,開發(fā)了便攜式噴霧沉積質(zhì)量評(píng)估系統(tǒng)DepositScan,該系統(tǒng)可以測量霧滴尺寸和密度、噴霧沉積量和覆蓋率,但隨著霧滴尺寸減小,其測量精度會(huì)降低。建議在田間采用該方法測量霧滴粒徑時(shí),需要在試驗(yàn)室內(nèi)測定出修正系數(shù)。
2.4.4 運(yùn)動(dòng)學(xué)測試
荷電霧滴速度測試是研究靜電噴霧最直觀的方法,可以直觀發(fā)現(xiàn)霧滴的運(yùn)動(dòng)軌跡和靜電環(huán)繞現(xiàn)象。目前主要以高速圖像法和PDPA法為主。如Shrimpton 等[63]采用PDPA和圖像法分析了燃油靜電噴霧的霧滴粒徑及速度分布,發(fā)現(xiàn)霧滴粒徑越大,慣性越大,荷質(zhì)比越小,不容易受空間電荷力的影響。Zhentao W等[64]采用PDPA方法,測試了荷電霧滴的速度分布,發(fā)現(xiàn)荷電霧滴在電場的作用下發(fā)生二次霧化,認(rèn)為電場力和氣流曳力是驅(qū)動(dòng)霧滴運(yùn)動(dòng)的2個(gè)主要力。賈衛(wèi)東等[65]也用PDPA分析了靜電噴霧場的噴幅、霧滴粒徑及分布,觀察了靜電環(huán)繞效應(yīng)。發(fā)現(xiàn)在較高充電電壓下,荷電霧滴與靶標(biāo)界面的相互作用效果更明顯。Kwek等[66]采用高速成像法和非接觸式測量法測量靜電力在荷電霧滴聚集和碰撞過程的作用,得出不同霧滴屬性的破裂機(jī)制,證明了高速圖像法在靜電噴霧中的作用。
2.4.5 CFD仿真在靜電噴霧測試的應(yīng)用
隨著商業(yè)計(jì)算流體力學(xué)(computational fluid dynamics,CFD)仿真軟件的成熟,越來越多的學(xué)者將CFD技術(shù)應(yīng)用于靜電噴霧,Sen等[67]在2006年采用FLOW3D軟件仿真研究了靜電噴霧射流錐的形成與發(fā)展,并與文獻(xiàn)的試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,相對(duì)誤差為5-10%。并于2011年仿真分析了射流霧化過程,其霧滴速度和粒徑的試驗(yàn)誤差為10%[68]。Lim等[69]開發(fā)了包括氣液兩相流的連續(xù)方程、Navier-Stokes方程、計(jì)算電荷引起體積應(yīng)力方程及計(jì)算電勢的泊松方程的仿真模型,Xu等[70]在此模型基礎(chǔ)上,通過調(diào)整表面電荷高斯方程的參數(shù),利用FLUENT軟件分析了射流形狀、霧化過程,但預(yù)測的霧滴粒徑比試驗(yàn)值大;Yan等[71]在2016年將該模型進(jìn)行擴(kuò)展,考慮了2股射流體之間的相互干擾。Dastourani等[72]在2018年建立了包括射流液體錐及周圍氣體的數(shù)學(xué)模型,并在OpenFOAM軟件進(jìn)行模擬分析,獲得的平均霧滴粒徑與文獻(xiàn)公布的試驗(yàn)結(jié)果一致。由上述分析可以,CFD仿真技術(shù)在靜電噴霧領(lǐng)域的應(yīng)用是可行的,而且會(huì)得到研究者更多的重視。
靜電噴霧室內(nèi)試驗(yàn)是指利用盆栽作物或仿真植株等為試驗(yàn)對(duì)象,在實(shí)驗(yàn)室等環(huán)境相對(duì)可控的條件下開展靜電噴霧沉積效果試驗(yàn)。如Daniel等[73]在10 kV充電電壓下,得到荷質(zhì)比為1.686 mC/kg,在室內(nèi)試驗(yàn)研究靜電噴草甘膦對(duì)黑麥草的防治效果,發(fā)現(xiàn)靜電噴霧下的黑麥草NDVI衰減加快80%。Mamidi等[74]采用手動(dòng)靜電噴霧器,在實(shí)驗(yàn)室內(nèi)采用水敏紙研究靜電噴霧霧滴在盆栽作物的沉積試驗(yàn),試驗(yàn)結(jié)果顯示靜電噴霧對(duì)正面的霧滴覆蓋率沒有明顯影響,但在葉片背面的覆蓋率比非靜電噴霧提高了2~3倍。Gaunt等[75]研究了靜電噴霧滅家蠅試驗(yàn),試驗(yàn)結(jié)果表明當(dāng)荷質(zhì)比從2.66×10-5增加到2.16×10-4C/kg時(shí),滅蠅時(shí)間從2.63 min縮短至1.98 min。蘭玉彬等[37]采用誘惑紅為示蹤劑研究了靜電噴霧在2顆龍血樹的沉積分布性能,試驗(yàn)結(jié)果顯示,在上、中、下3個(gè)采樣層的霧滴覆蓋密度分別增加了23、19、10滴/cm2。楊洲等[76]在試驗(yàn)室內(nèi)開展了靜電噴霧飄移試驗(yàn),認(rèn)為霧滴飄移是充電電壓和側(cè)風(fēng)共同作用的結(jié)果,建議靜電噴霧在無風(fēng)/低風(fēng)條件下使用。
靜電噴霧效果田間試驗(yàn)是指靜電噴霧機(jī)以正常作業(yè)工況、以實(shí)際作物為沉積對(duì)象,開展靜電噴霧與非靜電噴霧效果的對(duì)比試驗(yàn)。如Pascuzzi等[25]利用ESS公司的“150RB14”型風(fēng)送靜電噴霧試驗(yàn)研究了靜電噴霧條件下藥液在葡萄園沉積分布規(guī)律,試驗(yàn)結(jié)果表明靜電噴霧葉片藥液沉積量平均值由0.061L/cm2增加到0.088L/cm2,增幅為44%;但靜電噴霧造成更大藥液冠層分布變異系數(shù),上部與下部藥液比值由7增加到9。Patel等[54]研究了靜電噴霧在棉花冠層的沉積,發(fā)現(xiàn)靜電噴霧總體的霧滴覆蓋密度(79~277滴/cm2)高于非靜電噴霧的77~133滴/cm2。王軍鋒等[77]研究了風(fēng)幕式氣力輔助靜電噴霧沉積特性,結(jié)果表明氣力輔助靜電噴霧有效抑制霧滴飄移且霧滴分布更加均勻,而后賈衛(wèi)東等[78]進(jìn)一步得出靜電噴霧霧滴沉積分布變異系數(shù)減小了50.2%。
