国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

硬件在環(huán)秸稈切割仿真試驗平臺初步設(shè)計

2018-10-11 03:14謝守勇楊明金
農(nóng)業(yè)工程學(xué)報 2018年19期
關(guān)鍵詞:供料振動臺螺旋

劉 軍,謝守勇,陳 翀,謝 丹,楊明金

?

硬件在環(huán)秸稈切割仿真試驗平臺初步設(shè)計

劉 軍1,2,謝守勇1,2※,陳 翀1,謝 丹1,楊明金1,2

(1.西南大學(xué)工程技術(shù)學(xué)院,重慶 400715; 2.丘陵山區(qū)農(nóng)業(yè)裝備重慶市重點實驗室,重慶 400715)

為在實驗室條件下,仿真模擬收獲機(jī)械在田間工作的收割和行進(jìn)工作環(huán)境,該文基于硬件在環(huán)技術(shù)搭建了秸稈類切割仿真及試驗平臺,提出一種螺旋絞龍供料系統(tǒng),實現(xiàn)了物料的連續(xù)供給,并利用離散單元法對其進(jìn)行物料的碰撞、運動方向及箱內(nèi)分布仿真分析,根據(jù)仿真結(jié)果優(yōu)化了螺旋絞龍供料系統(tǒng)結(jié)構(gòu)并驗證了設(shè)計的合理性和可行性。根據(jù)車輛行進(jìn)道路模擬試驗理論,設(shè)計了一種模擬收獲機(jī)械田間行走的振動臺,采用PLC編程軟件Gxworks2、觸摸屏編程軟件SKWorkshopV5.0.2和組態(tài)軟件kingview6.60SP1進(jìn)行上位機(jī)編程,利用加速度、轉(zhuǎn)矩傳感器及上位機(jī)仿真模擬,檢測和給定試驗過程中所需的控制與反饋信號。試驗結(jié)果表明:當(dāng)螺旋絞龍轉(zhuǎn)速維持在450~500 r/min范圍內(nèi)且保持振動臺振動頻率為4.12 Hz時,割刀輸出平均轉(zhuǎn)矩近似為田間收獲秸稈時的輸出轉(zhuǎn)矩,即割刀實際工作情況接近田間收獲機(jī)械工況。該研究可以為收獲機(jī)械設(shè)計提供試驗參考數(shù)據(jù),為農(nóng)業(yè)機(jī)械模擬可靠性測試標(biāo)準(zhǔn)制定提供技術(shù)參考。

農(nóng)業(yè)機(jī)械;設(shè)計;仿真;秸稈;硬件在環(huán)

0 引 言

硬件在環(huán)(hardware-in-loop,簡稱HIL)技術(shù)是將計算機(jī)仿真技術(shù)與實際試驗相結(jié)合可縮短開發(fā)周期和降低研發(fā)成本等,是一種半實物仿真技術(shù),可以快速實現(xiàn)樣機(jī)的生產(chǎn),在農(nóng)業(yè)機(jī)械、車輛工程以及航空航天等領(lǐng)域得到廣泛應(yīng)用[1-8]。由于硬件在環(huán)技術(shù)可將田間收獲機(jī)械工況通過上位機(jī)仿真進(jìn)行模擬,對于需要驗證和優(yōu)化部件的期望“環(huán)境”,仿真數(shù)據(jù)通過信號轉(zhuǎn)換給實物模擬試驗臺實現(xiàn)由仿真到實物試驗的過渡,其中秸稈物料(物理耦合)是實現(xiàn)2種功能數(shù)據(jù)銜接的關(guān)鍵因素。秸稈類切割是農(nóng)業(yè)收獲機(jī)械在農(nóng)田作業(yè)時的一項重要工序,其切割性能直接關(guān)乎收獲效率及機(jī)器維護(hù)成本等重要信息。然而受制于農(nóng)作物收獲季節(jié)、田間地形差異等因素的影響,收獲機(jī)械在獲取切割參數(shù)時,存在試驗不可重復(fù)、數(shù)據(jù)連續(xù)性差、難度大且精度低等問題[9-12]。因此,為獲取詳盡的切割試驗參數(shù),國內(nèi)外學(xué)者依據(jù)不同的設(shè)計理念研發(fā)了多種類型的秸稈類切割仿真試驗平臺。文獻(xiàn)[13]利用帶有光電測速裝置的秸稈試驗平臺對玉米秸稈切斷速度和功耗進(jìn)行了正交試驗,所得試驗結(jié)果驗證了切割方式及受切根數(shù)對切割速度和功耗的影響。文 獻(xiàn)[14]利用立式鐮刀切割平臺分析出切割力和切割能量受稻桿切割位置(節(jié)點和節(jié)間)和莖數(shù)(作物密度)的影響。文獻(xiàn)[15]利用LabVIEW圖形化編程軟件融合葡萄秸稈測試平臺,對切割系統(tǒng)中的2類刀型進(jìn)行了分析,并結(jié)合粉碎理論研究了測試平臺的可靠性和準(zhǔn)確性。文獻(xiàn)[16]設(shè)計了往復(fù)式模擬切割試驗平臺,利用四因子正交和單因素法可對小麥秸稈切割性能進(jìn)行試驗分析。文獻(xiàn)[17]將高速攝影系統(tǒng)應(yīng)用于棉花秸稈切割試驗平臺,詳細(xì)分析了切割速度、傾角及切割速比等因素對棉桿單位面積最大切割功和單位直徑最大切割力的影響。

縱觀前期研究成果,盡管所設(shè)計的試驗平臺可以滿足設(shè)計要求,但對秸稈的用量需求過大,且需要人工不斷添加試驗秸稈,這對收獲機(jī)械連續(xù)工作可靠性的驗證無法保證。本文創(chuàng)新性地提出一種螺旋絞龍式供料系統(tǒng),結(jié)合模擬田間地形差異及收獲機(jī)械本身振動的仿真振動平臺,利用硬件在環(huán)設(shè)計理念,構(gòu)建了可以模擬收獲機(jī)械在田間實際運行的仿真模擬試驗平臺。

1 硬件在環(huán)系統(tǒng)搭建

以秸稈物料為耦合變量的HIL系統(tǒng)框圖如圖1所示。HIL系統(tǒng)結(jié)構(gòu)是由仿真物理系統(tǒng)(emulated physical system,EPS)和研究物理系統(tǒng)(investigated physical system,IPS)2個子系統(tǒng)組成,2個子系統(tǒng)之間通過耦合變量實現(xiàn)能量的傳遞[3,7]。此外,EPS必須提供IPS所需的“自然”環(huán)境,而在2個子系統(tǒng)聯(lián)系的過程中,需要不同的傳感器實時測量數(shù)據(jù),以實現(xiàn)2個系統(tǒng)之間的實時跟蹤反饋。此時,部分反饋信號是為了對“自然”環(huán)境實時模擬,構(gòu)建閉環(huán)所需的聯(lián)系變量,這種閉環(huán)稱之為效應(yīng)器(effector,EFT)。EFT的信號需要由置于上位機(jī)(工控機(jī))內(nèi)部的實時軟件仿真器(real-time software simulation,RTSS)提供驅(qū)動信號。對于圖1中,歸屬EPS的螺旋絞龍秸稈供料系統(tǒng)為IPS(此時為收獲機(jī)械,或者收獲機(jī)械需驗證的部分結(jié)構(gòu))提供“自然”環(huán)境中的秸稈物料,可以模擬收獲機(jī)械的行走,以及行走中的秸稈物料連續(xù)性供給。而同樣歸屬EPS的振動臺為IPS提供“自然”環(huán)境中由田間道路不平整及收獲機(jī)械自身等因素造成的機(jī)器振動模擬。EPS與IPS系統(tǒng)之間通過物理耦合變量秸稈物料以及振動臺提供的振動應(yīng)力實現(xiàn)能量的傳遞。利用加速度及動態(tài)轉(zhuǎn)矩傳感器的收集數(shù)據(jù)為RTSS提供驅(qū)動螺旋絞龍秸稈供料系統(tǒng)及振動臺所需的閉環(huán)聯(lián)系變量。這樣基于秸稈物料控制下的HIL系統(tǒng)就構(gòu)建完成,其內(nèi)部運行過程如圖1所示。

圖1 秸稈物料控制下的HIL系統(tǒng)框圖

2 系統(tǒng)模型與參數(shù)設(shè)置

2.1 秸稈物料離散模型

對于秸稈類物料,以水稻或者小麥等為例,多為細(xì)長管徑結(jié)構(gòu),為便于仿真分析,利用離散單元法(discrete element method,DEM)[18-22],將其之間的接觸、碰撞及運動等效為具備相同物理特性的多球元長桿狀顆粒(如圖2所示),圖2中為多球元交叉橫截面長度(mm),為球元半徑(mm),為球元個數(shù),可根據(jù)秸稈長度設(shè)定,并使其擁有相同的彈性模量、剪切模量和柏松比等特性。運用Hertz-Mindlin無滑動接觸模型[23-26]和牛頓力學(xué)運動方程,得到桿狀顆粒的運動方程(包含平動和轉(zhuǎn)動方程)為:

式中m桿狀顆粒質(zhì)量,kg;V為桿狀顆粒線速度,m/s;F、F分別為桿狀顆粒與周圍其他顆粒的碰撞力(含切向和法向兩個方向)及摩擦力(含動摩擦力和靜摩擦力),N;I為顆粒轉(zhuǎn)動慣量,kg×m2;ω為轉(zhuǎn)動角速度,rad/s;M、M、M分別為切向和法向碰撞力產(chǎn)生的力矩以及滾動摩擦力矩,N·m;為第個單桿顆粒,取值為任意整數(shù)。

從式(1)可以看出,當(dāng)明確某一時刻的桿狀顆粒線速度V其合力即可求出,相應(yīng)的設(shè)定了顆粒轉(zhuǎn)動慣量及轉(zhuǎn)動角速度,其合力矩即可求出。

圖2 多球元桿狀顆粒

2.2 螺旋絞龍與桿狀顆粒的相互作用

由以上力學(xué)分析可知,螺旋絞龍必須具備一個臨界的角速度,獲得桿狀顆粒脫離螺旋絞龍的臨界離心力。為更好理解單根秸稈脫離螺旋絞龍的過程,作者對此進(jìn)行了仿真分析如圖3c所示。設(shè)定靜摩擦系數(shù)為,螺旋絞龍半徑為(mm),此時忽略桿狀顆粒半徑,假定其與螺旋絞龍緊貼,則可以得到螺旋絞龍與桿狀顆粒的力學(xué)分析方程,依此求取桿狀顆粒脫離螺旋絞龍的臨界角速度ω(rad/s)。

2.3 振動臺

為便于拆裝,振動臺采用框架聯(lián)結(jié)結(jié)構(gòu),承重板和底座框架采用槽鋼85-2-GB/T707,振動彈簧材料為碳素彈簧鋼絲20-h11-GB/T342/65Mn-B-GB/T4357,啟振機(jī)構(gòu)采用HTD-8M-30-2F系列圓弧齒同步帶輪,套筒采用5mm熱軋鋼板45-Ⅱ-S-GB/T710,各安裝工位均做強(qiáng)化處理,提高聯(lián)結(jié)強(qiáng)度。其結(jié)構(gòu)和模型如圖4所示。

圖3 桿狀顆粒受力過程分析

圖4 振動臺

在模擬測試中,根據(jù)行業(yè)規(guī)定[27-29],車輛受到的激振頻率f表達(dá)式為:

根據(jù)本文設(shè)計要求,此振動臺的技術(shù)參數(shù)設(shè)定為:最大位移幅值30 mm,最大頻率10 Hz,最大加速度20 m/s2。

3 控制系統(tǒng)

此仿真試驗平臺的控制系統(tǒng)主要集中于HIL系統(tǒng)的RTSS(圖5),通過對各類傳感器數(shù)據(jù)的收集處理及內(nèi)部信號設(shè)定,將觸發(fā)信號及仿真所需數(shù)據(jù)傳遞給電力系統(tǒng)及各個仿真軟件。

圖5 仿真試驗平臺控制系統(tǒng)設(shè)計

試驗平臺硬件構(gòu)成主要有2臺變頻電機(jī)(YVF132M-4- 7.5KW)、4臺調(diào)速電機(jī)(3K-15K/5IK120RGN-CF)、2套變頻器(8000B-4T7R5GB)、1塊觸摸屏(SK-102AE)、1套PLC(FX3u-64M/ES-A)、1個加速度傳感器(MPU6050)以及1套動態(tài)轉(zhuǎn)矩傳感器(MCRT 59000V系列)及3種實時監(jiān)測軟件,分別為PLC編程軟件Gxworks2、觸摸屏編程軟件SKWorkshopV5.0.2和組態(tài)軟件kingview6.60SP1。其軟件操控系統(tǒng)主要用于控制各電機(jī)以及滿足測試裝置實時顯示監(jiān)測轉(zhuǎn)速、轉(zhuǎn)矩、振動加速度等值,使收獲機(jī)械的工作負(fù)載達(dá)到設(shè)計值。其整體控制系統(tǒng)軟硬件部分設(shè)計如圖5所示。

4 仿真分析與試驗驗證

由于離散單元的計算過于復(fù)雜,采用CAF軟件的DEM輔助分析,可以實現(xiàn)對每個桿狀顆粒的運動軌跡描述、顆粒之間或者與周圍環(huán)境(物料槽內(nèi)壁等)之間的碰撞演示。本文以水稻秸稈為例,設(shè)定物料槽材料為鋼材,對其各參數(shù)進(jìn)行定義,如表1和表2所示。

表1 材料參數(shù)

表2 材料接觸參數(shù)