周宏平等[79]開展的航空靜電噴霧裝置防治大面積的松毛蟲試驗(yàn),發(fā)現(xiàn)與常規(guī)扇形航空噴霧相比,不僅作業(yè)時(shí)間短,使用農(nóng)藥量減少5.22 L/hm2,而且有效防治率提高了33.8%。茹煜等[80]針對(duì)XY8D型無人機(jī)設(shè)計(jì)了一款靜電噴頭,并在水稻田測試了荷電霧滴沉積與飄移性能,靜電噴霧方式對(duì)抑制航空噴霧霧滴飄移的作用不大,但是聚酯卡上單位面積的霧滴沉積量分別增加2.36、2.91、1.56g/cm2。王士林等[22]采用3WQF120-12 型油動(dòng)單旋翼植保無人機(jī),裝置靜電噴霧系統(tǒng)研究靜電噴施油劑對(duì)對(duì)小麥蚜蟲、銹病的防治效果試驗(yàn),發(fā)現(xiàn)靜電噴霧對(duì)小麥蚜蟲的防治效果提高87.92%。Daniel等[81]將轉(zhuǎn)籠式靜電霧化器應(yīng)用與航空施藥,并采用熒光示蹤劑測試了2種施藥量下靜電噴霧與非靜電噴霧在棉花冠層的沉積效率,發(fā)現(xiàn)上層藥液沉積量增加了2~3倍,而下層沒有明顯變化。
靜電噴霧系統(tǒng)是靜電噴霧裝備中最關(guān)鍵的系統(tǒng),主要包括荷電方式及電壓、電極設(shè)計(jì)、霧化方式選擇等。美國佐治亞州立大學(xué)Law等[82]率先研制成功了內(nèi)嵌式電極的感應(yīng)式靜電噴頭MaxCharge,該系統(tǒng)主要由高速氣流將液體霧化為30~50m的細(xì)小霧滴。Mamidi等[74]設(shè)計(jì)了一種用于手動(dòng)噴霧器的靜電噴霧系統(tǒng),該噴頭采用感應(yīng)式充電,環(huán)形電極材料為銅,電極安裝位置為1~7 mm,充電電壓為0~10 kV,噴頭荷質(zhì)比達(dá)到0.419 mC/kg。周宏平等[79]針對(duì)該文針對(duì)應(yīng)用于輕型飛機(jī)上的單噴嘴航空靜電噴頭,對(duì)噴頭靜電電極、材料、加工工藝、電極的連接方式、溢流閥體等幾個(gè)方面進(jìn)行了改進(jìn)設(shè)計(jì),改進(jìn)后荷質(zhì)比可達(dá)到2.26 mC/kg。
表3從荷電方式、充電電壓、電極材料、霧化方式、噴霧流量、霧滴粒徑及荷質(zhì)比等方面總結(jié)了目前已公開的關(guān)于靜電噴霧系統(tǒng)文獻(xiàn)報(bào)道。從產(chǎn)業(yè)化的角度分析,僅有Law的MaxCharge靜電噴頭和Calton的航空靜電噴霧系統(tǒng)分別轉(zhuǎn)讓給美國ESS公司(Electrostatic Spraying System, Inc)和SES公司(Spectrum Electrostatic Sprayers, Inc)。其余產(chǎn)品沒有見到產(chǎn)業(yè)化報(bào)道。
表3 靜電噴霧系統(tǒng)及參數(shù)
在果園靜電噴霧機(jī)推廣應(yīng)用方面,國外的ESS公司和MARTIGNANI公司已經(jīng)形成了系列化的產(chǎn)品。ESS公司產(chǎn)品主要是在MaxCharge? 靜電噴頭的基礎(chǔ)上,根據(jù)溫室、果園、大田應(yīng)用條件,研制了系列化的靜電噴霧機(jī)。圖4為該公司2款典型的果園靜電噴霧機(jī)。該系統(tǒng)噴霧機(jī)主要通過羅茨風(fēng)機(jī)產(chǎn)生高壓氣流使荷電霧滴快速輸運(yùn)到冠層靶標(biāo)[25]。
圖4 ESS公司果園靜電噴霧機(jī)機(jī)型
MARTIGNANI公司也有系列化的果園靜電噴霧機(jī),如圖5所示的2款典型噴霧機(jī)。該系列噴霧機(jī)主要通過離心風(fēng)機(jī)將荷電后的霧滴輸送到冠層,但關(guān)于其靜電噴霧系統(tǒng)的介紹和使用效果,沒有檢索到相關(guān)文獻(xiàn)。
國內(nèi)學(xué)者對(duì)果園靜電噴霧機(jī)的研究主要集中在樣機(jī)試制和霧滴荷電效果評(píng)定方面,沒有形成成熟的專利產(chǎn)品。導(dǎo)致國內(nèi)噴霧機(jī)企業(yè)以消化國外小型靜電噴霧機(jī)為主,但田間應(yīng)用效果還有待進(jìn)一步驗(yàn)證。如楊洲等[85]研制的果園在線混藥型靜電噴霧機(jī)樣機(jī),從公開的文獻(xiàn)分析,雖然噴霧沉積效果良好,但樣機(jī)產(chǎn)品簡單,還需對(duì)產(chǎn)品進(jìn)行優(yōu)化升級(jí)才滿足產(chǎn)業(yè)化需求。周艷等[86]研制的3WJD-50型果園氣力式靜電噴霧機(jī)通過了新疆兵團(tuán)科技局的鑒定,但沒有發(fā)現(xiàn)該產(chǎn)品有產(chǎn)業(yè)化。何雄奎等[87]等于2003年提出將靜電噴霧、風(fēng)送噴霧和對(duì)靶噴霧相結(jié)合,并成功研制了果園自動(dòng)對(duì)靶靜電噴霧機(jī),文獻(xiàn)顯示該靜電噴霧比非靜電噴霧藥液沉積量增加了2倍多。將靜電噴霧與仿形對(duì)靶噴霧相結(jié)合的技術(shù)方案是可以提高靜電噴霧效果的有效途徑,但受靶標(biāo)探測和仿形執(zhí)行部件限制,該樣機(jī)并沒有產(chǎn)業(yè)化。農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所(Nanjing Research Institute of Agricultural Mechanization, NRIAM)成功研制了3WQ-400牽引型雙氣流輔助靜電果園噴霧機(jī)[28],并開展了噴霧機(jī)在不同果園應(yīng)用的試驗(yàn)示范,針對(duì)靜電噴霧機(jī)荷電霧滴易在噴霧機(jī)機(jī)操作人員吸附的問題,研制了遙控式果園靜電噴霧機(jī)如圖6所示,通過雙氣流輔助噴霧技術(shù)解決了特定條件下荷電霧滴輸運(yùn),主要適用與低矮棚架果園,具備產(chǎn)業(yè)化條件。而對(duì)于紡錘型等高大樹形,其上部距離噴頭較遠(yuǎn),其荷電效果不理想。