4.1 仿真分析

為測試螺旋絞龍秸稈供料系統(tǒng)特性,對其進(jìn)行了仿真分析,結(jié)果如圖6所示。圖6a為螺旋絞龍秸稈供料系統(tǒng)仿真安裝結(jié)構(gòu)。圖6b為理想情況下,桿狀顆粒在螺旋絞龍作用下的速度分布,很明顯物料槽內(nèi)的速度變化不大,很難形成可以循環(huán)流動的顆粒渦流。這主要是由于仿真分析過程中,桿狀顆粒間的粘滯力較大,當(dāng)初始桿狀顆粒飛出后,很少再有其他桿狀顆粒補(bǔ)充至螺旋絞龍割刀處,盡管此時的螺旋絞龍已達(dá)到最大轉(zhuǎn)動角速度。圖6c為優(yōu)化后的螺旋絞龍秸稈供料系統(tǒng),在螺旋絞龍底部增加了一個扇形葉片,以此增加螺旋絞龍的加載和擾動面積,提高物料形成渦流的強(qiáng)度,利于形成連續(xù)循環(huán)的物料流動。圖6d為優(yōu)化后的秸稈速度分布。

圖6 優(yōu)化前后結(jié)構(gòu)和秸稈速度變化

在優(yōu)化結(jié)構(gòu)以后,為更好觀察秸稈在物料槽的運動軌跡,規(guī)定初始物料方向如圖7a所示,對其進(jìn)行仿真分析,仿真結(jié)果如圖7b和7c所示。從圖7可以看出,在初始狀態(tài)切割區(qū)域內(nèi)和割刀上方顆粒主要沿方向(向左)流動;在中間狀態(tài)時,切割區(qū)域內(nèi)和割刀上方顆粒主要沿-方向(向內(nèi),“-”表示沿著軸負(fù)方向)流動;在循環(huán)終態(tài),切割區(qū)域內(nèi)和割刀上方顆粒主要沿-方向(向右)流動,如此循環(huán),形成可供割刀持續(xù)切割的秸稈顆粒流。

圖7 秸稈運動方向變化過程(1個周期)

圖8為桿狀顆粒在物料槽內(nèi)的整體均勻度分布仿真圖(俯瞰角度)。設(shè)定仿真時間8 h(PC機(jī)特性決定,如有計算中心,會縮短仿真時間),初始時刻即為仿真的開始,中間時刻為仿真4 h后觀測的結(jié)果,終態(tài)時刻為仿真結(jié)束時間。從圖8可以看出桿狀顆粒在不斷被割斷,但是其均勻度(指的是秸稈在物料槽的分布)變化不大。在實際操作時,物料槽的邊緣部分物料分布較密,這和仿真結(jié)果一致,但不影響形成可供割刀持續(xù)切割的秸稈顆粒流。因此可在實際操作時對其施加少許人為干預(yù)或進(jìn)一步優(yōu)化物料槽的形狀,本文為減少設(shè)計周期,未對此部分進(jìn)行優(yōu)化設(shè)計。

圖8 秸稈顆粒均勻度分布圖

為驗證章節(jié)2.2中桿狀顆粒脫離螺旋絞龍的臨界角速度,設(shè)定螺旋絞龍的運行速度范圍300~600 r/min(由于桿狀顆粒之間的摩擦相對復(fù)雜,此時存在的臨界角速度應(yīng)該是一個范圍),獲取的桿狀顆粒在物料槽內(nèi)的運行速度范圍如表3所示。

表3 不同螺旋絞龍轉(zhuǎn)速和振動臺參數(shù)下的秸稈顆粒速度范圍

從表3可以看出:隨著螺旋絞龍轉(zhuǎn)速的增加,桿狀顆粒速度也在增加,但當(dāng)達(dá)到600 r/min時,桿狀顆粒速度范圍突增且不穩(wěn)定,這與實際收獲機(jī)械的收割過程不相符合,屬于空載高速運行;而在低速300 r/min時,顆粒運行速度尚未達(dá)到收獲機(jī)械行駛速度,屬于低速過彎運行。因此對于理想情況下的秸稈供料系統(tǒng),其螺旋絞龍轉(zhuǎn)速因維持在400~500 r/min,符合小型機(jī)械田間收獲時的運行狀態(tài)。

4.2 試驗驗證

為更好驗證所設(shè)計的螺旋絞龍供料系統(tǒng)和振動臺的性能,搭建基于HIL系統(tǒng)的整體試驗平臺,各部件、整體及上位機(jī)監(jiān)控測試信號如圖9所示。收獲機(jī)械是由4G80割曬機(jī)的割臺和微耕機(jī)1WG6.3-110FC-Z的動力系統(tǒng)拼裝而成,割刀為往復(fù)式普通Ⅱ型。為達(dá)到收獲機(jī)械所需振幅30 mm,設(shè)置振動臺振頻4.12 Hz,通過動力系統(tǒng)輸出的扭矩,利用轉(zhuǎn)矩傳感器獲取,從側(cè)面反映螺旋絞龍供料系統(tǒng)和振動臺設(shè)計的合理和可行性。測試時間1 min,試驗數(shù)據(jù)經(jīng)3次采集采用均值化處理,試驗結(jié)果如表4所示。

圖9 基于HIL系統(tǒng)的仿真試驗平臺

從表4可以看出,當(dāng)螺旋絞龍轉(zhuǎn)速及振動臺振頻為0時,動力系統(tǒng)輸出的轉(zhuǎn)矩為21.1 N·m,隨著振動臺開始工作且螺旋絞龍轉(zhuǎn)速的提升,動力系統(tǒng)的轉(zhuǎn)矩開始增加,即割刀的負(fù)載開始增加,當(dāng)螺旋絞龍轉(zhuǎn)速到達(dá)450~500 r/min且維持振動臺振頻4.12 Hz時,輸出平均轉(zhuǎn)矩近似為田間收獲水稻秸稈時的輸出轉(zhuǎn)矩范圍[19.53 30.39] N·m,此時收獲機(jī)械額定功率為[4.5 7.0] kW,額定轉(zhuǎn)速2 200 r/min,即割刀實際工作情況接近田間收獲機(jī)械所受“環(huán)境”。這也驗證了本文螺旋絞龍供料系統(tǒng)和振動臺設(shè)計的合理性和可行性。

表4 可行性驗證試驗結(jié)果

5 討 論

由于本試驗平臺僅采用加速度和扭矩2種傳感器對實測數(shù)據(jù)進(jìn)行收集,只能間接為收獲機(jī)械研發(fā)提供指導(dǎo)數(shù)據(jù),但此平臺可通過RTSS給定收獲機(jī)械所需收割“環(huán)境”的控制信號。本研究下一步需要探討的內(nèi)容如下:

1)由于收割機(jī)械的工作條件比較復(fù)雜,田間測試受收獲季節(jié)的限制,如何利用現(xiàn)有試驗平臺,設(shè)計物料供給更換系統(tǒng)及物料更換的評價標(biāo)準(zhǔn)等,并依據(jù)行業(yè)標(biāo)準(zhǔn),制定符合丘陵山區(qū)小型農(nóng)機(jī)具國家標(biāo)準(zhǔn)。

2)針對丘陵地區(qū)小型收割機(jī)械幾乎都沒有充分進(jìn)行性能測試及可靠性試驗。大量的問題是通過用戶使用暴露出來的。這就造成了生產(chǎn)企業(yè)的售后成本太過高昂,用戶的作業(yè)收入也被大打折扣。依靠現(xiàn)有實驗平臺如何利用熱成像、超聲波探傷等儀器分析易損件割刀的力學(xué)性能并加以改進(jìn)是本研究下一步研究內(nèi)容。并針對目前收獲機(jī)械欠缺的可靠性測試,如何選取有效的測試參數(shù)進(jìn)行驗證。

3)由于小型收割機(jī)的用戶群體文化有限,對于收割機(jī)作業(yè)新手及營業(yè)性大面積作業(yè)時,會產(chǎn)生由于操作不當(dāng)導(dǎo)致的故障及產(chǎn)生大量重復(fù)勞動,在智能農(nóng)機(jī)的大環(huán)境下,利用現(xiàn)有平臺如何提高農(nóng)機(jī)具的智能化水平,如大塊田作業(yè)智能駕駛,割臺自適應(yīng)升降、分禾器智能防碰撞及喂入量自適應(yīng)調(diào)整等都將成為本文后續(xù)的研究范疇。

6 結(jié) 論

本文基于HIL系統(tǒng)設(shè)計了秸稈類切割仿真試驗平臺,通過仿真和試驗數(shù)據(jù)分析,得到以下結(jié)論:

1)創(chuàng)新性設(shè)計的可持續(xù)供料的螺旋絞龍機(jī)構(gòu)和振動平臺,可提供收獲機(jī)械運行過程中的收割“環(huán)境”。

2)利用離散單元法結(jié)合CAF軟件,定義了秸稈的仿真模型,并對其運動特性進(jìn)行了分析,驗證了所提方案的合理和可行性。

3)螺旋絞龍轉(zhuǎn)速到達(dá)450~500 r/min且維持振動臺振頻4.12 Hz時,輸出平均轉(zhuǎn)矩近似為田間收獲秸稈時的輸出轉(zhuǎn)矩,即割刀實際工作情況接近田間收獲機(jī)械工作“環(huán)境”。

[1] 羅陸鋒,鄒湘軍,程堂燦,等. 采摘機(jī)器人視覺定位及行為控制的硬件在環(huán)虛擬試驗系統(tǒng)設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):39-46.