圖5 MARTIGNANI果園靜電噴霧機(jī)機(jī)型
圖6 農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所研制的靜電噴霧機(jī)
航空靜電噴霧機(jī)產(chǎn)業(yè)化相對(duì)成功的有SES公司(Spectrum Electrostatic Sprayers, Inc),該公司主要以 Calton[84]研制的航空靜電噴頭為基礎(chǔ),結(jié)合產(chǎn)業(yè)化需求,研制出新型的注塑噴嘴,結(jié)構(gòu)簡單易用加工。并將該噴嘴與固定翼和直升機(jī)飛機(jī)相結(jié)合,研制出固定翼航空靜電噴霧機(jī)和直升機(jī)航空靜電噴霧機(jī),如圖7,該類靜電噴霧機(jī)在巴西大豆銹病、非洲高桿作物(甘蔗等)、澳大利亞及北美病蟲害防治都有教廣泛應(yīng)用。中國航空靜電噴霧主要以引進(jìn)[88]、改進(jìn)設(shè)計(jì)[79-80]航空靜電噴霧系統(tǒng)為主,開展了一些試驗(yàn)示范,沒有發(fā)現(xiàn)關(guān)于大面積航空靜電噴霧應(yīng)用的報(bào)道。張亞莉等[89]對(duì)美國航空靜電噴霧系統(tǒng)的發(fā)展歷史及中國的應(yīng)用現(xiàn)狀進(jìn)行了分析,認(rèn)為航空靜電噴霧作業(yè)環(huán)境的復(fù)雜性、農(nóng)藥標(biāo)簽建議施藥量大于靜電噴霧系統(tǒng)的施藥量等問題導(dǎo)致航空靜電噴霧田間效果不理想影響其產(chǎn)業(yè)前景。
圖7 SES公司航空靜電噴霧機(jī)
1)靜電噴霧中荷電霧滴在靜電力、氣流曳力、重力的驅(qū)動(dòng)下,可以向作物靶標(biāo)作定向沉積運(yùn)動(dòng),有助于霧滴在葉片的沉積。但靜電噴霧對(duì)霧滴飄移、穿透性能的影響還規(guī)律需進(jìn)一步研究。
2)感應(yīng)式充電是農(nóng)藥靜電噴霧最普遍采用的充電技術(shù),充電電壓在6~10 kV,電極材料以鎳或鍍鎳的銅材料為宜,電極與噴嘴出口截面距離為5 mm以下。
3)荷質(zhì)比是衡量靜電噴霧荷電效果的重要指標(biāo),但不能以統(tǒng)一的荷質(zhì)比來要求不同的靜電噴霧系統(tǒng)。只有在噴霧量、霧滴譜及粒徑、氣流速度及分布、測量距離等參數(shù)基本一致的前提下,比較不同靜電噴頭的荷質(zhì)比才更有意義。
4)荷質(zhì)比、氣流/霧滴速度、霧滴粒徑、電場強(qiáng)度等參數(shù)測量是研究靜電噴霧技術(shù)重要的環(huán)節(jié)之一。其測試技術(shù)與平臺(tái)如PDPA、PIV等先進(jìn)測試技術(shù)的應(yīng)用、CFD仿真在靜電噴霧技術(shù)研究中的應(yīng)用細(xì)節(jié)仍需進(jìn)一步研究。
5)大量靜電噴霧室內(nèi)/室外效果評(píng)價(jià)試驗(yàn)表明了靜電噴霧的巨大優(yōu)勢,但靜電噴霧裝備的產(chǎn)業(yè)化水平還有待進(jìn)一步提高。
6)靜電噴霧沉積效率受荷電參數(shù)、環(huán)境參數(shù)、靶標(biāo)參數(shù)和工作參數(shù)的影響,但其之間的影響機(jī)理仍不明晰,仍需進(jìn)一步關(guān)注。
5.2.1瓶頸問題
靜電噴霧技術(shù)具有霧滴沉積效率高的優(yōu)勢,但目前仍然受應(yīng)用效果不理想而沒有得到廣泛推廣,具體原因?yàn)椋红o電噴霧效果的影響因素多而復(fù)雜,很多參數(shù)(環(huán)境參數(shù)、作業(yè)參數(shù)、靶標(biāo)參數(shù))對(duì)荷電霧滴沉積效率的影響機(jī)理不清楚。而且各參數(shù)對(duì)霧滴沉積的高敏感性及農(nóng)藥應(yīng)用環(huán)境、對(duì)象的復(fù)雜性是靜電噴霧技術(shù)應(yīng)用的最大挑戰(zhàn),主要問題有:
1)荷電量持留時(shí)間短。當(dāng)霧滴荷電后,荷電量在霧滴上的持留時(shí)間是有限的,因此,需要合理匹配輸運(yùn)氣流速度和噴霧距離,同時(shí)持留時(shí)間與霧滴屬性、環(huán)境參數(shù)有關(guān),這些條件在農(nóng)業(yè)環(huán)境中難以控制。
2)荷電霧滴易吸附在噴霧機(jī)及人體上。噴頭出口處荷電霧滴的荷電量最大,而噴頭處距離噴霧機(jī)具及人體的距離比冠層靶標(biāo)近,因此荷電霧滴會(huì)大量吸附在噴霧機(jī)及人體上。
5.2.2 研究展望與建議
1)繼續(xù)開展荷電參數(shù)、噴霧氣流與荷電霧滴匹配性研究,增大霧滴最大初始荷電量,同時(shí)確保到達(dá)靶標(biāo)時(shí)具有有效荷電量。
2加強(qiáng)荷電霧滴沉積機(jī)理研究。不同霧滴屬性、不同環(huán)境參數(shù)、不同靶標(biāo)參數(shù)、不同作業(yè)參數(shù)下的荷電霧滴沉積特性,探明影響荷電霧滴沉積的關(guān)鍵參數(shù)。
3)影響靜電噴霧效果的因素多而敏感,因此難以采用統(tǒng)一的作業(yè)標(biāo)準(zhǔn)來要求不同的靜電噴霧機(jī)。為保證靜電噴霧的實(shí)際效果,建議在推廣應(yīng)用任一靜電噴霧裝備前,均需根據(jù)特定的裝備制定詳細(xì)的靜電噴霧作業(yè)規(guī)范。
[1] Patel M K. Technological improvements in electrostatic spraying and its impact to agriculture during the last decade and future research perspectives -A review[J]. Engineering in Agriculture, Environment and Food, 2016, 9(1): 92-100.
[2] Zhang X, Kobayashi I, Uemura K, et al. Direct observation and characterization of the generation of organic solvent droplets with and without triglyceride oil by electrospraying[J]. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436(5): 937-943
[3] Shrimpton J S, Laoonual Y. Dyanimics of electrically charged transient evaporating sprays[J]. International Journal for . Numerical Methods Engineering. 2006,67 (8), 1063-1081.
[4] 周良富,薛新宇,周立新,等.果園變量噴霧技術(shù)研究現(xiàn)狀與前景分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):80-92.
Zhou Liangfu, Xue Xinyu, Zhou Lixin, et al. Research situation and progress analysis on orchard variable rate spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(23): 80-92. (in Chinese with English abstract)
[5] 朱和平,冼福生,高良潤.靜電噴霧技術(shù)的理論與應(yīng)用研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),1989,20(2):53-59.
Zhu Heping,Xian Fusheng,Gao Liangrun. Summary of research on electrostatic spraying techneque theory and its application[J].Transactions of the Chinese Society for Agricultural Machinery,1989,20(2) : 53-59.( in Chinese with English abstract)
[6] 茹煜,鄭加強(qiáng),周宏平.風(fēng)送式靜電噴霧技術(shù)防治林木病蟲害研究與展望[J].世界林業(yè)研究,2005,18(3):38-42.
[7] Wampler E L, Hoskins W M. Factors concerned in deposit of sprays: the role of electrical charges produced during spraying[J]. Journal of Applied.Physics, 1934, 5(2): 150.
[8] Bowen H D, Splinter W E, Carleton W M.Theoretical implications of electrical fields on deposition of charged particals[J]. Transaction of ASAE, 1964, 7(1): 75-82.
[9] Law S E, Bowen H D. Charging liquid sray by electrostatic induction[J]. Transaction of ASAE, 1966, 9(4): 501-506.
[10] Law S E. Electrostatic pesticide spraying:concepts and practice[J]. IEEE Transactions on Indusry Applications, 1983, 19(2): 160-168.
[11] Inculet I I, Fischer J K. Electrostatic aerial spraying [J]. IEEE Transactions on Industry Applications, 1989, 25(3): 558-562.
[12] Kihm K D, Kim B H. Atomization, charge, and deposition charactersitics of bipolarly charged aircraft sprays [J]. Atomization and Sprays, 1992, 2(4): 463-481.
[13] Law S, Thompson S. Electroclamping forces for controlling bulk particulate flow: charge relaxation effects[J]. Journal of Electrostatics. 1996, 37 (1): 79-93.