Luo Lufeng, Zou Xiangjun, Cheng Tangcan, et al. Design of virtual test system based on hardware-in-loop for picking robot vision localization and behavior control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 39-46. (in Chinese with English abstract)

[2] Barone R J, Mayer K P. Agricultural system control and feedback loop: U.S. Patent Application 15/645,492.[P]. 2018-1-11.

[3] 位正. 新一代硬件在環(huán)仿真平臺的研究和開發(fā)[D]. 北京:清華大學(xué),2009.

Wei Zheng. Development of New Generation Hardware- In-The-Loop Simulation Platform[D]. Beijing: Tsinghua University, 2009. (in Chinese with English abstract)

[4] Nguyen,Truong,Sinh,等. 電動汽車動力保持型機(jī)械式自動兩擋變速器仿真與試驗[J]. 清華大學(xué)學(xué)報:自然科學(xué)版,2017(10):1106-1113.

Nguyen, Truong, Sinh, et al. Simulation and experimental demonstration of a seamless two-speed automatic mechanical transmission for electric vehicles[J]. Journal of Tsinghua University (Science and Technology), 2017(10): 1106-1113. (in Chinese with English abstract)

[5] Ruuskanen V, Koponen J, Sillanpa T, et al. Design and implementation of a power-hardware-in-loop simulator for water electrolysis emulation[J]. Renewable Energy, 2018, 119: 106-115.

[6] 余波,朱紀(jì)洪,范勇,等. 飛行控制系統(tǒng)大閉環(huán)半物理仿真研究[J]. 航天控制,2010,28(2):51-55.

Yu Bo, Zhu Jihong, Fan Yong, et al. Research on Large-scale Hardware-in-closed-loop Simulation of Flight Control System[J]. Aerospace Control, 2010, 28(2): 51-55. (in Chinese with English abstract)

[7] 閆斌,鄢挺,楊林,等. 混合動力車輛硬件在環(huán)測試系統(tǒng)研究[J]. 系統(tǒng)仿真學(xué)報,2017,29(6):1237-1243.

Yan Bin, Yan Ting, Yang Lin, et al. Development of hybrid electric vehicle hardware-in-the-loop testing system[J]. Journal of System Simulation, 2017, 29(6): 1237-1243. (in Chinese with English abstract)

[8] 謝斌,李靜靜,魯倩倩,等. 聯(lián)合收割機(jī)制動系統(tǒng)虛擬樣機(jī)仿真及試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(4):18-24.

Xie Bin, Li Jingjing, Lu Qianqian, et al. Simulation and experiment of virtual prototype braking system of combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(4): 18-24. (in Chinese with English abstract)

[9] 羅陸鋒,鄒湘軍,熊俊濤,等. 自然環(huán)境下葡萄采摘機(jī) 器人采摘點的自動定位[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(2):14-21.

Luo Lufeng, Zou Xiangjun, Xiong Juntao, et al. Automatic positioning for picking point of grape picking robot in natural environment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 14-21. (in Chinese with English abstract)

[10] 陳黎卿,梁修天,曹成茂. 基于多體動力學(xué)的秸稈還田機(jī)虛擬仿真與功耗測試[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(3):106-111.

Chen Liqing, Liang Xiutian, Cao Chengmao. Virtual simulation and power test of straw counters field based on multi body dynamics[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(3): 106-111. (in Chinese with English abstract)

[11] 王韋韋,朱存璽,陳黎卿,等. 玉米免耕播種機(jī)主動式秸稈移位防堵裝置的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(24):10-17.

Wang Weiwei, Zhu Chunxi, Chen Liqing, et al. Design and experiment of active straw-removing anti-blocking device for maize no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 10-17. (in Chinese with English abstract)

[12] Antle J M, Basso B, Conant R T, et al. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement[J]. Agricultural Systems, 2016, 155: 255-268.

[13] 吳子岳,高煥文,張晉國. 玉米秸稈切斷速度和切斷功耗的試驗研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2001,32(2):38-41.

Wu Ziyue, Gao Huanwen, Zhang Jinguo. Study on cutting velocity and power requirement in a maize stalk chopping process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 38-41. (in Chinese with English abstract)

[14] Yore M W, Jenkins B M, Summers M D. Cutting properties of rice straw[C]//2002 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 2002: 1-10.

[15] 宋占華,田富洋,張世福,等. 空載狀態(tài)下往復(fù)式棉稈切割器動力學(xué)仿真與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(16):17-22.