[14] Patel M K, Shamrma T, Nayak M K, et al.Computational modeling and experimental evaluation of the effects of electrode geometry and deposition target on electrostatic spraying processes[J]. International Journal of Computer Applications, 2015, 124(2): 10-15.
[15] Manoj K P,Ghanahyam C,Pawan K. Characterization of electrode material for electrostatic spray charging: Theoretical and engineering practices[J]. Journal of Electrostatics, 2013, 71(1): 55-60.
[16] 周良富,張玲,薛新宇,等.雙氣流道輔助靜電噴頭設(shè)計(jì)與試驗(yàn)[J].江蘇農(nóng)業(yè)科學(xué),2017,45(24):192-196.
[17] Maski D, Durairaj D. Effects of charging voltage, application speed, target height, and orientation upon charged spray deposition on leaf abaxial and adaxial surfaces[J]. Crop Protection, 2010, 29(2): 134-141.
[18] Yule, Shrimton, Watkins,et al. Electrostatically atomized hydrocarbon sprays[J].Fuel, 1995, 74(7): 1094-1103.
[19] Uwe Leuteritz, Amin V, Ernstwendelin B. A novel injection system for combustion engines based on electrostatic fuel atomization[C]//USA: Society of Automotive Engineers, 2000.
[20] 周良富,張玲,丁為民,等. 風(fēng)送靜電噴霧覆蓋率響應(yīng)面模型與影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):52-59. Zhou Liangfu, Zhang Ling, Ding Weimin, et al. Droplet coverage response surface models and influencing factors of air-assisted electrostatic spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31 (Supp.2): 52-59. (in Chinese with English abstract)
[21] 李烜,何雄奎,仲崇山,等. 荷電霧滴沉積效果的多因子響應(yīng)面模型[J]. 高電壓技術(shù),2007,33(2):32-36. Li Xuan, He Xiongkui, Zhong Chongshan, et al. Effect of different spray factors on charged droplet deposit using response surface methodology[J]. High Voltage Engineering, 2007, 33(2): 32-36. (in Chinese with English abstract)
[22] 王士林,何雄奎,宋堅(jiān)利,等.雙極性接觸式航空機(jī)載靜電噴霧系統(tǒng)荷電與噴霧效果試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):82-89.
Wang Shilin, He Xiongkui, Song Jianli, et al. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Transaction of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 82-89. (in Chinese with English abstract)
[23] Gan-Mor S, Ronen B, Ohaliav K. The effect of air velocity and proximity on the charging of sprays from conventional hydraulic nozzles[J]. Biosystems engineering, 2014, 121 (2) : 200-208.
[24] Patel M K, Sahoo H K, Ayak M K et al. Plausibility of variable coverage high range spraying: experimental studies of an externally air-assisted electrostatic nozzle[J]. Computers & Electronics in Agriculture, 2016, 127(9): 641-651.
[25] Pascuzzi S, Cerruto E. Spray deposition in “tendone” vineyards when using a pneumatic electrostatic sprayer. Crop Prot. 2015, 68(2):1-11.
[26] Guo J, Tailor M, Bamber T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture.[J] Journal of Physics D- Applied Physics, 2016, 49(3): 303-312.
[27] 周良富.果園雙風(fēng)送靜電噴霧關(guān)鍵技術(shù)與裝備研究[D].南京:南京農(nóng)業(yè)大學(xué),2016.
Zhou liangfu. Research on Key Technology and Equipment of Double Air-assisted Electrostatic Orchard Spraying[D]. Nanjing: Nanjing Agricultural University, 2016.
[28] 周良富,張玲,丁為民,等. 3WQ-400型雙氣流輔助靜電果園噴霧機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):45-53.
Zhou Liangfu, Zhang Ling, Xue Xinyu,et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(16): 45-53. (in Chinese with English abstract)
[29] 賈衛(wèi)東,薛飛,李成,等. 荷電霧滴群撞擊界面過程的PDPA測試[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):78-83.
Jia Weidong, Xue Fei, Li Cheng, et al. Measurement of charged droplets impacting plant target interface by using PDPA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 78-83. (in Chinese with English abstract)
[30] 薛新宇. 航空施藥技術(shù)應(yīng)用及對(duì)水稻品質(zhì)影響研究[D].南京:南京農(nóng)業(yè)大學(xué),2013.
Xue Xinyu. Applications of Modern Pesticide Aerial Application Technology and the Impact on Rice Quality[D].Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract)
[31] 賈衛(wèi)東,朱和平,董祥,等. 噴霧液滴撞擊大豆葉片表面研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):87-94.
Jia Weidong, Zhu Heping, Dong Xiang, et al.Impact of spray droplet on soybean leaf surface[J]. Transactions of theChinese Society for Agricultural Machinery, 2013, 44(12): 87-94. (in Chinese with English abstract)
[32] Shrimpton J S. Eletrohydrodynamics of charge injection atomization: regimes and fundamental limits[J]. Atomatztion and Sprays. 2003, 13(2/3): 173-190.
[33] Shrimpton J S, Yule A J. Design issues concerning charge injection atomi-zation[J]. Atomatztion and Sprays, 2004, 14(2): 127-142.
[34] Gu W H, Heil P E, Choi H, et al.Comprehensive model for fine coulomb fission of liquid droplets charged to Rayleigh limit[J]. Applied Physics Letters. 2007, 91 (6): 064104.
[35] Ficker T. Electrification of human body by walking[J]. Journal of Electrostatics. 2006 ,64 (1): 10-16.
[36] Sharma R, Clark D W, Srirama P K, et al. Tribocharging characteristics of the mars dust simulant[J]. IEEE Transactions on Indusry Applications. 2008, 44(2): 32-39.