Song Zhanhua, Tian Fuyang, Zhang Shifu, et al. Simulation and experiment of reciprocating cutter dynamics of cotton stalk under no-load[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 17-22. (in Chinese with English abstract)

[16] 侯加林,蔣韜,吳彥強(qiáng),等. 小麥秸稈往復(fù)式切割試驗臺設(shè)計與應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(增刊1):101-106.

Hou Jialin, Jiang Tao, Wu Yanqiang. Design and experiment of wheat straw cutting reciprocating test bench[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Supp.1): 101-106. (in Chinese with English abstract)

[17] 宋占華,宋華魯,耿愛軍,等. 棉花秸稈雙支撐切割性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(16):37-45.

Song Zhanhua, Song Hualu, Geng Aijun, et al. Experiment on cutting characteristics of cotton stalk with double supports[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 37-45. (in Chinese with English abstract)

[18] Ma Z, Li Y, Xu L, et al. Dispersion and migration of agricultural particles in a variable-amplitude screen box based on the discrete element method[J]. Computers and Electronics in Agriculture, 2017, 142: 173-180.

[19] Pieper C, Maier G, Pfaff F, et al. Numerical modeling of an automated optical belt sorter using the Discrete Element Method[J]. Powder Technology, 2016, 301: 805-814.

[20] Yan B, Regueiro R A. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles[J]. Computational Particle Mechanics, 2018: 1-25.

[21] Qiao J, Duan C, Zhao Y, et al. Study on Screening Efficiency of Banana Vibrating Screen Based on 3D DEM Simulation[C]//International Conference on Discrete Element Methods. Springer, Singapore, 2016: 1265-1275.

[22] Chen Z, Yu J, Xue D, et al. An approach to and validation of maize-seed-assembly modelling based on the discrete element method[J]. Powder Technology, 2018, 328(4): 167-183.

[23] Elbashiry E M A, Chen J, Tuo W, et al. Review of the pretreatment methods for wheat straw building materials[J]. Journal of Reinforced Plastics and Composites, 2018, 37(1): 35-48.

[24] 翟之平,張龍,劉長增,等. 秸稈拋送裝置外殼振動輻射噪聲數(shù)值模擬與試驗驗證[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(16):72-79.

Zhai Zhiping, Zhang Long, Liu Changzeng, et al. Numerical simulation and experimental validation of radiation noise from vibrating shell of stalk impeller blower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 72-79. (in Chinese with English abstract)

[25] 劉繼展,唐善奇,單帥,等. 機(jī)器人采摘葡萄果穗振動仿真與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(5):1-8.

Liu Jizhan, Tang Shanqi, Shan Shuai, et al. Simulation and Test of Grape Fruit Cluster Vibration for Robotic Harvesting[J]. Transactions of the Chinese Society for Agricultural Engineering, 2016, 47(5): 1-8. (in Chinese with English abstract)

[26] Aleshin V, Abeele K V D. Hertz–Mindlin problem for arbitrary oblique 2D loading: General solution by memory diagrams[J]. Journal of the Mechanics & Physics of Solids, 2012, 60(1): 14-36.

[27] 機(jī)械振動道路路面譜測量數(shù)據(jù)報告GB/T 7031-2005 [S].北京:中國標(biāo)準(zhǔn)出版社,2006.

[28] Xu Y F, Zhang X L, Sun X J, et al. Design of the cutting test-bed and control system of vine straw[C]//2014 Montreal, Quebec Canada July 13–July 16, 2014. American Society of Agricultural and Biological Engineers, 2014: 1-9.

[29] 農(nóng)業(yè)機(jī)械適用性評價技術(shù)集成研究項目組. 典型農(nóng)機(jī)具適用性評價方法[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2016.

Preliminary design of straw cutting simulation test platform based on hardware-in-loop

Liu Jun1,2, Xie Shouyong1,2※, Chen Chong1, Xie Dan1, Yang Mingjin1,2

(1.400715,2.400715,)