[37] 蘭玉彬,張海艷,文晟,等. 靜電噴嘴霧化特性與沉積效果試驗(yàn)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):131-141. Lan Yubin,Zhang Haiyan,Wen Sheng, et al. Analysis and experiment on atomization characteristics and spray deposition of electrostaticn nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 131-141.( in Chinese with English abstract)
[38] 高良潤,冼福生. 靜電噴霧理論及其測試技術(shù)的研究[J].江蘇工學(xué)院學(xué)報(bào),1986(02):1-13.
[39] Zhao S, Castle G S P, Adamiak K. Comparison of conduction and induction charging in liquid spraying[J]. J. Electrost. 2005,63 (6): 871-886.
[40] Patel M K, Kundu M, Sahoo H K,et al. Enhanced performance of an air-assisted electrostatic nozzle: Role of electrode material and its dimensional considerations in spraycharging[J]. Engineering in Agriculture, Environment and Food, 2016, 9(4): 332-338.
[41] 茹煜. 農(nóng)藥航空靜電噴霧系統(tǒng)及其應(yīng)用研究[D]. 南京:南京林業(yè)大學(xué),2009. Ru Yu. Research on Aerial Pesticide Electrostatic Spraying System and its Application[D].Nanjing: Nanjing Forestry University, 2009(in Chinese with English abstract).
[42] 寧智,白振霄,孫春華,等. 湍流通道內(nèi)微粒受力沉降特性模擬[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014(45),12:1-9. Ning Zhi, Bai Zhenxiao, Sun Chunhua, et al. Force and deposition charcteristic of particles in turbulent flow channel [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014(45), 12: 1-9(in Chinese with English abstract).
[43] Colbert S A, Cairncross R A. A computer simulation for predicting electrostatic spray coating patterns[J]. Powder Technol. 2005, 151(1) :77-86.
[44] 舒朝然,詹敏,盛茂領(lǐng),等. 果樹樹冠靜電噴霧的空間荷電效應(yīng)分析[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,38(1):59-64.
Shu Chaoran,Zhan Min,Sheng Maoling,et al.Analysis on the space charge effects in tree canopy electrostatic spraying[J].Journal of Shenyang Agricultural University, 2007, 38(1): 59-64(in Chinese with English abstract).
[45] Jordi G, Joan R L. Continuous droplets' charge method for the Lagrangian simulation of electrostatic sprays[J]. Journal of Electrostatics, 2014, 72(5): 357-364.
[46] Zhang Jun, He Hongzhou. The motion behavior of a group of charged droplets in Liquid-Liquid electrostatic spray[J]. Flow Turbulence Combust, 2012, 89(2): 675-689.
[47] 茹煜,鄭加強(qiáng),周宏平,等. 感應(yīng)充電噴頭環(huán)狀電極誘導(dǎo)電場的分布研究[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(5):119-122. Ru Yu, Zheng Jiaqiang, Zhou Hongping, et al. Electric field distribution produced by circular electrode of induce charging nozzle[J]. Transactions of the CSAE, 2008, 24(5): 119-122.(in Chinese with English abstract)
[48] Mark N H, Malay M, Robert C S. Predicting particle trajectories on an electrodynamic screen theory and experiment[J]. J. Electrostat. 2013. 71 (3): 185-188.
[49] Lyons S M, Harrison M A, Law S E. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety[C]. Journal of physics. Conference Series.2011, 301 (1): 1-4.
[50] Law S E,Bowen H D.Theoretically predicted interaction of surface charge and evaporation on airborne pesticide droplets[J].Transaction of ASAE,1975, 18(1): 35-39, 45.
[51] Shrimpton J S,Yule A J. Drop Size and Velocity Measurements in an Electrostatically Produced Hydrocarbon Spray[J]. Journal of Fluids Engineering,1998, 120(3): 580-585.
[52] Brown R C. Tutorial review: simultaneous measurement of particle size and particle charge[J]. J. Aerosol Sci. 1997(98): 1373-1391.
[53] 邱白晶,陸洪蘭. 靜電噴霧荷質(zhì)比測量裝置:中國,201210457633.6[P]. 2012-11-15.
[54] Patel M K,Praveen B,Sahoo H K,et al.An advance air-induced air-assisted electrostatic nozzle with enhanced performance[J]. Computers & Electronics in Agriculture, 2017, 135(5): 280-288.
[55] Daniel E M, Mohamed A L. Aerial electrostatic spray deposition and canopy penetration in cotton[J]. Journal of Electrostatics, 2017, 90(12): 38-44.
[56] 吳宗漢. 基礎(chǔ)靜電學(xué)[M]. 北京:北京大學(xué)出版社,2010.
[57] Thompson J W, Eschelbach J W, Richard T W, et al. Investigation of electrospray ionization and electrostatic focusing devices using a three-dimensional electrospray current density profiler[J]. Journal of American Society for Mass Spectrometry, 2005, 16(3), 312–323.
[58] Hoffmann W C, Walker T W, Fritz B K, et al. Further evaluation of spray characterization of sprayers typically used in vector control[J]. Journal of the American Mosquito Control Association, 2012, 28(2): 93-101.
[59] 何勇,肖舒裴,方慧,等. 植保無人機(jī)施藥噴嘴的發(fā)展現(xiàn)狀及其施藥決策[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):113-124.
He Yong, Xiao Shupei, Fang Hui, et al. Development situation and spraying decision of spray nozzle for plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the ASABE), 2018, 34(13): 113-124. (in Chinese with English abstract)
[60] Minov S V, Cointault F, Vangeyte J, et al. Spray droplet characterization from a single nozzle by high speed image analysis using an in-focus droplet criterion[J]. Sensors, 2016,16(2): 218.