Straw cutting is an important process for harvesting machinery during harvest time, and the cutting performance directly determines the harvest efficiency and the maintenance cost of the machines. However, subject to the influences of the harvest time and the field terrain differences, some problems, such as nonrepeatability, poor data continuity, high difficulty, and low accuracy, exist when obtaining the cutting parameters of the harvesting machinery during experiments. Prior research has designed some experiment platforms to reduce such problems. However, these platforms require excessive consumption of the straw, and need to continuously add the experimental straw manually. This is difficult to verify the reliability of the harvesting machinery’s continuous working condition. Therefore, drawing upon these problems, an innovative spiral auger feeding system was proposed to achieve the continuous supply of materials, and a simulation analysis of material collision, movement direction and distribution inside the box was conducted using the discrete element method. Meantime, a simulation physical experimental platform was built up by combining the simulation vibration platform that simulates the field terrain differences and the vibration of the harvesting machinery and by using the hardware-in-the-loop technique. The simulation results revealed that: 1) Adding a fan-shaped blade in the bottom of the spiral auger could increase the load and perturbation area of the spiral, thus increasing the whirlpool intensity formed by materials and then facilitating the formation of continuous flow of materials. 2) The velocity of rod-shaped particles increased along with the increase in the rotation speed of the spiral auger. However, when the rotation speed of the spiral auger reaching 600 r/min, the velocity of rod-shaped particles increased sharply and unstably, which was the no-load high-speed operation situation and was inconsistent with the actual cutting process of the harvesting machinery. When the rotation speed of the spiral auger lowering 300r/min, the velocity of rod-shaped particles has not yet reached the running velocity of the harvesting machinery, which was the low-speed turning operation condition. As a result, for ideal straw feeding system, the rotation speed of the spiral auger should keep during 400-500 r/min in order to marching the harvesting machinery’s actual operation status in the field. Following these simulation results, the structure of the proposed spiral auger feeding system was optimized, and the rationality and feasibility of the design idea was also verified. In addition, according to the general vehicle traveling process simulation theory, a shaking table that simulates the walking of the harvesting machinery in the field was designed. The PLC programming software Gxworks2, the touch screen programming software SKWorkshopV5.0.2 and the configuration software kingview6.60SP1 were used for upper computer programming, and to detect and give the control and feedback signals required during the experiment. The results showed that when the speed of the spiral auger reaching 450-500 r/min and the vibration frequency of vibration table keeping 4.12 Hz, the average output torque was approximate to the actual output torque of the straw harvest in the field. That is, the working condition of the cutter was close to the real working environment of the harvesting machinery. This research can provide experimental data for the harvesting machinery design, and can also provide technical support for the current lack of agricultural machinery simulation reliability testing standards.

agricultural machinery; design; simulation; straw; hardware -in- loop

10.11975/j.issn.1002-6819.2018.19.006

S225.31; S225.4

A

1002-6819(2018)-19-0046-08

2018-03-27

2018-04-16

“十三五”國家重點研發(fā)計劃智能農(nóng)業(yè)裝備專項“農(nóng)田提質(zhì)工程技術(shù)和裝備研發(fā)”(2017YFD0701100);重慶市科委社會事業(yè)和民生保障科技創(chuàng)新專項重點研發(fā)計劃(cstc2017shms-zdyfx0006);重慶市重點產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新專項項目(cstc2015zdcy-ztzx8002)

劉 軍,男,安徽宿州人,講師,博士,主要從事智能農(nóng)業(yè)裝備技術(shù)研發(fā)。Email:lcytsj@swu.edu.cn

謝守勇,男,重慶開縣人,教授,博士,主要從事農(nóng)業(yè)智能控制與檢測方面的研究。Email:salong198211@qq.com

劉 軍,謝守勇,陳 翀,謝 丹,楊明金. 硬件在環(huán)秸稈切割仿真試驗平臺初步設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(19):46-53. doi:10.11975/j.issn.1002-6819.2018.19.006 http://www.tcsae.org

Liu Jun, Xie Shouyong, Chen Chong, Xie Dan, Yang Mingjin. Preliminary design of straw cutting simulation test platform based on hardware-in-loop[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 46-53. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.006 http://www.tcsae.org

猜你喜歡
供料振動臺螺旋
一種供料系統(tǒng)、供料方法及輪胎成型機(jī)
分離設(shè)備清理的優(yōu)化方法
多層螺旋CT診斷急腹癥的臨床效果分析
腸梗阻放射診斷中多層螺旋CT的應(yīng)用分析
基于振動臺試驗的通信機(jī)柜地震易損性分析
16排螺旋CT在腰椎間盤突出癥診斷中的應(yīng)用觀察
DELTA機(jī)器人產(chǎn)能與供料周期分析
奇妙的螺旋
世界首臺20t油冷感應(yīng)式振動臺在我國誕生
世界最大推力電動振動臺完成測試
巢湖市| 渭南市| 东明县| 长沙市| 高唐县| 太康县| 柏乡县| 化州市| 丹东市| 抚顺县| 永新县| 南江县| 德兴市| 辰溪县| 固原市| 开化县| 泗水县| 灵台县| 南和县| 繁峙县| 台北县| 五台县| 新昌县| 桦南县| 喀喇沁旗| 浮山县| 宁武县| 榆林市| 利川市| 佳木斯市| 长宁区| 博乐市| 柘荣县| 黄龙县| 扶沟县| 宕昌县| 伊春市| 临澧县| 玉门市| 房山区| 沛县|