[61] JB/T 9782-2014,植保機(jī)械通用試驗(yàn)方法[S].北京,中國標(biāo)準(zhǔn)出版社,2014.
[62] Zhu H P, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposition distribution[J]. Computers and Electronics in Agriculture. 2011, 76(3): 38-43.
[63] Shrimpton J S, Yule A J. Drop size and velocity measurements in an electrostatically produced hydrocarbon spray[J]. Journal of Fluids Engineering, 1998, 120(3): 580-585.
[64] Zhentao W, Yonghui Z,Tianyu G, et al. Experimental study on size and velocity of charged droplets[J]. Procedia Engineering , 2015,126 (3): 522-526.
[65] 賈衛(wèi)東,邱白晶,施愛平,等. 農(nóng)用高壓靜電噴霧場的實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(12):66-69. Jia Weidong,Qiu Baijing,Shi Aiping, et al. Measurement of agricultural high-voltage electrostatic spraying field by using PDPA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12): 66-69. ( in Chinese with English abstract)
[66] Kwek J W, Heng D,Lee S H, et al. High speed imaging with electrostatic charge monitoring to track powder deagglomeration upon impact[J]. Journal of Aerosol Science, 2013, 65(3): 77-87
[67] Sen A K, Darabi J, Knapp D R,et al. Modeling and characterization of a carbon fiber emitter for electrospray ionization[J]. Journal of Micromechanics and Microengineering, 2006, 16(3): 620-630.
[68] Sen A K, Darabi J, Knapp D R. Analysis of droplet generation in electrospray using a carbon fiber based microfluidic emitter[J]. Journal of Fluids Engineering, 2011, 133(7): 296-301.
[69] Lim L K, Hua J, Wang C H, et al. Numerical simulation of cone-jet formation in electrohydrodynamic atomization[J]. AIChE Journal, 2011,57(1):57–78.
[70] Xu Q, Qin H, Yin Z, et al. Coaxial electro hydrodynamic atomization process for production of polymeric composite microspheres[J]. Chemical Engineering Science, 2013, 104(4): 330-346.
[71] Yan W C, Davoodi P, Tong Y W, et al. Computational study of core-shell droplet formation in coaxial electro hydrodynamic atomization process[J].AIChE Journal, 2016,62(12): 4259-4276.
[72] Dastourani H, Jahannama M R, Eslami-Majd A. A physical insight into electrospray process in cone-jet mode: Role of operating parameters[J]. International Journal of Heat and Fluid Flowing,2018, 70(3): 315-335.
[73] Daniel E M, Mohamed A L. Efficacy of electrostatically charged glyphosate on ryegrass[J]. Journal of Electrostatics, 2017, 90(12): 45-53.
[74] Mamidi V R, Ghanshyam C, Kumar P M, et al. Electrostatic hand pressure knapsack spray system with enhanced performance for small scale farms[J]. Journal of Electrostatics, 2013, 71(4): 785-790.
[75] Gaunt L F, Hughes J F, Harrison N M. Electrostatic deposition of charged insecticide sprays on electrically isolated insects[J].Journal of electrostatics,2003, 57(1): 35-47.
[76] 楊洲,牛萌萌,李君,等. 不同側(cè)風(fēng)和靜電電壓對(duì)靜電噴霧飄移的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):39-45. Yang Zhou, Niu Mengmeng, Li Jun, et al. Influence of lateral wind and electrostatic voltage on spray drift of electrostatic sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015, 31(24): 39-45. (in Chinese with English abstract)
[77] 王軍鋒,張娟娟,王貞濤,等. 風(fēng)幕式氣力輔助靜電噴霧沉積特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(2):61-65.
Wang Junfeng, Zhang Juanjuan, Wang Zhentao, et al.Deposition and distribution characteristics of air-assisted electrostatic spraying by wind-curtain[J]. Transactions of theChinese Society for Agricultural Machinery, 2012, 43(2): 61-65. (in Chinese with English abstract)
[78] 賈衛(wèi)東,胡化超,陳龍,等. 風(fēng)幕式靜電噴桿噴霧噴頭霧化與霧滴沉積性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):53-59. Jia Weidong, Hu Huachao, Chen Long, et al. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 53-59. (in Chinese with English abstract)
[79] 周宏平,茹煜,舒朝然,等. 航空靜電噴霧裝置的改進(jìn)及效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):7-12. Zhou Hongping, Ru Yu, Shu Chaoran, et al. Improvement and experiment of aerial electrostatic spray device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 7-12. (in Chinese with English abstract)
[80] 茹煜,金蘭,賈志成,等. 無人機(jī)靜電噴霧系統(tǒng)設(shè)計(jì)及試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):42-47. Ru Yu, Jin Lan, Jia Zhicheng, et al. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 42-47. (in Chinese with English abstract)
[81] Daniel E M, Mohamed A L. Aerial electrostatic spray deposition and canopy penetration in cotton[J]. Journal of Electrostatics, 2017, 90(12): 38-44.
[82] Law S E. Embeded-electrode electrostatic-induction sray charging nozzle:theoretical and engineering design[J]. Transaction of ASAE, 1978, 21(6): 1096-1104.
[83] 張玲,周良富,孫竹,等.雙風(fēng)道風(fēng)送靜電噴霧系統(tǒng)試驗(yàn)研究[J].中國農(nóng)機(jī)化學(xué)報(bào),2014,35(6):65-70.
[84] Carlton J. B. Technique to reduce chemical usage and concomitant drift from aerial sprays: the United States, 5975425 [P].1999-11-2.
[85] 楊洲,牛萌萌,李君,等.果園在線混藥型靜電噴霧機(jī)的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):60-67. Yang Zhou, Niu Mengmeng, Li Jun,et al. Design and experiment of an electrostatic sprayer with on-line mixing system for orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 60-67. (in Chinese with English abstract)
[86] 周艷,賈首星,鄭炫,等.果園氣力式靜電噴霧機(jī)的研制[J].新疆農(nóng)機(jī)化,2011,20(6):16-18.
[87] 何雄奎,嚴(yán)荷榮,儲(chǔ)金宇,等.果園自動(dòng)對(duì)靶靜電噴霧機(jī)設(shè)計(jì)與試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2003,199(6):78-80. He Xiongkui, Yan Herong,Chu Jingyu,et al.Design and testing of the automatic target detecting,electrostatic,air assisted,orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 199(6): 78-80. (in Chinese with English abstract).
[88] 欒華,張青,王穩(wěn)祥. Z03K000B靜電頻譜噴灑系統(tǒng)加改裝與飛行試驗(yàn)[J]. 新疆農(nóng)墾科技,2006,25(5):46-47.
[89] 張亞莉,蘭玉彬,Bradley K Fritz,等.美國航空靜電噴霧系統(tǒng)的發(fā)展歷史與中國應(yīng)用現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):1-7. Zhang Yali, Lan Yubin, Bradley K F,et al. Development of aerial electrostatic spraying systems in the United States and applications in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 1-7.(in Chinese with English abstract)
Research progress and application status of electrostatic pesticide spray technology
Zhou Liangfu, Zhang Ling, Xue Xinyu※, Chen Chen
(210014,)
Pesticides electrostatic spray technology of can improve the deposition efficiency of pesticides on the hidded faces of leaves and reduce the pollution of pesticides to the environment. It has become a hot topic for scholars at home and abroad. In order to clarify the research and industrial status of pesticide electrostatic spray technology and the bottlenecks in the industry, the basic theory, mechanism research and analysis, indoor/outdoor electrostatic spray effect evaluation and electrostatic spray equipment industry status of pesticide electrostatic spray technology was systematically analyzed in this paper. Firstly, the droplets charging modes, the charged droplets dynamics, the charge-to-mass ratio(CMR) and the retention time were mainly overviewed. The conclusions about the main force of the charged droplets, the optimal charging parameter of the inductive charging and the reasonable comparison method for the charge-to-mass ratio were gained that the main force imposed charging droplet were electrostatic force, airflow drag force and gravity; Inductive charging is the most commonly used charging technology for electrostatic spray of pesticides, and the best charging voltage was 6-10kV, the electrode material is nickel or nickel-plated copper material, and the distance between the electrode and the nozzle outlet was 5 mm or less. When comparing the CMR between different sprayers, all the current, spray volume, measuring distance, droplet spectrum and particle size, air velocity and distribution should be expressed. Secondly, the test methods of charge-to-mass ratio, potential, droplet size and droplet velocity in electrostatic spray were introduced. The Faraday barrel, Faraday cage and mesh target method were the 3 main methods to measure the CMR. The application of phase doppler particle analyzer (PDPA) and CFD simulation in electrostatic spray technology were proposed. But the application of these advanced testing technologies and the application details of CFD simulation in electrostatic spray still need further study. Thirdly, the influence mechanism of charged droplet deposition was reviewed from 4 aspects of charging parameters, environmental parameters, working parameters and target parameters. It was believed that the electrostatic spray deposition efficiency was affected by the charging parameters, environmental parameters, target parameters and working parameters, but the mechanism of influence was still unclear and still needs further attention. At last, a large number of electrostatic spray indoor/outdoor effect evaluation tests showed that the charged droplets were driven by electrostatic force, airflow drag force and gravity, which contribute to the deposition of mist droplets in the leaves, but the electrostatic spray on the droplets drifting and penetrating properties was still no conclusion. Last for the most, the electrostatic spray technology had the advantage of high efficiency of droplet deposition, but it was still not widely used due to its unsatisfactory application effect. Because of the high sensitivity of various parameters to droplet deposition, the complexity of application environment and objects were the biggest challenges in the application of electrostatic spray technology, and the main bottlenecks were the short retention time and easily adsorbed by the sprayer and the human body. 3 suggestion were listed as: (1) Continue to carry out the research on the matching parameters of the charging parameters, air velocity and the charged droplets, increasing the maximum initial charge, meanwhile ensuring the effective charge when reaching the target.(2) Strengthening the research on mechanism of charged droplet deposition to clarify the key parameters affecting the deposition of charged droplets.(3) In order to ensure the actual effect of electrostatic spray, it is recommended to develop any electrostatic spray equipment in accordance with the specific equipment to develop detailed electrostatic spray operation specifications.
pesticides; spraying; mechanization; induction charging; charge-to-mass ratio; test; simulation
10.11975/j.issn.1002-6819.2018.18.001
S491
A
1002-6819(2018)-18-0001-11
2018-07-12
2018-08-14
國家自然科學(xué)基金資助項(xiàng)目(51605235);國家重點(diǎn)研發(fā)計(jì)劃(2018YFD02014001);國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0701001)
周良富,助理研究員,博士,主要從事植保機(jī)械裝備與仿真技術(shù)研究。Email:326310253@qq.com
薛新宇,研究員,博士,主要從事植保與環(huán)境工程技術(shù)研究。Email:xuexynj@qq.com
周良富,張 玲,薛新宇,陳 晨. 農(nóng)藥靜電噴霧技術(shù)研究進(jìn)展及應(yīng)用現(xiàn)狀分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):1-11. doi:10.11975/j.issn.1002-6819.2018.18.001 http://www.tcsae.org
Zhou Liangfu, Zhang Ling, Xue Xinyu, Chen Chen. Research progress and application status of electrostatic pesticide spray technology [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 1-11. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.18.001 http://www.tcsae.org